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PREFAtE

This text-book on theoretical mechanics is intended for those

possessing, or concurrently acquiring, an elementary knowledge

of the calculus. Within these bounds it is fairly complete,

dealing with the kinetics and statics of solids and of fluids.

Further, in the kinematical portion, mechanisms and strains zrt

included, and the work closes with a short chapter on elas-

ticity.

In the transition from kinematics to kinetics, Newton’s

principles and the views subsequently held respecting them are

passed in review. This critical treatment culminates in a set

of proposed enunciations. To minds thus prepared these

enunciations, though brief enough to be easily remembered, may
serve to recall a sort of central position of modern thought on

dynamical axioms. But no finality has yet been reached on

these philosophical topics. Their discussion is accordingly con-

fined to a single chapter. This leaves the formal mathematical

developments equally readable to those holding the most

diverse views as to the foundations underlying this super-

structure. •

Probably most users of the book will bring to its study

some previous knowledge of the subject, the amount and fresh-

ness of which differ widely in individual cases. To provide for

such variety of preliminary attainment, the elementary parts

are briefly outlined to serve as a revision or reference and for

logical completeness. Similarly, parts iying beyond the central

scope of the work are often indicated and sources of fuller

information quoted.

The work is not written narrowly to any one examination

syllabus. But its general scope and treatment will be found

to meet the needs of degree candidates of London and other
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universities at home and abroad, also of those
^

mg the third

and honours stages of the Board of Education. The arrange-

ment is such that any candidate not requiyng the whole would

usually, find his course provided for by a certain selection of

chapters taken entire, the others being wholly omitted. This

fact conduces to a simplicity and coherence in these special

courses which could not be attained if the chapters themselves

needed minute subdivision into parts to be read or omitted.

As to order of treatment: after a short introductory part

there follow Kinematics, Kinetics, Statics, Hydromechanics, and

Elasticity. But the detachment of Chapters II., III., ^and XI.,

gjving respectively formulae, geometrical basis and physical

b^is, will enable a student or teacher to take the other sec-

tions of the book in a different order if preferred.

Through the body of the work, at frequent intervals, are

g^ven sets of examples mostly of a simple character and strictly

on the text. At the end occur additional examples of a harder

or more varied character, some classified, some miscellaneous,

also subjects for essay-writing. These bring the total number

of examples almost to eight hundred. It was intended to give

hints* for the solution of the problems set, but considerations of

space forbad the inclusion of such a section in the present

volume.

In addition to the great classic authors, too well known

to need mention here, many other authorities have been con-

sulted and quoted, as may be seen by the index, in which proper

names are italicised.

Acknowledgments are hereby tendered to the holders of

copyright for their courteous permissions, as follows :

—

(i) To the Controller of H.M. Stationery Office for permis-

sion to print

(a) questions set at the examinations of the Board

of Education, and

{b) the mathematical tables as issued to candidates

thereat

;

(ii) To Messrs. Macmillan & Company, Limited, for similar

permission respecting part of those tables, viz. the

logarithms of numbers from looo to 2000

;
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(in) To the University of London
;
and

(iv) To the University of Calcutta for permission to print

their Examination questions.

To Mr. H. T. H. Piaggio, M.A.(Cantab.), cordial thanks

are offered for his careful reading of the proofs, and for

his valuable comments thereon.

If any readers noticing errors, omissions, or obscurities

would communicate such, their kindness would be highly appre-

ciated, and subsequent editions in consequence improved.

Nottingham,/!/^ 1911.

PREFACE TO SECOND EDITION

In preparing for the press this second edition, the text has been

carefully revised, a number of errors corrected, and alternative

proofs added where deemed desirable.

The value of the work has been much enhanced by the

addition of nearly three hundred Examples chosen from London

examination questions set in the years 1911-1923. The total

number of examples included is thus considerably over a

thousand. To these a complete set of answers is now given

separately at the end.

For kind permission to publish these questions thanks are

duly tendered to the University of London. Also for valuable

suggestions and help in checking many of the answers, cordial

thanks are hereby offered to various colleagues, viz. :

—

Professor H. T. H. Piaggio, M.A., D.Sc., Dr. John Marshall,

VI.A., F.R.S.E., and H. Gwynedd Green, M.A.

While it is thus hoped that no seAous slips have escaped

letection, readers are assured that their kindness in notifying any

;rror or obscurity, yet remaining, would be warmly welcomed

Nottinoham, 1923. I
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ANALYTICAL MECHANICS

PART I.—INTRODUCTORY

CHAPTER I

PRELIMINARY SURVEY

1. Scope of Meclianics.—The theory of Mechanics deals with space,

time, and mass. But if left with so vague a description it would be
found to include both Physics and Chemistry, instead of being but
the simpler part of the former as it really is. In order to see more
precisely how Mechanics is limited, it will be a convenience to note
what the above broad statement might include and how it must then
be reduced. This may be done as follows ;—Take, m imagination, a
number of columns and head each with the name of some material

system, such as a single particle^ two particles^ body^ etc. Next,

divide the columns into a number of lines or rows, reserving to each
row some one definite type of attracting or other influence or con-
straint, under which the systems might be placed, such as gravtia-

ttonal attraction^ one pointfixed, and so forth. We should then obtain

in this table a number of spaces or squares each referring to a specified

system placed under given conditions. And, with respect to each
such square, Mechanics would be concerned with two types of

problems, viz. •— (i) What motion ensues for each possible initial con-

figuration or motion?
(
2
)
What forces or initial configurations are

necessary in order that the subsequent motion may be of some given

type, including the special case of rest? Thus, under the first type of

problem, we may be asked what happens if a pendulum bob be pulled

aside and let go. While, under the second, we may be asked («) what
the length of the pendulum must be so that it shall beat seconds, or {b)

what force is required to keep it pulled aside a given amount
Now, in our supposed table, the columns and the lines each extend

without any definite limit; hence the possible number of squares is

doubly infinite, the total number of cases being further complicated

by the double or treble nature of the problemL attaching to each square.

But all the above applies to the initial vkgue statement as to the

scope of Mechanics, and which really includes also Physics and
Chemistry We exclude these two branches of science by restricting

to their simpler forms the material systems contemplated. And speci-

ally we restrict our attention to systems whose constituent parts are of

known shape and number. The line between the systems retained and
Ihose excluded is somewhat arbitrary, and when drawn so as to relegate

A
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to Physics and Chemistry all the possible case§, it still leaves to

Mechanics a large number of columns.

Neither is there any definite limit to the number of lines referring

to the separate sets of forces and constraints under which the systems

may be placed. Further, since the motions depend also on the initial

circumstances, it is a convenience to let the separate lines stand for

the various conceivable motions actual or possible. We thus obtain

a system of subdivision of the subject which, on grouping together as

far as possible the columns and lines, yields the traditional scheme of

subdivision shown in Table i.

Table I. Subdivisions OF Mechanics.

r

SYSTEMS

STATES
PARTICLES ^ RIGID BODIES 3 FLUIDS

ELASTIC
SOLIDS

MOTION!
KINETICS ^

OF
PARTICLES

KINETICS*
OF

RIGID BODIES
HYDROKINETICS

KINETICS
OF

ELASTIC
SOLIDS

REST
STATICS

OF
PARTICLES

STATICS
OF

RIGID BODIES
HYDROSTATICS

STATICS
OF

ELASTIC
SOLIDS

In this condensed form each column replaces or includes an in*

definite number of those in our imaginary schemes and calls for a little

explanation. Thus, m Table i., the first column is headed particles.

If we pass from two particles to a countless number, we pass from
Mechanics to Thermodynamics as treated in the kinetic theory of gases.

The problem of three attracting particles is certainly one of Mechanics,
but seems to have defied general solution hitherto. The wave motion
of a stretched string may be treated under Mechanics or relegated to

Acoustics. The wave motion of the ether is studied under optics or
electromagnetism. The attractions of the sun and earth are studied
under Mechanics, those of hydrogen and chlorine and of the other so-

called elements are dealt twith under Chemistry.
But when we restrict ourselves to those simpler systems in which

1 Motion purely without regard to its cause is Vudied under the title of Kinemattcs,
which IS a necessary preliminary to kinetics.

2 Kinetics is often studied under the title Dynamics, which is often, however, used to
embrace statics also

* Under the heading Particles we may include simple systems of connectedparttcUs,
and under the heading Rigid Bodies we may include jointed frames^ etc , some or alb
of whose parts are rigid.
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the main occurrences are mechanical, subsidiary ones are often of a
physical nature. And even when the physical and chemical phenomena
are ignored, the truly mechanical problems that remain are often too

complicated for solution. So that at the outset of many problems we
must further neglect the less important mechanical phenomena, and deal

only with the simpler and salient features of the case abstracted from
the almost bewildering tangle of total occurrences in which they are

involved.

2. Illustration of Projectile.—These principles may be easily seen

in many familiar phenomena. Take, as an example, the firing of a
rifle and the course of its projectile to the target. The explosion of

the powder is a chemical process. The production of sound and heat

at the target are physical processes
;
the whistling sound of the shot

on its way also falls under the latter category. But the description of

the trajectory is the subject of Mechanics, and at first sight seems a
very simple affair. In strictness it is highly complicated, and perhaps,

in all Its generality, still awaits solution.

It must be approached step by step. Gravity deflects the shot

downwards from the line of original projection, and this consideration

affords the first approximation to a solution or description of what
happens. A second approximation might be obtained by taking into

account the resistance of the air. A third by considering the tendency

of the shot to set its length at right angles to its direction of motion.

A fourth by considering the resistance to this tendency, due to the

spinning motion of the projectile produced by the rifling of the gun.

Yet further steps remaining are the allowances for the facts that (i)

the friction between the shot and the air drags the latter, disturbs the

distribution of its pressure, and may deflect the shot, and
(
2
)
when

great heights are reached, changes occur in the values of gravity and of

air pressure, density, and resistance. And these are all legitimate

subjects of Mechanics.

Further, the friction between the shot and the air produces heat,

expands the shot and the air, and again the phenomena are affected in

consequence, but these disturbances pass o^er into the domain of

Physics.

The principles that have been noticed for the shot in flight apply

to every occurrence, however simple it may appear at first sight. Thus,

apart from the limitation of our consideration to the purely mechanical

parts of any occurrence, there is also the initial limitation to the

simpler and more important features of the ^ase. And after\Nards, at

some stage in the process of successive approximations to a complete

solution, there is usually a limitation imposed by ihe student’s lack of

mathematical weapons competent to deal with the subject in hand.

Hence any course of study or treatise on Mechanics must be
planned with regard to the mathematical proficiency assumed. Thus
the present text-book supposes that a knowledge of the elements of the

differential and integral calculus is possessed or is being acquired by
the reader. When differential equations are introduced, they arc so far
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explained as to be intelligible to those without any previous conversance

with them. •

8. Order of Treatment.—Since we are* so* much concerned with

motions, we shall consider them first apart from their causes. This
necessary preliminary branch, called Kinematics^ occupies Chapters

iii.-x
,
forming the second part of the work. Kinematics rests on the

conceptions of space and tinie only, and leads naturally to the third

part, called Kinetics. In this we study motions, having regard to the

circumstances under which they may be expected to occur. But, to

form a basis for this, something beyond conceptions of space and time

•are needed. The conception of mass must be introduced. And for

the part it plays we must fall back upon universal experience as

,

generalised, co-ordinated, and formulated by thinkers ancient and
riodern. A rhum'e of this in Chapter xi. accordingly introduces the third

«part; the kinetics of particles and rigid solids occupying ^Chapters

xii.-xiv. Statics is next dealt with in Chapters xv.-xviii., the treatment

concluding with brief chapters on Hydromechanics and Elasticity.

This order has been adopted as appearing on the wh()le most con

venient. But no possible sequence is free from objection Readers
wishing to take the several parts in a different order will find their task

simplified {a) by the collection of preliminary notions and theorems

which occupies Chapter ni., and {b) by the mathematical formulae

given for reference in Chapter ii.

Examples—I.

1. State what you understand by Mechanics, showing clearly how it is dis-

tinguished from Physics.

2. Make a scheme of the subdivisions of Mechanics, dealing with the various

possible systems and their states of motion or rest

3 Analyse some familiar mechanical phenomena, indicating the various

approximations which may be made in the endeavour to treat it mathe-
matically.
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CHAPTER II

FORMULAE

4. Object and Use of this Collection.—When solving mechanical
problems a number of mathematical formulae are needed. Many of

these are usually remembered readily as required. But to each student

at times there may occur a lapse of memory, or his knowledge in a

certain essential may be found incomplete. To obviate the necessity

of reference to other books in the first case, and to direct attention to

the defect in the second case, the collection of formulae composing this

chapter is placed here. No one student is likely to require every one
of these formulae. But while only the formulae of an advanced
character may be referred to by the stronger readers, the more elemen-
tary examples may be useful to those less highly equipped. Further,

the collection as a whole serves to indicate the scope of the mathematical
knowledge which should be possessed or soon acquired by the student.

Thus the ground indicated by these formulae in algebra, plane

trigonometry, and plane co-ordinate geometry is supposed already

familiar to the student of this book. The study of the elements of the

differential and integral calculus must be undertaken concurrently with

the readme of this book, if not already possessed. While the systematic

study of differential equations may be deferred for a time, though, of

course, its possession is a great advantage.

Algebra.

Binomial Expansions.

+ . . .

For //, a positive integer, the right side is clearly a finite series, and
then correctly expresses the left side for any value of x.

For «, a negative integer or fractional^ the right side is an infinite

series; provided x<i numerically, it is a convergent series which
truly expresses the value of the left side.

When X is very small, h say, whose square is negligible in com-
parison with unity, we may write

nearly.

Exponential Series.

^sr i-f 2 7 182 8183 nearly.

If 13
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Logarithmic Series, etc,

\oge{'^-\-x)=x—^-\-^— . . . when^<i numerically,

logsN= (loga^) -r (loga^).

log.JV= 2-302S85°9 logi.^

Plane Trigonometry.

sin ±^)= sin A cos cos A%mB,
co^{A±^B)^cos A cos B^s\n A sin^.

cos 2.<4= I —• 2 sin* A^2 cos* A-^i.,

I— C0S2i4 ^ .

:i=tan*i4.
I -fcos 2A

sin (v4+^)*f sin {A~
sin(A^B)-
cos{A+B)+cos(A’
cos(A^B)^cos IA-{-B) = 2 sin A sin B.

~B)= 2smAcosB.
-sin —^)=2 cos A sin^.

^— .5)= 2 cos a cos B,

Note,—The angles on the right are the half-sum and half-difference

of those on the left.

tan {A±B)= i3inA±ia.nB

i^tSLTiA tan B*

Solution of Triangles,

A-\-B-\- C=7ror i8o".

sin.^4___sin-5_sin C
a b c

'

a’=^*-f ^*— 2^^cos A,

2 W be 2 \ be
^

where s is the half-sum of the sides a, b, and c.

Area of triangle=J^^ sin A= fs{s'—a){s^b){s’^c).

De Moivre^s Expansion,

(cos B-\‘i sin ^)’‘=cos nB-\‘i sin nB,

where /= and n is any integer positive or negative. When n is

fractional one value of the left side is given by the right as it stands,

the others being found by writing in it ^+27r, 47r, etc., for B,

Thus, for the cube root of a’\>ib, writing di=rcos B, and b=r sin

we have r*=a*-|-^* tan B=:bla
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Hence
{cos ^+/sin 6)'^*

= r’'M cos [-/ sin — I

\ 3 3/

orr

3

6-^2rr
+ / sin

6»+27r\

)
1 /8 # ,

• 6-\-An
or \ cos -—

~

+/ sin -

3 3
Stn€ and Cosine Series.

cos a=i —
i

|-i TF"^" • • •

\2
l4 [6

m ni n7

sin 0z=0^-. hi
1
—f- • • •

b 15 l7

Exponential Values of Sine and Cosine.

2 cos ^=
2 / sin

cos Q-^i sin

Hyperbolic Sine and Cosine.

2 cosh

2 sinh Oz=ze^-^e~^.

Spherical Triangle of spherical angles B, and C and opposite

sides subtending at the centre of the sphere the angles a, by and c.

cos a=cos b cos sin b sin c cos A.

6. Plane Co-ordinate Geometry.
X V

The Straight Line may be represented by>'=w5t:+^> = or

X cos a-{-y sin a=/.

The general form is ax-\-by-^c=o.

The perpendicular on this from {hy k) has the length l-=z^^~^i~y
s/a -^b

its equation being bx--ay-{-ak---bh=^o.

Two lines through the origin are given by — o.

Polar Equation, r cos (0— a)=/.
The Circle of radius a with centre at (h, i.) is

The tangent to it at {x\ y') is

{x-h){x'--h)'^{y--'h)(y—h)=a*.

Polar Equation is P^iRr cos (^— a*= o when the radius

is a and the centre at {R, a).

L The Parabola is represented by = ±4^*^> or je®= ± e^ay, with origin

at the vertex.
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If the vertex is at (//, ^), and the axis along the negative direction

of^', the equation is

{x—/ty~\-4a{y-^~k)=:^o,
,

the focus being at {/i, a), and the directrix being
The tangent at (y, y) is

If /i^=4aky the parabola *passes through the origin P, and the

tangent there is

/tx—2ay—o.
Calling the focus S, R denoting the point {x\ y') on the curve,

and Q the point of abscissa x on the tangent through the origin Fy we
have FS=a-\-ky FQ^=x\a-^k)lay

and QR^x'^]4ay
whence P(^^4PS.QR—a useful relation.

The Ellipse ^= i has at the point (xy y')

,
xx'

.
yy'

the tangent

The semi-axes a and l> satisfy b'^=a^{i — = where e is the eccen-

tricity and / the scmi-latus rectum.

If the foci are denoted by S and Sy the corresponding extremities

of the major axis by A and A'y r and r' being the focal radii to a point

P on the curve, and p and p' the perpendiculars from the foci on the

tangent at Py we have the following properties :

—

'
‘ AS.SA' =!:pp\

f,jp'=rlt',

and /'-!-/= 2a.

Also, if p be the radius of curvature of the ellipse at Py and c the

semi-axis conjugate to that through Py then
r’= rr’y

and c*-=^abp.

The Hyperbola and its conjugate are represented by

X y
the asymptotes of both being ‘^—'^=0.

General Equation of a Conic,

ax^ -f 2hxy -fly+ 2^x \-2fy-\-c^o.

Geometrical Relation fi(lfilled by any Come,

SPiPM—2l constant ratio, e say, where S is the focus, T’a point on
the conic, and J/the foot of the perpendiculai from T’on the directrix.

The conic is an ellipse, parabola, or hyperbola according as ^< i, i,

orif>i.

Polar Equation of a Conic, its Focus being the Pole*

l\r^i-^e cos

Solid Co-ordinate Gteometry, the axes being rectangular.

Co-ordinates ofa Point {x, yy z).
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Equations of a Plane.

General form, Ax‘\- By-\- Cz-\- D:=.q.

Perpendicular form, lx-\‘my-\-nz=py

where p is the length of the perpendicular from the origin on to the
plane, and /, rn^ n are the direction cosines of that perpendicular {i.e. the
cosines of its angles with the axes).

The Straight Line may be represented as the intersection of two
planes of equations, and ny-\-pz— \ ;

or we may write for a

I m ~ n *

where («, Cy) and (xy j/, z) are points on the line whose direction

cosines are /, nty and n
The Angle between Lines is given by cos 6=zll' ‘\-mm -{-nn'y where

/, niy n are the direction cosines of one line, and m\ «' those ot

the other.

Sphercy x^ -{-y^+ = a*.

Elhpmd, ^ 4.-^+^= I

Coney vertex as origin, Ax^ A-Ty^ -\-Cz^=.o.

Right Circular Cone, about Oz as axis, A{x^ ~\-y^)— Cs*=o.

7. Differential and Integral Calculus —The following list may be
regarded as giving on the right the differential coefficients of the
functions on the left, or as giving on the left the result of integrating
the functions on the right.

Simple Algebraic Functions :

—

Integrals

<?*

«*

log^

Differential Coefficients

dx

nx'^~^

bd>^

a^log,rt

I

X

loga*

UV^

u

V

Jx* 4- a*

I

xXogefii

du
,

dv
4.

dx '^Tx

du dv

''Si

V*

X

1 From this we have, for lntcgr.ation by ^xlSy/vdusiUV'-fudv,
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Trigonometrical Functions :

—

’ Integrals

y or f
J dx

Differential Coefficients

dx
sin X
QOSX
tan a:

cot X
sec^
cosec X

cos X
— sin X
sec ^x
— cosec X
sec X tan x
— cosec cot JC

Inverse Funciiom :

—

Integrals

y or f^dx
J dx

Differential Coefficients

dx •

sin ~'^x

cos
~
^x

tan ’‘^x +rip

cot '^x
__ I

1

4

“ x^

sec “‘jp

cosec

8. Hyperbolic Functions :

—

Integrals

y or f^dx
J dx

Differential Coefficients

dx

sinh X
cosh X
tanh X
coth X
sech X
cosech X

cosh X
sinh X
sech *x
— cosech ^x
— sech X tanh x
— cosech X coth x

Harder Miscellaneous Functions :

—

Integrals Differential Coefficients

dx
I— tan -
a a
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I - a^x
2a

2a x--a

cosh — or loge(^-f

sinh ~orlog,(jf+

- H log«(^4-
2 2

I “‘jc— sec —
a a

a—sja---x*

i

I

{x<a)

(x>a)

(x<a)

{x>a)

I

iJx'-\-a*

s/iMV

1

(x>a)

(a>x)

X

a+V?±F
I

Conception of Definite Integral—The following paragraph may
be of service to some who have to use definite integrals in mechanics
before they have reached them in their systematic study of pure mathe-
matics.

Consider the area 0PM between some curve OP, a portion OM of

the axis of x and the ordinate MP, and denote this area by
(i),

the curve OP being such as to fulfil this relation.

Then, if MP shifts to M'P' by the very small increment MM'=/4 or

dx^ we may write

du Area MPP'M'
(*).

but by (i) nx^”^, soy=nx^'‘^ (3).

Take now any value a of x, and erect the ordinate aA, cutting the

curve OP in A. Then the area of OnA is a’*, but it may be regarded

as made up of vertical strips each of area^'^ or ydx. Thus we have,

except for «=o, the summational formula,

l%nx^’’^hr=a^ (4);
or, in the notation of the integral calculus,

j
nxt^~^dx=a^ (5 ).

For «=o, the summation yields a logarithm ; see Art. 7 ,
line 5 .
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9. Differential Eqnations.—Many mechanical, problems lead to

differential equations in which the variables are separable. Hence, after

the separation, such an equation may be integrated and the solution
readily pbtained. Thus the differential equation

dy

may be written -^^^~-Yadx=^o.
ay-^b

And this integrates to \ogt{ay-^b)‘\-ax^C,

•which is equivalent to ay-\‘b=.Be~^^

the B and C being constants.

Other differential equations often occur in mechanics whose solu-

tions are very easy. Thus, some may be dealt with by multiplying by
an integrating factor or assuming a trial solution of the form c”*®, or of
some other form suggested by mechanical considerations. It must
suffice here to notice the following important types, the solutions of
which may be verified by differentiation When any differential equa-
tions occur in the subsequent text, they are dealt with simply so as to be
understood by students not having any previous knowledge of them,
though, of course, such knowledge is a great advantage.

Thus, the differential equation

is easily found, by trial oi to be satisfied by

the quantities A and B being arbitrary constants to be fixed by the

initial conditions.

Again, the differential equation

dx^

is satisfied hy

A

sin px-^-B cos/:r,

A and B being arbitrary constants depending on the initial ‘^tate. K x
refers to time, this is obviously a to-and-fro motion or vibration, the

former case being a subsidence ifB vanishes.

For the differential equation

dy
,dx^

the solution may be written

y=se~^^{A sin cos ^x),

where — /fe*. This gives a diminishing vibration if x is time.

The differential equation

dy
dx*

-i-p^yss/smnx

is satisfied by /sin nx
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PART IL---KINEMATICS

CHAPTER III

GEOMETRICAL BASIS

10 . Space and Position.—Geometry treats of space; and the space of

ordinary human experience has three dimensions only, often referred

to as length, breadth, and thickness. By a process of abstraction we
can conceive of space of two dimensions only (or even of one only).

We thus have the geometry of two dimensions as well as that of three.

Or we have plane geometry as well as solid. And it is convenient

to deal first with the position of points in a plane.

To fix the position of one point relative to another, both being in

a given plane, we need either (i) two distances along given directions,

or (2) one distance and an angle with a given dnection in the plane.

These methods form respectively

the cartesian and polar systems of

co-ordinates. They are illustrated

in Fig I.

Thus, on the cartesian system,

the position of P with respect to

O is fixed by the two distances or

co-ordinates, OM called x and ON
called MP and NP being re-

spectively parallel to the two direc-

tional axes OY and OX.
On the polar system, P’s posi-

tion is fixed by the distance OP
called r, and the angle called B

which OP makes with the fixed direction OX.
It IS accordingly obvious that the following relations hold when as

usual OX and OY are at right angles :

—

.r=rcos ^ and^=r sin ^ (i).

and tan O^r.yjx (2)

The pair of equations (i) give the cartesian co-ordinates x and in

terms of the polars, while equations (2) give the polar co-ordinates in

terms of the cartesians
;
hence either transformation can be readily

effected.

Looking at the two systems, we see that the specification of the

position of a point in a given plane requires two quantities, of which one

at least must be a lengthy the other being a length or an angle.

Fig. I. Plane Co-ordinates.
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11, Units.—The facts just noted lead us to inquire how lengths and
angles can.be measured and specified. Obvidusly any given length

can be specified only by stating the number of times it contains some
other given length taken as a standard. Thus the measure of a length

consists' of two factors—(i) a pure number^ and (2) a given length

called a unit. The unit may be the British yard, foot, inch, mile, etc.,

or the French metre, centimetre, millimetre, kilometre, etc., as may be
convenient. These units are defined by the respective governments by
reference to standards which are preserved, as far as may be, in their

official departments.

The above remarks as to stating the magnitude of a length apply

equally to the measure of an angle. It must consist of two factors

(expressed or understood), of which one is a pure number and the other

an angle taken as the unit angle. The unit angle may be the degree,

of which 360 correspond to one complete revolution, or the radian,

ahich is the angle whose arc equals its radius.

In analytical geometry the units, whether of length or angle, are

often omitted, the numbers (or letters representing them]j being used
alone. It should be borne in mind, however, that such numbers or

letters, apart from the unit understood, fail to completely express the

length or angle in question, but are simply the working factors with

which we are concerned in the analysis.

The complete expression for the measurement of a physical quantity

may be represented symbolically. Thus, suppose some length /

contains the standard length or unit [L] m times, then we may write

(i).

Similarly for an angle a which contains 6 radians, the unit angle

or radian being denoted by [^], we have

«=«[-«] (*)•

Suppose we change our unit of length to one of a third the size,

equation (i) may then be written

'=Kf]
thus showing that the new number expressing the given length is in-

creased threefold. Or, generally, the number measuring a given

quantity varies inversely as the size of the unit in terms of which it is

specified.

Now let it be required to express the angle a in degrees [Z>],

of which 180 correspond to tt radians. Then 7r[^J= i8o[Z>], which
put in (2) gives

(4).
7r

Or in other words, the new units (degrees) being tt/iSo times the old units

(radians), the new number measuring the given angle a is iSo/tt times

the old number.

12. Dimensions of Units.—Consider now the measurement o?
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an area, say of the rectangle ONPM in Fig. i. If [Z] be written for

the unit of length, the area in question is evidently expressed by,

a=^x[L-\^y[L]=xy[r]=x}{A-] '(
5 ),

where [^] is written for the unit of area and a for the complete measure
of the area.

Now, as before in equation (3), let the unit of length be changed to

one a third the size. Then (5) becomes

a=34f]xa>'[f]=3‘-^[f]=9-J'[|] . . (6).

An inspection of (5) and (6) shows that the unit of area [A]
equals the square of that of length [Z], and that consequently, when
[Z] is reduced to [Z/3], then [A] is reduced to [A/^‘^]. Hence the new
number expressing a is 3* times the old number. If we wish to dis-

tinguish between the directions of the lengths in the above two cases,

we may replace (5) by

a=x[X]y[y]=xy[XYl
The unit of length is called afundamental unit, and that of area a

derived one, since it depends on the former. 1 hus we see that if a

derived unit equals the «th power of a fundamental unit, and the

latter is changed in the ratio the former is changed in the ratio

Or, in symbols, if Z'rrf'Z, that the corresponding derived

unit Q is expressed by Q^{rVf^r'^Q (7).

In this case the unit Q is said to be of n dimensions in Z, or to involve

Z to the «th degree.

It is obvious that we may extend this principle to the case where a

derived unit is founded upon several fundamental units— each, it

may be, raised to a certain power.

Thus, if (8),

where /’is a unit derived from the units A^ C, we have

a^b^(nP^{aAY(bBY{cCyi (9),

or, F^a°-b^C(P (10),

in which aP-b^d is the factor affecting the derived unit when the

fundamental units are respectively affected by the factors a, and c.

It is specially noteworthy that, if any of the indices are negative^ an
increase of the corresponding fundamental unit will involve a decrease

of the derived unit.

In equations (8) and (9) the derived unit on the left side is said to

be of the dimensions a, and y respectively of the three fundamental

units on the right side. Thus we may write for the unit of volume

r=[Z'][r][Z‘]= [Z*], or y=[xyz] . . . (n),

either of which shows that volume is of three dimensions in length.

18. Displacement.—Suppose that the position of a point undergoes

a definite change. How may this change of position, step, or dis-

placement be specified ? Obviously one method is to specify by the

usual co-ordinates the initial and final positions, for from these data the
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change of position is ascertainable. A more usual way is to specify

the step directly and leave the final position to be ascertained if required.

But hbw may it be directly specified? Suppose its magnitude to be
2 inches. We have here the two factors which specify a length, but
these fail to specify a displacement. For if the point in Question is free

to move in any direction, its final position is simply any point on the
surface of a sphere of radius 2 inches, and whose centre was the initial

point. Or, if it was free to move in a plane only, then its final position

is simply any point on a certain circle, namely, where that plane inter-

sects the sphere previously mentioned. Hence, to specify a displace-

ment, we must have something in addition to its magnitude. It is

evident that the magnitude and direction suffice to specify any displace-

ment of a given point.

On looking back at the specifications of position, it is evident that

this method of specifying a displacement is simply the polar-co-ordinate

method of specifying a position. For we have simply to take the origin

of co-ordinates at the initial position of the point, and then the rand 0,

which specify the final position, also specify the displacement, if it is

understood to be in the plane of the diagram. Of course, the dis-

placement could be expressed by the equivalent cartesian co-ordinates

X andy. But, though each system is available for each class of speci-

fication, the cartesian system is usually preferable for specifying posi-

tions and the polar system for specifying displacements.

14. Scalars and Vectors.—We are thus led to observe that though
a length may be thought of apart from any definite direction, as for

example when we say the earth^s diameter is 8000 miles, there are

other cases in which the direction of a length is just as vital as its

magnitude, as in the case of specifying the displacement of a point or

other figure. These are examples respectively of the classes of

quantities called scalars and vectors^ of which the latter have direction,

while the former have not. Many other examples of these two classes

of quantities will occur later.

It is evident that vectors may be represented by straight lines. For
a vector is specified by magnitude and direction, and the length of the

line may represent to a certain scale the magnitude of the vector, while

one of the two possible directions along the line, viz. that of the order

of naming its terminal letters, represents the direction of the vector.

Thus any straight line OP could adequately represent the displace-

ment of a point in the direction OP, and of a magnitude represented

by OP on a certain scale. The displacement called PO would be
equal in magnitude but opposite in direction to the displacement called

OP. Another device is to put an arrow head on the line representing

a vector so as to indicate the direction of the vector. It should be

noted that some writers use ‘ direction * with a wider meaning than that

employed above, namely, to denote both ways along a given line. They
then say that the line’s * direction^ represents the ‘direction' of the

vector, which needs also the ‘ sense * in which the line is supposed drayn
to be indicated for the complete specification of the vector. Which-

ever phraseology is employed, the fact to be borne in mind is that a

line fails to represent a vector precisely until an order of naming its
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terminal letters (or some equivalent device) is supplied. Thus, if the
centre of a sphere is taken as the point through which to draw lines

representing various vectors, a vertical diameter is ambiguous, but its

upper and lower halves, if supposed drawn from the centre^ specify

vectors equal in magnitude but opposite in direction (or, as some would
prefer to say, equal in magnitude and direction but opposite in sense).*

Fig. 2. Compo-
sition OF Dis-
placements.

15. Composition of Displacements.—Suppose a point to suffer the
displacement represented in Fig. 2 by OP, and then the displacement
represented by OQ. To find its position after both
displacements, or to compound them, it is obviously „

necessary and sufficient to allow the second displace-

ment to operate upon the position due to the first.

In other words, we must draw on the figure from P
the line PR equal and parallel to OQ. Or, we may
complete the parallelogram on OP and OQ by draw-
ing PR and QR parallel to OQ and OP respectively

and intersecting at R, thus making PR equal to OQ
as well as parallel to it. If we are now asked to state

to what the two displacements are equivalent, / e,

what is the result of their composition, the reply may be, the
point originally at O is, after the two displacements, at R. Or,

more formally thus, the composition of the two displacements repre-

sented to scale by OP and OQ yields the resultant displacement repre-

sented to the same scale by OR. This is a very simple example of the

important operation called the Addition of Vectors, It may be repre-

sented symbolically as follows :

—

OP+OQ=OR (i),

where the sign over the plus indicates that the addition is vectorial^

i.e, having regard to direction and not simply algebraic. If the dis-

placement OQ occurred first, and then the point at Q received the dis-

placement represented by OP, it would as before be found finally at

R, as is obvious. Thus we might write

OQ4-OP=OR (2 ).

Other examples of the addition of vectors are the theorems of the

parallelogram and triangle of forces, familiar to the student of elementary

statics.

16. Localisation of Vectors.—A comparison of equations (i) and

(2 ) and the operations they respectively represent will bring out
important points as to the component vectors and their results in the

two cases. Thus the equations seem to express that the order of

quantities added is indifferent, and the result therefore the same, in the

two cases. But, on going into details, we see that in (i) OP is applied

at O and then OQ is applied at P. Whereas in (2) OP is applied at

Q, OQ having been previously applied at O. In other words, the

points of application or locaiisations of the vectors were different in^

* Definition. A vector Is a quantity which has magnitude and involves one direction
only and that to the first positive power.

Vectors compound according to the parallelogram law. Other quantities which
involve various directions, but are found on scrutiny to obey the parallelogram law, are
often called vectors also.

B



analytical MECHANICS [art. 17

each case. Again, though the resultant displacements were the same
in each case the paths of the points were different, being OPR in (r)

and OQR >n (2). lienee we see that although, the equations (i) and

(2) may, express all that is needed for certain purposes, they do not

give the entire details of what we suppose to have happened. ^
Vectors may be spoken of as unlocalised or localised to various

degrees, as for example in a point or a line. In concrete cases they

are probably always localised to some extent. Thus, if a ship in

harbour is said to be raised 10 feet by the tide, the vector has a magni-

tude 10 feet, a direction vertically upwards, and is localised to the

yolume occupied by the ship in question. If one of the masts be
similarly referred to, the same vector is localised to the volume of that

mast, or if the thickness of the mast is regarded as negligible, the vector

is localised in a line. Or, again, if the top of the mast be in like manner
spoken of, the vector is localised in what may be regarded as a ^oint.

Hence, in compounding displacements and adding vectors in

general, care must be taken that the appropriate degree of localisation

is in each case present in the component vectors thus dealt* with.

Examples—11.

r. Explain the distinction between fundamental and derived units, and show
how the size of a unit of one class is related to the sizes of those of the
other class.

2. Define the terms scalar and vector. Give examples of each, and show
• hew to add vectors.

3 Show by illustrations what you understand by the localisation of vectors.

What bearing has the localisation of vectors upon their composition?

17 , Time and Motion.—The physicist, as such, regards time as

that familiar though inscrutable one-dimensional something which
separates changes in bodies and individual sensations and extends
without known limits from the past to the future. Just as space is the

abstract of all relations of co-existence, so time is the abstract of all

relations of sequence. Each is a primary conception that cannot be
rendered in terms of anything simpler. When we combine, in a certain

manner, the conceptions of space and time, we have the conception of

motion, a point being said to move if, at different instants of time, it

occupies different positions in space,

' To measure a given quantity of time we need a unit of time in

which to measure it and a number to express how many of these units

the given quantity contak^s. As units, the familiar second, minute,

hour, etc., are used. To«fix an instant in time with respect to another

ipstant we need to state only (1) the duration, or quantity of time,

separating them, and (2) which instant is the later. Or, we may
accomplish both algebraically by prefixing to the statement of the

duration the sign of plus if the instant to be fixed is later than that

taken as origin, or the sign minus if it is earlier. This is like fixing the

position of a point on a line, no divergence into solid or even plane
space being permitted.
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18 . Velocity.—The velocity of a point is its rate of change of

position. This is a brief definition serving to introduce the subject,

which we shall now examine in detail. Thus let a point move from O
along the axis OY, and let the times when it has the displacements

yv y»i • •
• 7 be respectively o, /„ Consider the

quotients ytl^11 y<tl^ii yj^m • • • yl^- And suppose these quotients all

have the same value, v say. Then this common value v measures the

velocity of the point or its rate of change of position with time while

passing from O to P.

In what units is this quantity measured and expressed? To
answer this we fall back upon the dimensional equations previously

used. Thus, writing [F] for the unit of lengthy [T] for the unit of

time, and [F] for the unit of velocity, we have

vm=y[y]^aT] (.),

whence —
(2).

Or, the unit of velocity is of plus one dimension in length (in some
definite direction) and of minus one dimension in time. Of course, the

actual size of the unit of velocity depends upon the units adopted for

length and time.

Let us now consider the significance of the supposed equality of

the quotients yxjtu yt/ia • • • and yjt. It is clearly only when
this equality holds that we can apply to the common value v the phrase

velocity of the point from O to P, and leave it unqualified by any further

restriction.

If, on the other hand, knowing nothing of^'i, y^y y#, we simply knew
the values^ and / having the quotient Vy we should then say that v was
the mean velocity of the point from O to P.

Again, if we knew a very large number of such intermediate values

of the distances ji'i, y 3, .../»»•••» and their corresponding times

Iti lax • • • tn ’ • , and found all the quotients j,//, . . .ynitn • • • =Vy we
should then say that the velocity of the point between O and P was
uniform and of the value v. The rigour with which the term uniform

would apply would depend upon the number of the intermediate

positions and times known, and would become absolute only in the

ideal case of all such intermediate information being available.

Finally, if the quotients had different values, thus

y^jt^^v^y etc
,
then the velocity would be vanablCy v^y etc., each

expressing the mean velocity over the range in question. But even
though the velocity is varying, the idea forces itself upon us that at each

instant of time (or position in space) the velocity must have some
definite value

;
just as when a point is moving it has at each instant of

time some definite position. How shall we in thought attain and
measure this instantaneous value of a varying velocity ? Take shorter

and shorter durations, t„ Tj, Tj . . ., each including the instant in

question, suppose the corresponding displacements ly,, 1;, . . .

known, take the respective quotients . . ., and
suppose these quotients to continually approach a limiting value Vy then

^•is the value sought, and expresses the instantaneous velocity at the

instant in question.
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It is obvious to students of the calculus ^hat an instantaneous
velocity, is the first differential coefficient of a distance (m some given

direction) with respect to the time. Or, in symbols

where the dot denotes a single differentiation with respect to time.

It should be noted that in scientific usage velocity involves the idea

of direction just as displacement does. If we wish to speak of the

magnitude of a velocity apart from all idea of its direction we use the

word spee^f. Thus if a point described a circle so as to pass over an
arc of lo cm. length in each second, i cm. in each tenth of a second
and so forth, we should say that the speed was uniform, but that the

velocity varied because one of its elements, viz. direction, was con-

tinually changing. It should be noted, however, that in speaking of

the speed of a point moving along a given path we may use the positive

or negative sign to indicate the opposite directions in that paih.

19. Acceleration.—Since velocities may vary it is incumbent upon
us lo consider the changes of velocity, and also the time-rate of change

of velocity^ which is called acceleration. Just as we passed from the

conception of displacement to that of velocity by using time once as a

divisor, so we may pass from velocity to acceleration by using time

once more as a divisor. Thus, let a moving point be considered,

having at times o, A, /j, . /, the velocities o, z',, t's* • • • all

along the same straight line, OY say. Then, if the quotients z/i/A, Vtjt^^

vft^, , , . vjt all have the same value a, this common value a measures

the acceleration of the point, which in this simple case is also directed

along the line OY in question.

If It is only known that after time / the velocity has increased by
the amount Vy then the quotient, vlt=:a say, measures the mean
acceleration during the time /. If, on the other hand, a large number
of corresponding intermediate values of v and / are known, each pair

yielding the same quotient then a measures the uniform acceleratioHy

the uniformity being ascertained with more and more rigour as the data

increase in number.
If, however, the intermediate values of v and t yield varying

quotients the acceleration is variable. Its instantaneous value may
be ascertained in thought and expressed in symbols, as was done
for a velocity. Thus, let shorter and shorter times, t,, Tj, etc., be
taken, each including the instant in question, the corresponding

changes in velocity being respectively v^—Vy etc. Then, if the

quotients {vx--v)lTx=a\y (y%— v)lr^—a^y etc., approach a limiting value

ay that value a measures the instantaneous acceleration at the instant

in question. Or, in the notation of the calculus

a=dvjdt= d*yjdi*=j?,

where the two dots denote two differentiations with respect to time.

From what has gone before it is easily seen that an accelerationus

of />lus one dimension in length and mhms two dimensions in time.
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Or, if its unit is denoted by [A\ then

a[A]=.v[r]^t[r]=j,[yr-^].

Accelerations may accordingly be measured in centimetres ^or other

units of length) per second per second. It is often convenient to

abbreviate the units thus : cm. per sec.*

It should be noted that acceleration is a vector, since it has

magnitude and direciion. If we wish to speak of the magnitude only

of an acceleration we may say * rate of change of speed ’ or quickening.

This IS, of course, a scalar having magnitude and sign only.

The relations of the various quantities hitherto considered may be
exhibited compactly as shown in Table ii., their order of development

being followed by reading down the columns.

Table II. Relations of Kinematical Quantities
,

QUANTllY (position) VELOCITY

CHANGE OF QUANTITY DISPLACEMENT CHANGE OF VELOCITY

CHANGE DIVIDED
BY TIME

VELOCITY ACCELERATION

20. Displacement Graphs.—The
motion of a point along a straight

line may be usefully represented

graphically on a displacement - time

diagram or by a dtsplacemeni graph

as follows :—Take distances along

the axis of y to represent the re-

spective displacements, and dis-

tances along the axis of x to

represent the corresponding times.

Then each such pair of co-ordinates

will define a point on the diagram,

and a continuous line drawn through

those points will give the graph

required. It should be noted here

that some amount of discretion must

be exercised m drawing this line be-

tween the points furnished by the

data of the case, and that only more

or less probability^ but not certainty^

attaches to any such intermediate

portions of the line so drawn. Ex-

amples of such graphs are shown m Fig. 3, plotted from the data ot

Table iii.
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Table III. Data for Displacement .Graphs.

' Graph A Graph B. Graph C

Displacement Time m Displacement Tune in Displacement
in Feet.

‘

Tune in

in Feet Seconds in Feet Seconds. Seconds.

0 0 6 0 0 0
2 I I I 0*54 I

4 2 4 2 2 2

4 3
10 5 9 3 6 4

7*46 5
12 6 8 6

T
r Graph A illustrates a uniform velocity or speed of 2 feet pe** second,
and even if only the final point (12, 6) were given we should have a
mean velocity of the same amount, though no knowledge of the

uniformity. Obviously the equation of the graph is y=-2x^ in which
the 2, being the tangent of the angle between the graph and the axis of

time, expresses the rate of increase of displacement with time, t,e. the

speed.

Graph B, for the first second, shows only half the mean velocity

represented by A, but by the end of two seconds, where the graphs
intersect, their mean velocities are the same. Beyond that point the

graph B is higher than A, i e. indicates a higher mean speed from the

start than A does. It therefore gives an example of a variable speed.

Let us now inquire what is the instantaneous speed at some instant,

say two seconds from the start. A glance at the corresponding point

on the diagram shows that the speed there is of the order 4 feet per

second, or double that of graph A. A closer examination would con-

firm this result. We may also arrive at the same conclusion by another
method. Thus we see from Table hi. that graph B has the equation

hence the tangent to it at the point {xy) is represented by the

equation \{y-\-y)=xx'. Thus for the point in question (2, 4) the geo-

metrical tangent to the graph is j'=4a:— 4. Hence 4, the co-efficient

of X, represents the trigonometrical tangent of the angle between the axis

of X and the geometrical tangent to the graph at the point in question.

In other words, the slope of the curve at this place, estimated so as to

measure the speed, is represented by the number 4. Similarly after

three seconds from the start, when the displacement is 9 feet, we find

the speed to be 6 feet per second.

If we apply the method of the calculus we must differentiate y
with respect to x in the equation of the graph to find the ratio of the

very small increase of displacement / to the corresponding increase of

time represented by x.

Thus, the graph being/= a?*,

we find dy/dx=2x=Vy
which agrees with the two results already dealt with.
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Again, if we ask at what instant is the speed denoted by graph B
equal to a certain assigned quantity, say that of graph A, .then by the

graphical method we must find the point on B which is touched by a
line parallel to A. It is evident that point is in the neighbourhood
(i, i), ue. the instant one second from the start, and when the displace-

ment IS I foot. And this is confirmed by the anal) sis.

Consider now the graph C ; it indicates by the horizontal portions,

at times o and 6, zero velocities or instantaneous states of rest. It also

indicates continuous increase or decrease of speed between these

instants, and a maximum speed at three seconds where the graph is

steepest. It may accordingly be recognised as representing a motion
which at any rate resembles that of a pendulum bob. The equation of

the graph may be written >'=4— 4 cos 6) or_y=8 sin^(7rA:/i2).

For its slope we have dyjdx=^Trs\n (jrar/b).

Although the ordinates in the displacement graph only refer to

steps taken along a direction otherwise specified, it is clearly legitimate

and convenient to let negative ordinates mean displacements just

opposite in direction to those represented by positive ordinates.

These examples sufficiently illustrate that in a displacement graph
slope represents speed, and theiefore change of slope per unit distance

along the axis of time represents acceleration. But acceleration can be
more clearly and simply exhibited on another type of graph now to be
dealt with.

21 . Velocity or Speed Graphs.—Let us now take the velocity of

a point moving along a straight

line as the quantity to be plotted

along the y axis, the time being

represented by distances along

the X axis as before. The curve

thus obtained may be called the

velocity graph or speed graph of

the moving point. In order to

facilitate comparison of the two

types of graph we shall plot the

speed graphs corresponding to the

data in Table iii. and the infer-

ences as to speeds deduced from

them. These are shown in Fig. 4.

It is thus seen that graph A,

representing a uniform velocity, is

now a horizontal line, whereas

graph B, representing a velocity

proportional to the time, is now
a straight line inclined to the

horizontal, /.<?. it represents a uniform acceleration. Finally, the graph

C rises from the origin and afterwards falls to zero. The equa-

jtions of these three speed graphs are respectively j'sr: 2, ji'=2x, and
^=:|jrsin(irjv/6), as shown in the preceding article,

Fig. 4. Speed Graphs.
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It may be noted here that in a speed graph the area below the

graph between two given ordinates represents the length, distance, or

space described by the moving point in the time defined by the

ordinates. For each narrow vertical strip of 'this area has an area

which is ‘the product of height into width. But the height of the strip

or ordinate represents the instantaneous speed, and the width of the

strip or increase of abscissae denotes a short time. Also the product

of these is the distance described in that short interval. Hence the

whole area, or sum of these strips, represents the sum of such distances,

and is therefore the whole distance described in the finite time under
consideration.

Thus, the abscissae being times and the ordinates speeds, the slope

of the graph represents acceleration and the area the distance described.

The speed graph is accordingly often very useful, embracing as it does
s6 conveniently the four quantities with which we are concerned in the

dase of a moving point.

Though the ordinates in a speed graph denote the speeds of a point

along a line whose direction is otherwise specified, it is convenient to

use negative ordinates to denote speeds in the opposite directions along

that same line.

22 . Other Graphs for a Moving Point.—Since out of four quantities

we may choose six different pairs, it is evident that for a moving point

we may construct graphs in six different ways, viz. with co-ordinates

denoting s and /, 7/ and ^ and /, v and j, a and ^ or a and where

j, /, Vr and a denote space, time, velocity, and acceleration respectively.

But most of these other graphs have only a very limited usefulness,

or may be described as curious rather than useful. We may perhaps

refer to some of them in special cases later. It may be just noted

here that plotting accelerations and distances as co-ordinates brings

out the fact that in the graph C of Figs. 3 and 4 the acceleration is

proportional to the displacement from a certain point, the graph being

a straight inclined line cutting the axis of distances at the point 4.

Examples—III.

1. Define velocity^ uniform velocity, mean velocity, and instantaneous
velocity.

2. Exhibit in tabular form the relation of displacement, velocity, and
acceleration, giving also the dimensions of each.

3. Plot a displacement graph from the following data :

—

Displacements tnyards, o, o, 8, 19, 29, 39, 49, 58, 67, 76, 88, 100, 103.

Times in seconds^ o, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, ii, 12.

If the graph represents a man running a race, indicate what you believe

are the start and finish.

4. A point moves so that its displacement after t seconds is 16/*. Plot its

displacement and speed graphs, showing the corresponding features of

each graph, and find its acceleration.

5. Explain the special advantages of a speed graph. Plot one to represent

some variable motion, find the space described, and indicate any
important features. ^

6. * Define the mean velocity of a point in any interval of time. Prove by a
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graphical method (or otherwise) that if the acceleration be constant the
mean velocity is equal to the arithmetic mean of the initial and final

velocities, and also to the.velocity at the middle instant of the interval.

Show by examples that in any other case these three quantities are
usually different.’ (Lond B.Sc, Pass, Mixed Math, 1904, i. i.)

7* ‘ The times /j, at which a particle moving with constant retardation

passes three points of its path are recoided ; find the

acceleration, and the velocity at having given P^P^—a^ P^P^=b*
(Lond. B.Sc., Pass, Applied Math., 1905, ii i.)

23 . Composition of Velocities and Accelerations.—A little reflec-

tion will show that the operation of the addition of vectors which is

valid for the composition of displacements applies also to the composi-
tion of velocities, provided that the point in question is so circum-

stanced that, no matter how far it goes due to one velocity, it is still

equally affected by the other. Thus, after a short time t, the two
velocities Vx and will have imparted to the point displacements in

their own directions and of magnitudes z/jT and v^r respectively. The
position of the point after time t is accordingly determined by the

vectorial addition of these two displacements, and may be denoted by
tiT. Now let the position after a finite time t be considered. It will

evidently be determined by the vectorial addition of the displacements

Vxt and v^t along the same directions as at first, and is therefore

denoted by vt. Hence we have the same diagram as before, but

magnified m the ratio of i to t. Thus the point has uniform velocity

Vx and in the direction first determined. Or, m other words, the point

moves with a resultant speed and direction determined by the vectoriai

addition of its two component velocities.

Similar reasoning would apply to show that two accelerations

simultaneously possessed by any point may be compounded by vectorial

addition to give the resultant acceleration.

Suppose now that a velocity and an acceleration have to be dealt

with, even then one aspect of the problem can be treated by vectorial

addition. For the acceleration, though possibly varying in magnitude
and direction, will impart to the point in time t some definite velocity,

Vx say. Thus, if the original velocity of the body were z>o> the final

velocity v would be determined in magnitude and direction by the

vectorial addition of and Vxx

or v^v^'\-vx-

The aspect of the problem not here dealt with is the path of the

point during time /. Unless the acceleration is for the whole time in

the direction of the original velocity, it is evideht that the path must be
curved. And even if the velocity and acceleration are always collinear,

we have still left undetermined the position of the point at each instant

of time. Such aspects of the cases will be dealt with in their proper

places later.

24. Vectorial Polygons.—For the composition of more than two

vectors it is evident that we might take any two first and find their

resultant, then compound this resultant with a third of the components
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for a new resultant, and so forth, until all had been dealt with. A
simpler method, however, of compounding n vectors is to construct a
polygon n of whose sides taken in order lepresent in magnitude and
direction the vectors to be compounded. Then the remaining side

required to close the polygon will, if taken in the reverse order, repre-

sent both in magnitude and direction the resultant vector sought:
and this holds true whether the components are all in one plane or are

in various directions in solid space, i.e. the vectorial addition is valid

whether the polygon by which it is effected is of necessity plane or

gauche^ This is easily seen by considering the simplest example of a

vector, namely, a displacement. Thus, to illustrate the gauche polygon,

if three displacements at right angles and of magnitudes equal to 9
inches, 4J inches, and 3 inches respectively are given to a point at one
corner of a brick of that size, the point would be carried to the opposite

corner of such a brick if rightly situated with respect to those dis-

placements.

It is sometimes a great convenience to be able to write down the

result of the addition of vectors

without actually drawing the poly-

gon to scale. The formulae for a

plane polygon may be easily de-

nved by reference to Fig. 5.

In this figure the component
vectors, which may be thought of

as displacements, are represented

to scale by OPi, PiPa, PiPa> PaP*

The resultant is obviously repre-

sented to the same scale by OP.
Further, let the magnitudes and
directions of the components be

respectively denoted by
and r^0^, their resultant being rO.

Then, by the figure, we have

OP*=OM>+ MP' andtanMOP=MP/OM (i).

But OM=OMx-f MiMa-j-MaMaH-MaM,
and MP=MNx+NxNa+NaN3+N,P.
Or, using the symbols

—

OM= rj cos 0,-fraCos 03-|-r, cos 0,-f r4 cos 04=2rcos 0 . (2),

and MP=ri sin sin sin sin 04=2/'sin 0 . . (3).

Hence, by (2) and (3) substituted in (i), we obtain

r^=z(Ir cos ^)*-f(2rsin Oy (4),

and tan 0=(lVsin ^)/(2rcos^) . . (5).

In equation (5), giving the value of tan 0
,
it should be noted that

an ambiguity arises unless the algebraic signs of numerator and de-

nominator of the fraction on the right side be each maintained in their

original positions. Thus if the fraction in question is -f 9/(-f 10), the

angle is uniquely determined as of the order 42*. But if the fraction is

Fig. 5. Polygon of Vectors.
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written 4'(9/io) we are uncertain whether the angle is 4a* or 222“

whose tangent should have been preserved in the form (-t 9)/(— 10).

Thus the angles 45“, 135°, ^25“, and 315® are uniquely determined by
their tangents if written respectively (+ 1 )/(+ 1 ), (

H-
1)/(
— i ), (~ i )/(— i ),

and (-!)/( 4-1).

25. Gauche Polygon of Vectors.—If the vectors to be compounded
form sides of a gauche polygon, then the closing side which represents

the resultant will be the diagonal of a parallelepiped whose adjacent
edges are built up as were the sides OM and MP of the rectangle in

Fig. 5, whose diagonal OP represented the resultant of the plane
polygon. This is illustrated in P'ig 6, in which the axis of 2r shown in

perspective is to be understood as at right angles to the plane of xy.

The separate vectors are not shown in the figure, but are supposed to

have magnitudes rj, r,, etc., and to make with the axes of z

the angles a„ /?„ y,, y,, a,, /3„ y„ etc., the resultant OP
having magnitude r, and making with the axes the angles a, /S, and y as

shown.

Fig. 6. Addiiio>' of Vectors in Solid Space.

It is thus seen that OP is the resultant of OA, OB, and OC, i.e, its

components along the co*ordinate axes are r cos a, r cos and r cos y
respectively. Similarly each of the component vectors, r, say, contri-

buted along the ^lxes of Xy y^ and z the components r, cos a„ r, cos

and ry cos yi. Hence we have

OP^ = OA»+OB^4-OC* (i),

and cos AOP=0A/OP, cos BOP= OB/OP, cos COP=OC/OP (2).

But 0A= riC0S ai+ ^aCOS a,-!-- • .=-r.,osa . .
. (3),

OB= riCOs/?i4-raCOSi8,-f . . .=2rc6s^ .... (4),

OC= riCOS yi-fraC0sy2+. . .=2rcosy . . . . (5).

Thus, by sub'^tituting in (i) and (2) the values from (3), (4), and (5), we
obtain ^= (l>cos a)®4- (Ircos^)“+(2rcosy)* (6),

also cos a=(^rcos a)/r, cos I3=(2r cos IS)/ry and cos y=:(2rcos y)/r (7).

It may also be seen by the geometry of Fig. 6 that we have
^ cos*a-Fcos*/34‘Cos*y= I . , . . , (

8 ).
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25a. Moments. Definition.—The moment o£a vector with respect
to a point !s the product of the vector into the perpendicular from that

point upon the line in which the vector is localised, and is reckoned
positive when the direction of the vector about the point is counter-
clockwise.

Theorem.—If two vectors are localised at a point O, then the

algebraic sum of their moments with respect to any point P in their

plane is equal to the moment of their resultant about P.

In Fig. 6a, let OA, OB represent the component vectors, OC their

resultant, found by the parallelogram law, and all localised in O
;
also

let P, in the plane of OABC, be the point about which the moments
are to be taken.

Proof.—Then, by definition, the moment of any vector is re-

presented to scale on the figure by twice the area of the triangle

P

Fig 6a. Theorem of Moments.

whose base in the vector and whose vertex is the point P about which
Its moment is taken. Thus, half the moment of OC

=area of AOCP=AOBP+AOCB-fABCP
=A0BP4-A0AP
= half-sum of moments of OB and OA.

This accordingly establishes that case of the proposition represented

in the figure. When P is differently placed the needed demonstration

follows in like manner.
1

25b. Composition 'of Angular Velocities.—Measuring angles in

radians, we naturally measure angular velocities in radians per second.

Thus, if a point P moves with an angular velocity w= Ojt about a given

axis from which it is distant by the radius r, we have the relations

(u= Olt=slrt or s= (orif

where s is the arc described by the point in time /. Hence in a given

time the displacement .<• is proportional to the product mr. This
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suggests an analogy with the moments of a vector with respect to a
point. Thus, referring to Fig. 6a, consider the point P in the plane of

the diagram as having an angular velocity about OA and proportional

to the length of OA=Wx say. Then in time dt^ P would suffer a dis-

placement perpendicular to the plane of the diagram of amount
= perpendicular from P upon OA=^//x double area of OAP.

Similarly if the point P had a coexistent angular velocity w, proportional

to OB about OB, its displacement in virtue of that in time dt would be
given by //xj= X perpendicular from P upon OB. Hence the sum
of these displacements would be represented to a certain scale on the

diagram by the sum of the areas OAP and OBP. But, as we have just

seen, this sum equals the area of OCP, which consequently represents

to the same scale the displacement ds which P would experience in

time dt under the influence of an angular velocity about OC of amount
w proportional to the length OC. Thus, so far as a point P in the

plane of the diagram is concerned, the resultant of the coexistent

angular velocities whose axes are OA and OB and magnitudes OA and
OB respectively is an angular velocity whose axis is OC and whose
magnitude is OC.

Suppose now a point P' is taken out of the plane of the diagram
such that PP'=/ is perpendicular to that plane. Then the displace-

ments we have just considered for P would also be the displacements

perpendicular to that plane for P\ The displacements parallel to the

plane for P' would obviously be *^xpdt^ which would appear in the

diagram as perpendicular to OA, m^dt appearing perpendicular to OB,
and (apdt appearing perpendicular to OC. Thus these displacements

would form in the diagram a parallelogram of the same shape as

OACB, but of different size, and with sides perpendicular to the original

parallelogram. Hence these component displacements due to w, and
Wj about OA and OB would give that due to the resultant angular

velocity o> about OC. This, which has been proved for any one point,

is obviously true for any assemblage of points.

We have accordingly seen that if two coexistent angular velocities

are respectively represented in magnitude and axis by two lines meeting
in a point, then the line found as the resultant by the addition of vectors

represents in magnitude and axis the resultant angular velocity. In
other words, an angular velocity is a vector. It should be observed

that associated with a certain direction of drawing or describing the

line representing an angular velocity must be associated a certain

direction of rotation about that line as axis. We shall adopt the

convention that the direction of rotation and corresponding drawing of

the axis are those of rotation and advance of a right-handed screw in

a stationary nut, as for example in driving an ordinary screw into wood.
Thus, in Fig. 6a, OA, OB, and OC each denote an angular velocity

which would bring P out from the plane of the diagram towards

the reader.

It must be distinctly noted that this relation or theorem as to the

composition of coexistent angular velocities in no wise applies to successive

finite rotations or angular displacements.
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26c. Onrvature—'Fhe curvature of a plane curve is defined as the
rate of change of its direction per unit length measured along the curve.

Thus take two points P
and Q, Fig. 6b, an infini-

tesimal distance ds apart

on a plane curve, and let

tangents PR, QS and
normals PC, QC be
drawn through P and Q
making angles d\p with

each other, and the nor-

mals meeting at C where
CP=CQ=p.

Then, regarding the

tangents, we see by the

definition that the curva-

ture at PQ IS d\l'lds.

But, regarding the nor-

mals, we see that

dsfp. Hence we obtain

curvature := = I /p.

Or, the curvature is also measured by the reciprocal of p, a length which
is called the radius of curvature. The point C where the consecutive

normals meet is called the centre ofcurvature.

25d. Centroids — It is often desirable in the various sections ot

Mechanics to find a centre or point of mean position for a system

of pioints, a line, a surface, a volume, or for some other distributed

quantity. The formal development of this subject naturally occurs in

Chapter xvii
,
since its chiefmechanical application is to centres of mass,

forming part of the section of Statics there treated. But the idea itselt

is purely geometrical and independent of any such particular applica-

tion, so must be introduced here. Moreover, this early notice is a con-

venience, since the conception is required in Chapter xiii when dealing

with the Kinetics of Rigid Bodies.

Obviously the centre of two points is the point of bisection of the

straight line joining them. Or, if the abscissae of the points were

and and that of their centre x, we could write Xj). Thu*?,

for any number n of points each having different abscissae, x=z~(xi
i

'
.

^

. . .Xn). But some of the points might have abscissae of the

same value. Thus, let w, points have the abscissa Xi, and w* points

the abscissa a:,, and so on ; the same notation withys holding for their

ordinates. Then the co-ordinates of their centre would be

and (t).*

We may extend the application by supposing the tn's to refer to the

1 We may apply this to the resultant i? of » vectors acting at a point O. For
and the centroid G of « unit particles at the ends {x, y) of the

vectors is gi\en by 0G= by (i) m the text, R — n OG.
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magnitudes of elements of length, area, volume, or other scalar quantity

situated at the points defined by the corresponding x and y. The
point {x,y) so determined is-called the centroid of the s>stem, figure, or

body in question.

If the co-ordinates of points with respect to the centroid are x\ y\
we have

x=x-{-x' and v=jp-l-y (2)

Hence 2/«_y=jp2;;/-f-2wy.

But, by (i), these reduce to

o= '2ntx' (3).

Thus, if equations (i) are taken as defining the centroid, we may
regard (3) as giving some of its properties. It is, however, often con-
venient to take (3) as giving the definition of the centroid and equa-
tions (i) as forming the working rules for the determination of its

position.

For quantities distributed throughout space of three dimensions
we have simply to add the corresponding equations, involving z by
analogy with (i), (2), and (3), thus giving the following additional

relations :

—

z= '2mzl'2m'\

2=24-2' I (4).

and o= '2mz' I

26 . Oonstraints and Degrees of Freedom — If a point is not con>
stiamed in any way, it is said to have three degrees offreedom,, since it

IS obviously free to move parallel to the three co-ordinate axes of solid

space. If the point is constrained to remain on a plane surface, say

that of xy, it has then lost one degree of freedom, namely, the motion
parallel to the axis of 2, and retains two degrees of freedom only,

namely, those along the axes of x and^. Similarly, if the point is con-

strained to remain in a line, say the axis of x, it is evident that it has
lost two degrees of freedom and retains only one. With any actual

small particle these two cases may be represented by floating on still

water and confinement in a straight tube respectively.

Let us now contemplate an extended body whose parts are

debarred from any relative motion ; this is called a rigid body. Then
obviously, if it has no constraints whatever, it has what may be called

six degrees of freedom, viz. translation parallel to each of the three

co-ordinate axes and rotation about each of thrm. It should be noted
that what is styled a single degree of freedon^ of a rigid body may
(namely, if it is a rotation) involve the two-dimensional motion of

its points. And if with this rotation we combine a translation along

the axis of rotation, we have a three-dimensional motion of its

points. Whereas two translations and a rotation about the axis per-

pendicular to both of them involves only a two-dimensional motion,

folk all the motions occurring are parallel to the plane containing the

two translations. Thus the classification of motions according to their

constraints and degrees of freedom, though very useful and needing to

be borne in mind, differs materially from that according to dimensions in
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space, which is usually simpler, and will be followed in developing the

subject later.

To take away any one of the original six degrees of freedom of a
rigid body, one constraint is needed, so that six such constraints are

needed to fix its position. A few illustrations of simple cases may be
given here. Let possible translations in three rectangular directions be
denoted by and z, the corresponding possible rotations being v,

and «/.

Top-spinning on level ground,—One point of the body touches the

xy plane, and so loses motion in the z direction up or down. Degrees
of freedom left are x^ y^ v^ and w.

Top with spike in groove,—Two points of the body touch the sides

of the V-shaped groove parallel to axis of and so lose motion in

directions oiy or z. Degrees of freedom left are a?, «, and w.
Top with spike tn hole,—Three points of the body touch the sides

of the quasi-conical hole, and so it loses motion m directions and z.

Degrees of freedom left are i/, v^ and w.

Beam oj Balance.—Instead of knife edges, let the beam have two
blunt screw points, one of which touches at three points in a quasi-

conical hole and the other at two points in a V-shaped groove pointing

to that hole, i.e. along the axis of x

;

it thus loses all three translations

and two rotations. The sole degree of freedom left is w, or the rotation

about the axis of x.

Instrument on * hole,, slot, andplane,'—Three points of the apparatus

touch the sides of a quasi-conical hole, two points touch the sides of

a V-shaped groove pointing to that hole, one point rests on the plane

containing the hole and groove. In the case of physical and other

apparatus requiring levelling and leaving set up without shake, or re-

placing in exactly the same position after temporary removal
;

this

method is adopted, the blunt points of the levelling screws resting on
the ‘ hole, slot, and plane '

respectively.

It may easily be seen that a rigid straight line, if unconstrained, has

five degrees of freedom. Thus, denoting the numbers of constraints

and degrees of freedom by C and irrespectively, we have the following

scheme :

—

For a pointy C-f* 3.

For a rigid straight line^ CArF^ 5.

For other rigid bodies^ C-\-F— 6.

Where no great pressures or speeds are to be used, the above
arrangements of consUaints, called geometrical clamps^ attain ideal

results in spite of the inevitable imperfections of human workmanship
or machining. The ordinary arrangements for sliding and rotating

motions in machinery involve surfaces which are approximately plane

and cylindrical But though such surfaces fail of ideal perfection, they

attain an approximation sufficient for the purpose and in combination

with a facility for maintaining that degree of accuracy in spite of wear.

Thus the physicist and the engineer have different ends in view, ifhd

rightly take different methods of reaching them.
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Examples

—

IV,

1. A boat steams due iiorth at 15 miles per hour, while a man walks her
deck in various diiectiops at 2 miles per hour. Find graphically
the man’s volocities ^hen his directions of walking the deck are {a)
south-east, {b) north-north west, (<r) west.
From what body as base are your velocities reckoned ?

2. Show how to compound graphically three or more velocities. Will this
construction serve for any other quantities ? if so, name some such.

3. Obtain analytical expressions for the lesultant of any number of coplanar
vectors.

4. Determine graphically or analytically the resultant velocity of a point
which has simultaneously a vertically upward velocity of 5 cm. per second,
a horizontal westerly one of 45 cm. per second, and a north-easterly
one of 1000 cm. per second.

5. Taking the point P in a different position fiom that shown in Fig. 6a
{eg. inside the parallelogram OACB), show that the theorem of
moments still holds.

6. Establish the construction for the composition of simultaneous angular
velocities.

7. Considei the turning of a parallelepiped through a right angle first about
one axis OA, and then about another axis OB, then reverse the order
of turning about these axes. Hence show that the construction of
question 6 does not apply to the composition of successive finite angular
displacements.

8. Determine the angular velocities of the earth about two rectangular
diameters, one of which meets the surface at Greenwich (lat. X) and the
other in the meridian of Greenwich, so as to compound to the earth’s
angular velocity « about its polar diameter.

9. Discuss the degrees of freedom of particles and bodies with and witnoui
constraints and obtain expressions for the numbers of degrees of free-

dom of various bodies.

10. If a railway track turns uniformly at the rate of 9*-
5 5 in a length of one

furlong, what is its radius of curvature ?

11. Define the term centroid^ and obtain general expressions to locate it in
a plane over which any number of points are distributed.

12. wState what arrangements can be made to permit only the following
geometrical motions of a rigid body .

—

{d) translation along a given
horizontal line, (3) rotation about a given horizontal axis, {c) rotation
about a vertical axis.

13. Name five geometrical and mechanical quantities, giving their dtnten'
sions and stating for each whether it is a scalar or a vector.
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CHAPTER IV

RECTILINEAR MOTIONS

27. Uniform Acceleration : Low Falls.—In this chapter we re-

strict ourselves to rectilinear motion
;
hence, when the acceleration is

given as uniform of value any initial velocity of magnitude u
possessed by the point under consideration must be along the same
line as the acceleration, though it may have either algebraic sign.

Let the velocity have magnitude v at time and the space described

be Sy then it is required to establish relations between «, a, and /,

and to use them for the solution of any problem relating to motions of

the type in question.

By definition it is clear that in time t the change of velocity occur-

ring IS ai^ which must be added to the initial to obtain the final

velocity. Thus, we have
(i).

Fig. 7. Uniform Acceleration.

This is illustrated by the speed
graph of Fig. 7, in which OK is

the initial speed «, MP the final

speed equal to MN -fNP or «-f a/.

It is clear that the equation of

KP h so that NP=a/.
Consider next the space x,

which is represented in the dia-

gram by the area of KPMO. It

IS evidently given by the rect-

angle OKNM plus the triangle

KNP, i.e, by ut plus JNPx/.
But NP is at^ thus we have

s-ut-\-\a^ . . . (2).

On eliminating t between (i) and

(2) we have
* • • (3 )-(3).

(For by squaring (i) we find aV*,

and from (2) we see that 2as-=^2uat-\-a'f,)

These equations, (i)-(3), are the required relations between the five

quantities concerned, and serve for the solution of any cases of recti-

linear motion with uniform acceleration. For example, for ‘ low
'

falls

or rises, i,e. motions in a vertical line near the surface of the earth, we
may take that surface as the origin and measure s 01 v upwards »as

positive, then the acceleration due to the earth being downwards is to
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be accounted negative. It has the approximate numerical value 32*2

feet per second per second or 981 centimetres per second per second.

Thus denoting either of these positive numbers by as is usual, we
must insert —^in the equations instead of

If, on the other hand, we find it convenient m other problems to

take positive quantities to denote downward displacement, velocities,

etc., then the acceleration due to the earth becomes positive, and is

accordingly represented by 4*^ in the equations.

Examples—V.

1. Find the uniform acceleration which in $ seconds changes an upward
velocity of 64 feet per second into a downward velocity of 96 feet per

second.

2. A tram passes in 18 minutes between two stations 6 miles apart, stopping

at each. If the train at first increased its speed uniformly under steam,

and '.hen immediately, with steam off and brakes on, decreased its

speed uniformly at twice the former rate of increase, find the accelera-

tion and retardation, and make displacement and speed graphs of the

journey.

3. What is the rate of increase per foot of the square of the speed of a
point under uniform acceleration of 20 ft. per sec.^ ? and what velocity
is attained in 35 feet from rest.^

28. Uniform Acceleration by the OalculuB.—Using the notation
of the calculus for the motion of a point whose distance from the
origin is s and acceleration a, we have

(Tsldt*^a (i).

Thus, on integrating, we find

or dsldt^at’\-b (2),

where the constant of integration, is evidently the initial velocity

previously denoted by u.

By a second integration we have

fds =^J{at4- b)dt,

-\-bt (3).

Obviously equations (2) and (3) of this article correspond respec-

tively with (i) and (2) of article 27.

29. Acceleration proportional to Displacement. Simple Har-
monic Motion.^—We pass now to cases of varying acceleration, taking
first that in which it is proportional to the displacement but oppositely
directed.

Let the displacement OM, Fig. 8, be denoted by v, and suppose

1 If desired at this early stage, this motion may be treated without the calculus, as is

often done by students of physics. (See, € g,, the writer’s Sound, Arts. 13-16.

)
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Then we have as the. equation of motion

(i).

the acceleration to be —
of the point M

d^y

de

Now it IS obvious that the acceleration, being always opposite to

the displacement, will retard every

motion of M from the origin

and reverse it, thus causing the

point M to pass through O in the

opposite direction. But on pas-

sing through O the displacement

reverses, and therefore also the

acceleration. Thus this motion
from O must be annulled and re-

versed as before. Hence we see

that the motion of M is a to-and-

fro movement or vibration along

YOY' about the origin O as

centre. The simplest way to ex-

press such a motion analytically

IS by a sme or cosine function of

the time. To make such a func-

tion as general as possible we
need three constants, denoting (i) the amplitude (a) or maximum
value of OM, (ii) an angular velocity (n say), and (111) the epoch (c)

or phase angle at the beginning of the time. We thus write as a trial

solution

sin («/-f e) (2)

Substituting this in (i) we have

(
— + <o’)a sin c)= o.

Hence (2) is a solution of (i) provided that

y'

Fig. 8. Simple Harmonic Motion.

-o,

(3 ).

into

t.e, when /z= d:u>

Now reversing the sign of n is only equivalent to changing «

TT— €. Thus we may write the solution of (i) as follows :

—

y=a sin(o)t-\-€) (4),

m which a and € are as yet undetermined, whereas w shows that the

motion passes through its complete cycle of changes in the time 27r/(o.

The meanings of the vai^'ous symbols and the solution itself are illus-

trated in Fig. 8. In this figure the angle XOH= €, the angle HOP=
to/, and the auxiliary circle passing through H and P has centre O and

radius a, PM is drawn at right angles to YOY', cutting off the dis-

placement OM =y. Hence by construction OM corresponds to the value

of y expressed by (4).

It should be noted that by differentiation of (4) twice with respect

to time we have
—0)®^ sin (<i>/-|-€)>
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that is, the acceleration is a sine function of the time. Hence if we
had begun with that problem instead of acceleration directly propor-

tional to displacement, the solution would have been the same.

30 . Initial Conditions.—We have seen that of the thice constants

in the solution only one is determined by the given law of acceleration,

the other two are dependent upon the initial values of displacement

and speed. Let these be respectively j'o a-^d Vq, Then from (4) we
have

j'o=asin« .... ... (5).

Also, by differentiating (4) with respect to time and then putting /= o

and equating, we obtain for the speed at time t

y=ioa cos (wZ-f «)

and Vol(tt=acos € (6).

Hence bv squaring and adding (5) and (6)

we find (7)

Also, by division of (5) by (6), we have tan €=o}yjvo . . • (8)

Thus (7) and (8) when with (4) complete the solution of (i) for any
specified initial conditions.

Two cases of special importance and simplicity may be noticed.

First, The initial displacement is zero, the initial speed being

Then, putting these values in (7) and (8), (4) becomes

j'=~sinwZ . (9).
(U

Second. The initial speed is zero, the initial displacement being y^.

Then, from (7), (8), and (4), we find as the solution

Vs=;/oSin ^(0/4. ^^=_y<,cosa>Z (10)

If we illustrate the motion under consideration by a bullet suspended

by a cocoon fibre about a metre long, then these two cases of initial

conditions correspond (1) to striking the bullet a horizontal blow
while it hangs at rest, and (11) to pulling it aside and letting go while at

rest in the displaced position.

In the simple harmonic motions noticed the time of complete
execution of the cycle once is called the period. Denoting it by t, we
obviously have from (4), etc.

T=27r/w, . (^i)*

Examples—VI.

1. Define simple harmonic motion and obtain expressions for the velocity

and acccleiation of a point executing it.

2. Given that a particle P in a straight tube has acceleration directed to a
fixed point O m the tube and of magnitude proportional to OP, deter-

mine the motion in general terms.

3. If the acceleration of a point M in rectilinear motion is always - 16 x OM,
where O is a fixed point, find the equation locating M, its initial

* displacement and velocity being respectively 5 cm. and 10 cm. per sec.
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4. A point executes a simple harmonic motion of amplitude 3 cm. in a
period 4ir seconds Find (a) the maximum vCiOcity, (6) the velocity at

half-displacement, (c) the acceleration at full displacement, (d) the
acceleration per cm. displacement.

31. Composition of CoDinear Simple Harmonic Motions.—

A

kinematical problem of considerable interest and importance is pre-

sented in the composition of two or more simple vibrations. The case

in which they are collinear naturally falls in the present chapter, and
.we shall first treat two vibrations only, their periods being equal.

Thus, let the component vibrations have displacements u and v
along the axis of and be expressed by

sm (a>/-ha) . .
(i)

and v=I>sin (tjjf-Yp) (2).

Then their resultant, of displacement is given by
y==u-{-v, \

or = r sin say/

We are here assuming that the resultant vibration is of the same
type as its components, an assumption which remains to be justified or

condemned. To test the matter, expand the right sides of (i), (2), and

(3) and equate. We thus find that the assumption leads to

(asina-j-/5 sin fi) cosa)/-|-(a cos a cos P) sin (of

=rsin 0cos<u/-4"^cos ^sino)/ (4).

But this equation has to hold for every value of /. We may
accordingly equate the coefficients of cos a>/ and those of sin w/. We
thus obtain two equations, namely

rsin ^=asin a-f^sin (5)

and rcos ^=«cosa-f^cos /3 . (6).

Whence, squaring and adding,

2<n5cos(a~/ii) (7)

Also, dividing (5) by (6)

(8 ).
a cos a-f ^ cos />

^

Equations (7) and (8) show that for any real values of a, dy a and /?,

corresponding real values are possible for r and 6 . Accordingly the

assumption in the lower line of equation (3) is justified and, together

with (7) and (8), affords the solution sought.

It is seen from (7) that the resultant amplitude r usually lies be-

tween the limits reaching them for and respectively.

Further, it may be seen from (8) that 0=(a+/?)/2 when a=A
For more than two collinear vibrations of same period we see from

(5) and (6) that it is easy to generalise and write

rsin^=2asina (9)

and rcos0=2«cosa (10).

the component amplitudes and phases being denoted respectively hy
• • • and <*1, Oj, «! . . .
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Thus, squaring and adding, we have
/®= (2asina)’4-(2rt cosa)* (ii).

Again, by division, we have
tan 6/=(2asma)/(2rtcosa) (12).

82 . Graphical Composition.—The composition of collinear vibra-

tions may be illustrated or performed graphically, and this view of the

matter well deserves notice.

Fig. 9 illustrates the composition of two simple harmonic motions
supposed to occur along YOY', their com-
ponents being as already specified in

equations (i) and (2) of article 31. The
ordinate OF represents the displacement

u at the instant /=o due to one vibra-

tion, and is the projection of OP of length

a and inclination a to OX. Similarly,

OG gives the value v of the other dis-

placement at the same instant, being the

projection of OQ of length b and inclina-

tion /?. The ordinate OH of length y is

the sum of OF and OG, and is also the

projection upon YOY' of OR, the dia-

gonal of the parallelogram upon OP and f,g. 9. Gkaphical Composi-
OQ. Hence OH represents at /'=o the iion of iwo Collinear
sum of the component displacements. Vibrations.

But since the periods of the two com-
ponent vibrations are equal, the radii OP and OQ must move with

equal angular velocities in describing the auxiliary circles through

P and Q corresponding to the two vibrations in question. Hence
the angle POQ=a~^ must remain constant as well as the lengths

OP and OQ themselves. Thus the parallelogram OPQR remains

of fixed size and shape. Therefore H, the projection of R, executes

simple harmonic motion upon YOY' of amplitude OR= r say, the

phase angle at /=o being XOR—6 say. Further, it is easy from
the figure to confirm or obtain the relations analytically deduced in

article 31 and expressed in equations (7) and (8).

83 . For the construction of the above figure it is evident that OR
could have been obtained with fewer lines by putting PR of length ^and
inclination fi with OX instead of first drawing OQ and then completing

the parallelogram. We should in that case draw one half only of the

parallelogram to obtain R instead of both halyes.

This, which is a small matter when only two components are con-

cerned, is a distinct advantage when three or more component vibra-

tions are to be dealt with.

This method is illustrated for four collinear vibrations in Fig. 10.

We suppose the vibrations to occur along YOY', the component dis-

placements being represented by the projections upon that line of

QP„ PiP„ P,P|, and P,p4. The resultant vibration is accordingly

represented by the projection upon YOY' of OP4, the line which closes
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the polygon If the components are as specified by the right side of

equations (9) and (10) in article 31, it is seen that (ii) and (12) give

the amplitude and angle for the

resultant.

Thus the resultant of col-

linear simple harmonic motions

of equal periods may be ob-

tained by the addition of vectors

according to the parallelogram

or polygon method, the vectors

for components and resultant

being in each case the radii

of the corresponding auxiliary

circles at some one instant, say

for /=o.
In other words, if the am-

plitudes and phase angles of

component collinear simple har-

monic motions be represented

respectively by the lengths and
inclinations of the sides of a

polygon, then shall the closing

line of the polygon represent by
Its length and inclination the

amplitude and phase angle of

the resultant simple harmonic motion, which is of the same period

as its components.
For the composition of rectangular vibrations see Chapter v.

Examples—VII.

1. Establish the general expression for the resultant of two collinear

simple harmonic motions of the same period

2. Compound two collinear simple harmonic motions of equal periods, their

amplitudes being 2 and 3 cm. and their phase angles 7r/4 and 7r/3

respectively.

3. Confirm graphically the lesults obtained for the preceding example.

4. Compound analytically or graphically collinear vibrations of equal periods

whose amplitudes are 8, 6, 4, and 2, their phase angles being o“, 30“,

45*, and 60* respectively.

Fig. 10. Graphical Composition op
FOUR Collinear Vibrations.

34 . Acceleration inversely as Distance Squared.—We now consider

a second example of acceleration varying with position, but this time it

IS inversely as the second power instead of directly as the first.

As this case is of great importance and occurs early in the course

we shall treat it first by elementary methods. Thus, students only just

starting the calculus may defer the analytical method till a second
reading.

Let the acceleration be towards a fixed point O in the line alohg
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which the point P under notice is to move. And let P and P', distant

f and / from O, be two very near positions of the point at times / and

the corresponding velocities being v and v\ Then, by definition of

velocity, we have

v-\-v
(l).

Now since the acceleration is towards O, and we are taking distances,

velocities, and accelerations positive when from it, we may write

for the acceleration at P, where /* is some constant. Similarly the

acceleration at P' is — jti//*. Thus, for the mean acceleration while PP'

is described, we may write and equate the two expressions

t'—t" ss

Hence, multiplying these two equations, we obtain

(2).

(3)-

This is the general expression for the very small step PP'. Let us

now take a finite step PQ, where 0Q=5 and the velocity at Q is V.

Divide this step PQ into a large number of very small ones, the inter-

mediate distances and velocities being Xi, Xa, .53, • • and • • •

Vn^

Then from (3) we may write

And, on adding these, we see that on each side terms cancel out

diagonally, giving

(4).

On comparing with (3) we see that the relation for a small step is

valid for a finite one also.

Suppose now that for S=ry then (4) gives the general formula

for a fall from rest

—

We may now obtain the same result by the calculus. Thus the

equation of motion is

u dv ds dv dv
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Separating the variables and integrating between the appropriate
limits we have

whence

in agreement with (5).

f"'"-

If r=oo, the corresponding is d: J2fx/s.

35 . High Falls.—We shall see later, in the section on Attractions

(Chapter xvi.), that this law of acceleration is that which applies outside
a spherical gravitating body of uniform density, or concentric shells,

each of which is of uniform density, its centre being the point O. We
may accordingly applv it as an approximation to what would happen in

'the case of a body falling to the earth from a great or infinite distance,

all resistances being supposed negligible. In this case it is convenient
to express the general constant fi in terms of the particular one g
giving the acceleration on the earth's surface, and E the radius of the

earth. The relation is evidently —filE*= —g or

Hence, if Fco is the velocity acquired in an unresisted fall to the

earth’s surface from an infinite height, we have

(7).

Suppose now the velocity F is acquired at the earth's surface by a
fall from a height h above the surface. Then by (6) introducing g we
find

'*>

Further, we may put this in the forms

the latter expression being an approximation obtained by neglecting

h^jR'^ in comparison with unity. This accordingly applies where the

height is not too great.

Obviously, if hjE is negligible compared to unity, the squaie of the

velocity reduces to the familiar 2gh as for uniform acceleration of

magnitude g.

36. Time of Fall.—We have hitherto dealt with the relations be-

tween velocity and distance. I^t us now change to space and time.

Thus, from equation (fil'of article 34, remembering taking the

square root, rearranging and integrating, we have

i
To evaluate the right-hand integral, put x=rcos*^, then Vr— j=:

^/rsin0, d5^—2rco^d%\TiBdBy and the lower limit becomes zero in

the new integral Hence
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ts!
j

^
1 4-cos 2&)dB=:r^i^{rB^r%\n ^cos Bi),

Or, /=^

•

• (”)»

giving the time of a fall from rest at distance r to the distance s under
the acceleration

If we have r=oo, all times of fall to any finite distance s become
infinite also. But we may obtain the times (/— ^o) over the distance

(sq-^s) as follows :—Beginning with equation (6), and putting rssoo, we
obtain

/2ft ds

V T^J/
Hence, separating the variables and integrating

[ v/2/i/ ^/, or/~/o=~^(V^*“"-f*^*) • • (12).
J*Q h 3 n//*

Examples—VIII.

I. Establish the general relation between velocity and space for a point
moving along a straight line under acceleration inversely as the square
of Its distance from a point in that line.

2 From the result obtained for question i, pass to the relation between
space and time.

3 Find the velocity acquired by a fall to the earth’s surface from rest at a
height of 400 miles, the earth’s radius being reckoned 4000 miles, and

g as 32*2 ft./sec,*

4. Calculate the time for the fall of question 3,

5. Determine the vertical velocity which, m the absence of resistances, would
suffice to carry a particle away from the earth.

37. Acceleration diminished proportionally to Speed: Mist.

—

We now treat cases in which the acceleration over the given region is

uniform except as it is changed by the speed of the moving point or body.

And in the first place this change of acceleration shall be a diminution

proportional to the speed. This applies to very small bodies and
to very slow-moving bodies falling through the air. In these cases the

uniform acceleration in the region in question is due to gravity and the

diminution of the acceleration to the resistance of the air. Thus tiny

spherules of water, as in the case of mist or very fine rain, are always

falling, with respect to the air surrounding them, but are also resisted

so that their speed relative to the air is never great.

Speed and Time—Let the space co-ordinate r, the speed and the

acceleration a be all reckoned positively in the same direction. Also

let the diminution of acceleration be such that at speed k it equals

and therefore suffices to annul the acceleration which affects bodies at

rest. Then at speed v the diminution of the acceleration will be avjk.

Thus we may write the equation of motion in the form

dv a,
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Let the particle start fiom rest at the origin of co-ordinates when /=o.
Then, separating the variables in (i) and integrating, we have

and, on evaluating,

which gives the time t in terms of the speed v. If we wish to have v
given explicitly in terms of /, we may raise e to the powers given by
each side of equation (2). Thus

^
- .

k—v
Whence v^k{\—e (3).

We see from either (2) or (3) that the speed v only rigorously reaches

its limiting value k in an infinite time. But for a =^=981 cm./sec ’

and >^=0*981 cm./sec
,
we have

Hence when /=one hundredth of a second v will differ from k by
only out of i, i e. by less than one part in twenty thousand.*

38 . Speed and Space,—We have obtained relations between and

/, and now pass to obtain them between v and the speed and space

passed over. Thus, referring to equation (i), we see that the first term

may be transformed as follows :

—

dv ^ds dv^ dv
dt ^ di ds ~~'^ds

The whole equation may accordingly be rewritten

(4)-

Thus, separating the variables and integrating, w'e have

Jo k—v Jq v— k

Hence, on evaluating, we find

k k—v
which gives the space s in terms of the speed v acquired in it, the start

being from rest.
,

Here again it is seen that the rigorous limiting value of the speed
is only attained after an infinite space is passed over. But with the

numerical values ^='98i and a= 981, as previously used, a very small

distance suffices for an approach to the limiting speed. Thus, put-

1 For an isolated sphere of radius rin fluid of viscosity 7;, Stokes showed that the
resistance ssdirn; times its speed. Hencefor limiting speed k under gravity g, we find for

a sphere of density p in fluid of density a, k=i — ^^ (/>-«). For a drop of water a
9 V

hundredth of a millimetre radius, in air, we find ^=1 2 cm /sec nearly.
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ting the second term on the right side of (5) equal to k, i.e. making

which is distinctly more than half its limiting value, we

have
s=zk^lae= ’962/981 X 2*718 . . . =1/2,772 of a cm.

Thus less than four ten-thousandths of a centimetre are passed over,

while the speed attains nearly two-thirds of its limiting value.

39. J>immation proportional to Sqnare of Speed : Hailstone.

—

In the case of quicker-moving bodies, such as large raindrops, hail-

stones, or shot, the diminution of the acceleration is approximately as

the square of the speed. It thus furnishes us with another slightly

different problem for attack. Taking as before the space s and speed
V positive when reckoned in the same direction as the acceleration a,

and again indicating by k the limiting value of the speed, we see that

the acceleration is diminished by the amount av^jk^ when the speed
is V.

^

Speed and Tune,—The equation of motion may accordingly be
written

(>)•

Separating the variables and integrating we have

dtz=k _i
I-
-i dVy

which, on evaluation, yields

k-{-v

k—v
thus giving the time t in terms of the speed v.

If the speed is required explicitly in terms of the time we can
transform the equation exponentially as before (see equation (2) of

article 37). We thus obtain

gatlk^g-atlk

(3)

as the relation required.

40. Speed and Space,— If, however, the speed is required as a

function of the distance, or vice versa, go back to equation of article

39, and note, as before, that

dvjdt^vdvjds.

Hence (i) may be transformed into

1 For aeroplane bombs at heights from 10,000 to 34,000 feet, the limiting values, k
of the speeds, vary between 600 and 1100 ft /sec.—Dr, G. N. Pell, Aeronautics, R, and
M. 340, June 1919.
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Whence, on separating the variables and integrating, we find

a j r ^ rd(V—v^)n *=!1^—y T^'
And therefore on evaluating

k*
(s).

which gives the distance s passed over in acquiring from rest the speed
V. If now we wish to express the speed explicitly in terms of the dis-

tance, take exponential values of each side as before. We thus have

(6).

41. Bise and Fall of Shot.—Let us now consider the rise and fall

of a body in a region where the uniform acceleration is changed by an
amount proportional to the square of the speed, that change being
always opposed to the speed so as to dimmish its numerical value.

Eise.—Take the origin of co-ordinates where the particle starts

upwards at /=o with a speed f7, and let it reach a height s and have
speed u at time /, its utmost height being S with zero speed at time
T, Thus though the space and speed are reckoned positively upwards,
the acceleration ^due to gravity, and the diminution of the speed
gu*/k^ due to air resistance, are both downwards.

and Time,—The equation of motion for the ascent may
accordingly be written

(*)•

Thus, separating the variables and integrating, we have

Whence

or

Thils, at the summit of the motion, we have

or

(»)

(3).

This ends the ascent in terms of speed and time to which (i) applies.

But before taking the descent we may with advantage take the ascent

again in terms of

Speed and Space.—Thus, transforming the first terra of (i), we may
write

ds
.... . . (4).



ART. 42] /RECTILINEAR MOTIONS 47

Separating the variables and integrating gives

g {*
, r* 2udu

Whence II

or
(5 ).

(
6 ),

'2g *•>!•+ «

Thus, at the summit of the motion, we have

S— — log* - j—— . • • •

2g
^

which completes the consideration of the ascent.

42 . Fall.—Leaving the zero and co-ordinates of space and time as

before, we will now write v for the numerical value of the speed in the

descent, so that v is positive throughout the fall, just as u was in the

rise Thus the falling speed v is increased by gravity g and dimin-

ished by the air resistance gv'jk^.

Speed and Time.—Thus, we may write as the equation of motion
for the descent

( 7 ).

On separating the variables as before and integrating we find

Whence

Thus

(8 ).

log*'^—

,

2g h— v

or by use of (3) /= -tan~*^-|-^log,^i?
j^ g k^2g ^ k-v)

Speed and Space.—Let us now treat the fall in terms of speed and
space passed over. Then on simply reversing the sign of ds in equa-

tion (4) of article 40, or deducing it from (7) of the present article, with

similar regard to the fact that v= --dsidty we have as the equation of

motion

Thus, by the usual steps, we have in succession

(9).

SssS log. If
2g ® k

(10).and
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When the shot again reaches the origin, i.e. for s—o, let the speed
be K; then we have

(")•

Equatibns (6) and (ii) enable us to find a relation between the

speed of ascent through a given point, and the speed of repassage

dcnvnwards through the same point. For obviously by the two equa-
tions for S we have

Whence

h

v=-

(12)

.

(13)

-

These equations show that V cannot exceed ky and will only reach

it, for ^7=00. Previous equations, as (8) and (10), show that the speed

approaches but could only equal it after infinite time and at infinite

distance. Thus, any upward speed is annulled under the prescribed

conditions, the state of rest being changed to a downward speed which
increases but more and more slowly as the ‘ limiting ' or * terminal

'

speed k is approached, and in such wise that this speed can never be

overpassed.

If T* denote the whole time of rise and fall from the origin with

speed U upwards to the same point again with speed V downwards, we
have from the first form of (8) for the time of the fall

in which V\% defined by (12) and (13).

43. Alternative Expressions.—We have thus given time and space

in terms of the speed. If the speed is required in terms of time or

space there is no difficulty in obtaining the relations analytically.

Thus, from equation (2) of article 41, writing tan 12= l/jk and tan a>=«/5&,

we have
gtjk^n^io,
tan CO= tan (12 —gtlk)y

and ?=
k i-f-(^/^)tan^//^

(is).

giving the ascending speed in terms of the time.

Again, from (5) we have by the exponential transformation

(16)^

giving the ascending speed in terms of the space risen.

For the descent we have from (8) of article 42 by the exponential

transformation

Whence .
. (,7),

giving the descending speed in terms of the time.
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Again, from equation (10) of article 42, by the same method, we find

or . (18),

giving the descending speed in terms of the space (S^-s) fallen through.
It should be remembered that s is reckoned positively if upwards, and
cannot in that direction exceed S, Hence when the origin is pLsed
through again in the descent, s changes to a negative value. Thus 5—

y

increases from zero at the start of the descent to 5 at the point of pro-
jection, and thenceforward increases towards infinity, being positive all
through.

44. Graphical Treatment.—We have thus expressed speeds of

rise and fall in terms of the time occupied and distance traversed
and vice versa. But no general direct relation between space and

D
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time has been given. Neither is it easy to obtain such relations

analytically.

But since time and space have been given each in terms of the

speed, we can assign to the speed a number of possible values, place

them in’ a column, and then in neighbouring columns insert the corre-

sponding \ alues of time and space calculated from the formulae already

developed. We should thus derive a number of corresponding values

of space and time, and could then plot a space-time graph. Or, we
could begin by plotting a speed-time graph and a speed-space graph

from the formulae. Then, selecting any one value of the speed on the

ordinates of each, their abscissae would give an ordinate and an abcis^

for a third curve forming a space-time gtaph of the motion. This

graphical method of expressing the meaning of the equations obtained,
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and deriving a new .relation from them, is exhibited in Figs, ii, 12,

and 13, which will repay careful examination.^

Fig. 13. Space-Time Graph for Shot derived from the former two.

Examples

—

IX.

1. * Investigate the motion of a heavy particle which falls vertically from rest

m a medium whose resistance is proportional to the velocity.’

(Lond. B.Sc., Pass, Applied Math., 1909, ii. 5.)

2. * The position of a point which describes a straight line is defined by its

distance .r from a fixed point of the line. Show that its acceleration is

The motion of a particle projected with velocity V is retarded

at a rate which varies as the velocity.* Find the time which elapses

before its velocity is halved, given that the retardation is X, when the

velocity is K’ (Lond. B Sc , Pass, Applied Math., 1906, ii. i.)

3. For a point with initial velocity U vertically upwards under constant

J In these the limiting speed /fe is 96 6 ft./sec., which is about the value for a golf ball

(Tail). The speed of projection is also equal to
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acceleration downwards and retardation proportional to velocity squared,
find tho relations between speed and time and speed and space.

4 . For the point of the previous question trace, its motion after the summit
of Its path IS reached, and find the speed V'when at its original level

again.

45 . Acceleration varying with Displacement and Speed : Damped
Vibration.—Let us now consider the motion of a point whose accelera-

tion IS the sum of two parts which are directly proportional to its dis-

placement and its speed respectively, but each oppositely directed.

Then that part which is opposite and proportional to the displacement
would, if operating alone, yield a simple harmonic motion. But this

motion will evidently be diminished by the continuous operation of the

other part, which is opposed to the speed and proportional to it. These
reflections give us a clue to the motion, which we shall presently see is

that diminishing vibration called a damped simple harmonic motion.

I<,et the displacement of the point be called and let it^ accelera-

tion he— (p^y-i-2Kdvld/), We can then write as the equation of motion

">•

The simplest way of representing analytically a damped vibration is

to insert in its coefficient a factor of the form We accordingly

try as a solution

sin (2),

in which the unknown ^ is purposely written instead ofp to provide for

a possible difference of period between the ensuing motion and that

which would occur if k were absent; a and € are also inserted to make
the expression as general as possible. By substituting (2) in (1) and
differentiating we find it is satisfied, provided that w=sk and

(3).

We may accordingly write as the solution sought

yz=za€-*^^ sin,(^7/-f c) (4),

in which q is defined by (3), a and € being dependent only on the

initial conditions. These equations indicate that if k is small the

factor may be appreciable, while q is practically p.

It can be shown that the motion analytically expressed by (4) may
also be regarded as the projection upon the axis of of a point F
which describes with angular velocity q the logarithmic spiral

r -^ ab'O (5),

in which log«^=K/^ and the angle 0 of the polar co-ordinates is

reckoned from the inclination c to the axis of x. If A is some-
times called the logarithmic decrement

\

in other cases the phrase is

applied to /a where Thus the term denotes the logarithm to

the base e of the ratio of one amplitude to the next on the other side or

the same side respectively. For the further development of this aspect

of the subject of damped vibrations the reader is referred to the

writer's Text-Book on Sounds Arts. 56-58.

46. Acceleration varying with Time, Place, and Speed ; Forced



ART. 47] RECTILINEAR MOTIONS 55

Vibration.—Having considered cases where the acceleration depends
upon position only, upon speed only, and upon both, we now finally

treat a case where it depends upon time also in addition to the other

two variables. We shall thus suppose the acceleration to be made up
of three terms, two of them being as in the previous article, the new or

third term being a sine function of the time. We may accordingly

write for the equation of motion

(i).

Or in words, the acceleration is made up of three parts, of which one
is a sine function of the time of amplitude /and period 27r/«, another

is — times the displacement, and the other is ~-2k times the speed

of the moving point or particle in question. Now the remark at the

end of article 29 shows that the part of the acceleration winch is a sine

function cf the time would of itself produce a motion in which the dis-

placement is a sine function of the time of the same period, opposite

phase, and generally of different amplitude. We may well doubt if

like results will follow now where the acceleration has in addition two
other teims, but it is clearly easy to test the matter by trying as a

solution a sine function of the period of the fluctuating part of the

acceleration and of undetermined amplitude and phase. Thus let us

try as a solution of (i) the expression

sin («/— S) .... . . (2).

Then, inserting it in the left side of (1), performing the differentiations,

regarding «/on the right side of (i) as and expanding, we
obtain

sin («/— 5)4-2 cos («/--5)

=/cos Ssin 5)4-/&in 5 cos 5).

But since for a valid solution this equation must hold for every in-

stant of lime, It breaks up into two on equating the coefficients of

sin(«/— 5) and cos («/— 5) We accordingly derive from it

2K//a=/sin 5 (3)

and (/>’— «’)a=/cos 8 (4)

Thus by (3) (5),

and by taking the quotient of (3) and (4) we see that

tan 5=
2Kn

p'^— fp
(
6 ).

Hence using (5), (6), and (2) we see that

>’1=
/sin 5

2Kn
sin(«/—5)=

/sin

is a solution of (i) when 6 has the value given in (6).

47. Complete Solution.—But this, though a solution^ is not neces-

saiily the complete solution. Thus, if we write

^a=^7(?-*«sin($?/4*€) (8)
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where k* we see, from equations (i), (^), and (4) of article 45,
thatj* put in the left side of equation (i) of the present article would
reduce to zero. Thus if were added tcty^ }t would not disturb the

solutiotn, for^i in the left side equals the fluctuating term on the right

side of the equation, while j's on the left gives zero.

Indeed, while not disturbing the solution, the presence of y^ serves

to complete it, for it contains two arbitrary constants a and c, and the
theory of differential equations shows that this is the number required
in the solution of equation (i). A little reflection will show
that these two constants are the unknowns to be determined by the
displacement and speed respectively of the vibrating point at the
instant /=o.

We may accordingly write as our complete general solution of (i)

the expression which is the sum of^i andj^a from (7) and (8), viz.

sin («/— sin .... (9),

in which tan S = a and € are arbitrary.

48 . Discussion of Solution.—Of these two parts of the motion
shown on the right side of (9),>'i and^, respectively, the first,^,, depends,
as we have seen, solely on the fluctuating or periodic part of the accelera-

tion, it is the response of the moving point to that acceleration, and is

maintained by it of the same period and ceases if it is withdrawn. It

is called a forced vibration, being of the period of this imposed accelera-

tion, and not that due to the accelerations dependent on displacement

and speed. Tlie second term, or^'a, is the vibration of damped harmonic
type studied in article 45, and is the free or natural \ibration peculiar

to the conditions which impose the accelerations given as dependent on
displacement and speed. These natural vibrations might be present

prior to the application of the periodic part of the acceleration, and the

resultant of the forced and natural vibrations is competent to represent

any initial conditions since the amplitude a and phase c are arbitrary.

It should be noticed, however, that if the periodic part of the accelera-

tion lasts long enough the natural vibration represented byj'a, being of

the damped or diminishing type, will practically disappear, leaving the

forced vibration alone in the field. If then, after a time, the periodic

acceleration were withdrawn, the displacement and speed obtaining at

that instant would have to be regarded as a new initial state giving

corresponding values foi amplitude and phase of the natural vibratiorus,

which would thenceforward ensue and continue till they died away by
the effect of the damping factor

It is seen by equations (6) and (7) that the nearer p and n are to each

other the greater is the amplitude of the forced vibration. Indeed, but

for the presence of k, the amplitude would become infinite for «=/.
In acoustics, wireless telegraphy, and wireless telephony this is a fact of

far-reaching importance, referred to under the terms resonance^ tunings

etc. For a fuller treatment of the subject of forced vibrations, sym-
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metrical and asymmetrical, and with single and double forcing, the

interested reader may consult articles 91-116 of the author’s work on
Sound, 1

It may be noted, in conclusion, that all the examples dealt with in

this chapter are special cases of the one general diffierential equation

d‘^sld^= C-\- S-\r ^4- where s is the space co-ordinate, C is a constant,

and 5, and T are functions of the space, velocity, and time respec-

tively.

Examples

—

X.

1. A point moves in a straight line with an acceleration whose components
are respectively proportional and opposite to its displacement and
speed. Write down the corresponding equation of motion and solve it.

2. If a point executing simple harmonic motion becomes subject to a further

acceleration opposing its motion and directly proportional to its speed,
what changes follow in the amplitude and the period ? Can one of
these quantities suffer an appreciable change while the other is prac-
tically unaffected }

3. A rectilinear motion is executed under an acceleration whose components
are numerically - 169 times the displacement and - 10 times the velocity

respectively. Find the equation, period, and logarithmic decrement of

the motion.

4 Plot a displacement - time graph of the motion of question 3, putting

a—\o and « = o.

5 Discuss the case of rectilinear motion in which the acceleration has com-
ponents depending on the displacement, the speed, and the time, and
show what will follow after the cessation of the third component of the

acceleration

6. If a point initially without displacement or speed becomes subject to

acceleration represented by

169^ = 25 sin 12/,

show that Its motion may be thenceforward expressed by

/ = sin \2t-\% sin 13A

7. Show that all the cases of motion dealt with in the piesent chapter may
be represented by one differential equation, giving illustrative examples,

and indicating the character of the solutions.

1 Also Phil Ma^. E H Barton and Dr H M Browning, Oct. 1917 ,
Jan , Feb ,

July, and Aug. 1918, April, July, and Sept 1919, Nov. 1920, July 1921, Sept. 1923,
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CHAPTER V

PLANE MOTIONS OF A POINT

49. Uniform Acceleration : Projectile.—In dealing with the motions
of a point in two dimensions we begin with the case in which the

acceleration is uniform over the space under consideration. It thus
applies approximately to the motion of an ideal projectile whose path

is so small that no variation in gravity need be considered, the projec-

tile itself being regarded as a mere point or particle devoid of rotation

and suffering no resistance from the air.

Y

Referring to Fig. 14, let the origin of co-ordinates 0 be the point o(

projection, the axes of .^rand y being respectively horizontal and vertical.

Then the general conditions of the problem are expressed by stating

that the horizontal aceeleration is zero and that the vertical accelera-

tion is —g. Or, if we denote the co-ordinates of any point P in the

trajectory by x and^, the component velocities and accelerations by x,

and Xf j}t we have as the acceleration components
jc=o,}’=i—g (l).

Thus, if the angle of projection is a and the initial speed Uy the velocity

components after time / are given by
4?=5:«cosaand;^=«sin a— (a).
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Or, if V is the magnitude of the velocity at P and <#> its inclination with

the horizontal, we have
V*= and tan =ylx (3).

For the cartesian co-ordinates of P at time / we have from (2)

.A;=«/cosa and>'=«/sina — (4).

The corresponding polar co-ordinates are obviously given by
r*=^*-fj;*andtan (5).

Summit.—To find the co-ordinates of the summit of the trajectory

we must write7=0 in (2) and obtain from (4) the corresponding values

of X and y.

Thus we find from (2) that for the summit /=(«sin a)/^, which put
in (4) gives

w sin 2a , « sin a - , .

.^ONand^= =NA
2^ 2^'-

(6 ).

Rangt and Time of Flight.—To obtain the range OH on the

horizontal plane we write ^=0 in (4) and obtain the corresponding
value of X. We see that the time of flight is

r=
and that the range is given by

2u sin a

u' sin 2 a

Y~ =^OH

. . (7),

. . (8 ).

Thus, for a given value of w, the maximum range is obviously

obtained for a=7r/4, under the ideal conditions supposed to exist.

50. Equation of Trajectory.—From equations (4), eliminating /

we have

tan a—

-

or

sin a cos ay cos*a

^^^
sinV^

equations which show the path of the particle to be a parabola of latus

rectum (2?/’ cos*a)/^, and with directrix and focus respectively above
and below the summit A by the distance (w* cos*a)/2^. The equation

to the directrix may accordingly be written

y'-u^l2g (10),

the co-ordinates of the focus being

tt*sin2a 1 «*
/ • a a \ U i— COS 2a) / X

and — (sin’a— cos*a)= —\ ' . . (ii),
2g 2g^ 2g

and those of the vertex as already shown in equations (6).

Velocity due to Fall from Directrix.—Referring now to equations

(2), (3X and (4), we see that

j;’= «*— 2gy

But by (10) this could be put in the form

v'= 2s(y'-y)

(.4

(>3)-
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/>. the velocity at any point P in the trajectory is that which would be
acquired in a free fall from rest in the direccrix to the level of the

point in question, for is obviously the length of MP on
Fig. 14.

61 . Range on an Incline.—The range of a projectile on an
incline 6 may be found from the polar co-ordinates given by equa-

tions (4) and (5) by putting the given incline in the expression for

tan 0
,
and thence deducing R and the time of flight T.

X uTcos a

cos if cos 0
• • • \^ 4/‘

Also
X u cos a

or
2U sin (a—
g cos if

• • (15).

Whence by <(15) in (14) we obtain

geos if

. . . (16).

'Phus for a given speed u of projection the range on the incline 0 is

a maximum for 2a— ^=7r/2, that is, for an angle of elevation which
bisects the angle between the incline and the vertical.

An alternative method is to take new axes of co-ordinates parallel

and perpendicular to the lacline. The accelerations are then

:v= —^ sin 0 and>'= —^ cos ^ (17).

Still retaining a as the angle with the horizontal made by the direction

of projection we have for the co-ordinates at time t

y= «/cos(a--0)— sin

and y=«/ sin (a— 0)— cos ^

Thus, writing y=o, we obtain again T as in equation (15), and
this substituted in the expression for x gives for the range sought

x'=iR as in equation (16).

Examples

—

XI.

1. Obtain, both in cartesian and in polar co-ordinates, general expressions

for the velocity and position of a point moving in a vertical plane under
uniform vertical acceleration

2. Show that the trajectory of an unresisted shot is a parabola, find its

equation, and write dpwn its focus, directrix, and latus rectum.

3. With a given initial velocity of projection determine the angle of elevation

for maximum range on an incline.

4. * A gun is firing from the sea-level out to sea. It is then mounted in a
battery h feet higher up and fired at the same elevation a.

* Show that Its lange is increased by the fraction

of itself, V being the velocity of projection.’

(Lond. B Sc, Pass, Applied Math
, 1908, 11. 2,)
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5. ‘ Prove that the least energy of projection of a particle, in order that it

may have a given horizontal range, is such as would carry it vertically

to a height equal to half the range ’

(Lond. B Sc, Pass, Mixed Math., 1904, i. 4

)

6.
‘ A bullet describing a nearly horizontal path with a constant retardation
moves over a space of 500 feet whilst its velocity falls from 1200 f.s. to
1000 f.s.

;
where was it when its velocity was 1100 f.s. ?’

(Lond. B.A., Pass, Mixfd Math., 1906, i. 5.)

7. ‘ Give a simple geometrical construction for the velocity at any time of a
point whose acceleration is constant in magnitude and direction.

‘ Find by kinematical principles an expression for the radius of cur-

vature at any point of a paiabola.*

(Lond. B Sc, Pass, Applied Math., 1906, ii. 3.)

8 ‘A projectile has a horizontal range of 150 yards, and the time of flight is

5 seconds ; find the velocity of projection, assuming that the resistance
of the air may be neglected.*

(Lond. B A., Pass, Applied Math
, 1906, i. 7.)

52 . Constrained Motion in a Region of Uniform Acceleration.

—

VVe now consider the plane motion of a point or particle in a region of

uniform acceleration, but with conditions imposed which constrain it

to a specified path along which we have accordingly only a component
of the acceleration which obtains in free space.

Motion down Incline.—Thus, if a particle be constrained to motions

at an angle B with the direction of the acceleration a which obtains in

the region, we have along the direction of motion (by the resolution of

\ectors) an acceleration of value a cos 6 . There is accordingly a
motion with uniform acceleration of this amount, and the case falls

under the methods of articles 27 and 28. In particular, if the motion
in question is down a slope inclined at a wuth the horizontal, and the

acceleration is that due to gravity, then the acceleration down the slope

IS obviously g sin a. It is, of course, supposed that the constraint in

question imposes no check in any way upon the motion except that of

keeping it confined to a given path.

Suppose a particle to slide a distance s from rest down an incline

of angle a with the horizontal, the vertical height descended being h
and the speed acquired v. Then we have

v^=:2as (i)

= 2^ sin a.s

-2g{hls)s

or v^= 2gh (2)

independent entirely of the inclination.
^

63 . Simple Pendulum in Small Arcs.—Take now the case of a

particle confined to motions near the lowest point of a vertical circle

under the uniform acceleration of gravity. This is most easily realised

by attaching a shot or bob by a fine thread to a fixed point, the arrange-

ment being known as the simple pendulum. The limitation to a vertical

circle instead of to a spherical surface is then obtained by the method
of starting the pendulum.

Referring to Fig. 15, let S denote the point of suspension, P the bob,
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and let the thread SP have length /. Consider it when SP makes as

shown an angle Q with the vertical SO. Then tne component of gravity

which is effective, being along the arc at Py is —^sin B. But since we
are limiting the motion to very

small arcs, we may write this —
nearly. Let the displacement OP
measured along the arc be then

We accordingly have as

our approximate equation of motion

But this is equivalent to equation

(i) of article 29, hence the solution

may be written

j=JoSin( /-f c) . •
. (2).

This shows that along these small

arcs the motion is simple harmonic
of period

T=l 2 Tr sjljg (3).

Thus the period varies as the square root of the length, and is

independent of the amplitude to this approximation.

In equation (2) Jo ^nd <, the amplitude and phase, are arbitrary

constants to be determined by the initial conditions as in article 30.

54. Simple Pendulum in Finite Arcs.—Let us now consider the

case in which the arcs or angular displacements of the pendulum are

not so small as to admit of writing sin 6 =.d. Then, again referring to

Fig. 15 and the notation of article 53, we have as the equation of

motion

/^+.§'sin^=o (i).

Fig. 15. SiMPiE Pendulum.

dS
And let the initial conditions be

for/=o, ^^=oand0=a (2),

that is, the pendulum is let go from rest with an angular displacement

a radians. It is required to find the period t corresponding to this

amplitude a.

Multiply (i) by 2d0 and integrate then we obtain

S

— 2^C0S^+C*=0 (3).

Applying (2) to (3) we find that the integration constant is

C7= 2g cos a. Equation (3) may therefore be written

— 2^(cos^— cosa)=:o,
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dd

dt
=r — Q— COS a) (4),

in which the negative sign of the square root is chosen because the

angle B decreases as time increases. Separating the variables and

integrating over a quarter of the period t, starting from the equilibrium

position, we obtain

dd

K n/cos <^—cos a
. ( 5 ).

The algebraic sign before the square root is now changed to

positive because the limits of integration have been written o to a

instead of a to o as they were supposed to actually occur.

Using the identity i— cos B=2 sin*^/2, and the same for a, we may
rewrite (5) in the form

55 . Transformation of the Integral.—To deal with the integral

on the right of (6) it is desirable to introduce a new variable </>,

defined by
. B » a , ,

. .

sin - =sin - sin 9 (7).22 ' '

This relation is obviously legitimate, since B is never greater than
a. The transformation shown by (7) obviously affects the function to

be integrated, the differential, and the limits. We accordingly noU
that

s® ,B .a .

Sin - —sin*- = sin- cos

2 sin - cos
<l> d<f>

2 .(8 ).

de^ 7—
^ I — sin*® sin*</>

The limits 0 and a for B become o and 7r/2 for <I>J

Hence, substituting from (8) in (6), we transform the integral to

2d<i>
(9).

where ^= sin a/2 , (10).

Obviously, for y&=o, (9) becomes T= 27r*/7^, as found before for

infinitely small arcs.

56, Evaluation of the Integral.—To evaluate (9) note first that by

the binomial theorem we have the expansion

(i -*• = I + Ih' sin’</.4 . .
.
(i i).

2.^



6t ANALYTICAL MECHANICS [art. 57

f
Also, by the integration of even powers of sines, we. have

- ....
^ 2.4.6 . . . 2m 2

Hence (9) becomes

r=-V/A^{.+G)v+(;;3y^*+Q;J5)v^^ (. 3 ),

giving the period in terms of the amplitude.

It may be noted that, if A is the height fallen through by the

pendulum bob from its highest to its lowest point, we have

222/ • (14)

Hence, by help of (14), (13) gives t in terms of I and h,

,
In many cases, though the oscillations occurring are not infinitely

small, they are fairly so, and it is then usual to stop at the term involv-

ing k' in (13). Thus to this approximation, and writing a/2 for sin a/2,

we have

nearly . (15).

Various relations may be obtained geometrically for a pendulum
swinging in finite arcs. Some examples are given later to afford the

student exercise in such problems.

57 , Motion in a Vertical Circle—Reverting now to equation (9)

of article 55, we see that the integral may be immediately evaluated if

^’=1, i.e, if a=7r. This corresponds with a motion of a particle from

the highest point of a vertical circle under gravity. It is convenient,

however, to go back to the form of equation (6) of article 54 and rewrite

it without the limits of integration. We thus have

(. 6).

This gives /=( V//i-)log,^tan"^^^-f const. (17).

It should be observed that, since log tan 7r/2 = oo, it would take an

infinite time for the particle to just reach, or to fall from rest at, the

highest point.

If, after starting from rest at the top, a fall is noted from 0
i
to 0^ then,

by (17), the corresponding time is given by

'»=

.

. (i8).

The speed at any point, whether the fall started at the top or else-

where, may be found by equation (4) of article 54.

Examples—XII.

f. Show that a particle descending a smooth curve in a vertical plane under
gravity will experience the same change of velocity as in a vertical

descent between the same levels.
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2 Find the approximate period of a simple pendulum from the diliferential

equation of its small notions.

3. Fit the equation which expresses the displacement of a simple pendulum
(d) to the case where it is pulled aside a and let go, and (b) to the case

whcie the bob receives a velocity v at the central position.

4. Discuss the equation of motion of a simple pendulum when executing

finite arcs and find the period for an amplitude of 5*.

5. * Prove that the period of a complete oscillation of a simple pendulum of

length / IS If the bob of a pendulum 100 feet long be drawn
aside from the position of rest through a space of 3 feet and then re-

leased, find the velocity with which it passes through the equilibrium

position.’

(Lond. B.Sc., Pass, Mixed Math., 1904, i 6.)

6.

* Prove that the length ofthe pendulum to beat seconds in London is 39 14
inches.

‘To gam or lose one second in one hour, or 24 hours in a clock, the
length must be altered o'o2i75, or 0*000906 inch.’

(Lond B Sc , Pass, Mixed Math., 1903, i. 9.)

7. ‘ Prove that the time of a single swing of a plummet at the end of a thread
/ feet long is

TT\/- seconds

when the oscillations are small, and that for the plummet to beat
seconds the length of the thread must be 39*14 inches.

‘ Prove that as the plummet swings through the arc BAB' of an angle
2a from ^ to Z?' on the horizontal chord BD^ of the circle of which
ADE la the vertical diameter, the point Q on the circle on the diameter
AD will follow P at the same level with velocity

PE
Ae'

and thence show that the time of a swing lies between

(Lond. B.Sc., Pass, Mixed Math., 1901, 11. 6.)

8. ‘ Prove that the time of swing of a pendulum / feet long is undistinguish-

able from njiljg) seconds when the oscillation is small.
‘ If a light is placed at E, the upper end of the vertical diameter of the

circle on which the plummet oscillates, to throw the shadow T of the

plummet on the floor, moving from F io and if TR is the ordinate

of the circle on the diameter FF^ prove that liie velocity of R varies as

ET^ and fluctuates beween
*

\FF''y^ and \FF' cos ^
2a denoting the angle of oscillation, not restricted to be small ; and
thence show that the period of oscillation lies between

arr A/ - and 2ir sec— \
(Lond. B.Sc, Pass, Mixed Math., 1902, ii. 8.)
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9. ‘ Prove, by analogy with Harmonic Vibration, that the bob P of a circular
pendulum of length /, oscillating through a finite arc BAB\ moves with
velocity

n^{BP,PE\n^^glL^
Mf is the veitical diameter of the circle on which P moves, and if

EP drawn from the highest point E cuts the horizontal chord BB' in
/?, prove that the velocity ofR is

and that the period of oscillation lies between the limits

(land||)2,r^i.’

(Lond B.Sc., Pass, Mixed Math., 1903, ii. 9.)

58 , Motion in a Vertical Cycloid.—A cycloid is a curve described
by a point in the circumference of a circle which rolls without sliding

upon a fixed straight line. The point is called the tracing point, the
circle the generating

circle, and the straight

line the base.

Thus, referring to

Fig. 16, P is the

tracing point, DPEF
is the generating

circle with centre at

C, and AEB is the
base of the cycloid,

part of which is

shown by OPB. It

is at once obvious
that a cycloid con-
sists of a number of

precisely similar por-

tions, and certain

points called vertices

are most remotefrom
the base, O being a

vertex in the figure

;

while other points

called cusps lie on the

base, B being a cusp
of the cycloid OPB

Fig. 16. The Cycloid.
in the figure. The
lines through the

vertices at right
angles to the base are called axes, one of which, AO, is shown in
the figure as an axis of OPB.

Intrinsic Equation of the Cyclmd.—Taking the origin of co-ordinates
at the vertex O in Fig. 16, and the axis of x parallel to the base as
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shown, let the co-ordinates of the tracing point P be it being
understood that P was at O when the opposite end of the diameter F
was at A. Then we can readily obtain the intrinsic equation of the

cycloid. For taking angle DCP=^ and CP=flr, the co-ordinates of

P are obviously

jv=a(0-}-sin and j= —cos . . . (i).

Hence, on differentiating, we have

and

if5:i= fl(i-|-cos^?)d^^=4fZCOS®-^- I

2 2 I

ay ^=a sin ddQ=-^a sin— cos -d-
2 '2 2)

(2)

Thus on division, and calling the inclination to the horizontal at

P=(/), we have
iSLn(l>=dyldx=t2in 9I2 or <j>= dj2

. (3).

Also, using this value in (2), we see that

(dsy=^{dxy-\-(dyy=i6a^ cos*<^ {dff>yf

or ds 4a cos <j>d4> . . (4).

Thus integrating, and remembering that the value of the arc s and that

of the angle vanish together, we have

j
ds=:4aj cos <l>d(l>,

or s==4asm<t> (5),

the intrinsic equation required.

59 , Period of Cycloidal Oscillation.—Suppose now that a particle

IS constrained to describe a cycloidal curve in a vertical plane with

the axis vertical and vertex downward. Then, calling the displace-

ment from the vertex along the arc j, we have the component
acceleration along the curve due to gravity denoted by —^ sin

Thus, by (5), the equation of motion of the particle may be written

dP 4a (6).

But the solution of this, as already seen, is of the form

sin ( V^/4a/+«) . . {7),

thus giving a simple harmonic motion of period

T=27r J4a\g (8)

entirely independent of amplitude.

60 . Cycloidal Pendulum.—The constraint on the particle to make
it describe a cycloid might be in the form of a tube, along the smooth
interior of which the particle slides. A special property of the cycloid

enables us, however, to conveniently regard it from another point of

view. By unwinding a thread from one curve, a second curve is

1 Some writers studiously avoid the differentials dx and dy and use always the

differential coefficients dxfdd, dytdd, etc. Others use freely the separate symbols dy and
dx, presumably, on the understanding that they represent small increments whose ratio is

the limit of iyfhx as Sx approaches zero. For the formal justification of the separate use
of dy and dx, modern works on the calculus should be consulted.

E
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obtained called the involute of the first, which is itself termed the

evolute of the second. Thus, to describe a c> cloid by the unwinding
of a thread from some curve, we have to d.etermine what that curve is

;

in other words, we have to find what is the evblute of the cycloid. It

may easily be shown that it is two halves of an equal cycloid. Thus,
referring again to Fig. i6, the evolute of the half-cycloid OPB is that

half-cycloid SQB shown above it. And a thread fixed at S and wrapped
round Q to B, if unwrapped while kept stretched and carrying a pencil

starting at B, would describe the half-cycloid BPO.
To establish this it is necessary and sufficient to show

(i) that PQ lies along the normal to the cycloid OPB at P

;

(li) that the length PQ is the radius of curvature of the cycloid

OPB at P;
(iii) that PQ is tangential at Q to the cycloid SQB

;
and

(iv) that the length PQ equals the length from Q to B along the

cycloid SQB.
(i) We have shown, in equation (3), that but it is evident

also from the geometry of the figure that PED is 0/2 also. Thus PQ is

perpendicular to the tangent PT or is along the normal to the curve.

(li) Again, from equation (4), and calling the radius of curvature

of the cycloid /o, we have

p=^j/V</>=4<rcos<jS>=2pE= PQsay .... (9).

Thus Q is defined as lying along PE produced so that EQ=:EP, It

IS thus on the circumference of the circle GQE, equal to DPEF, and
standing vertically over it. Now if this upper circle rolls along GS it

IS evident that Q will reach S, because it is exactly like the point F in

the lower circle, which by rolling reaches A. Accordingly the vertex

of the upper cycloid is at B, the cusp of the lower one.

(ill) PQ is readily seen to be tangential to the cycloid SQB at Q
since, by construction, it is at right angles to the normal QG, the

angle GQE being in a semicircle.

(iv) Finally, to establish the fourth point, let the angle with the

horizontal made by the upper cycloid at Q be if'j and the length from
B to Q along the curve be s\ Then we have by (5)

5'= 4tf sin ^=4acos<^ (10).

Or, on comparing with (9),

s'=p (ll),

as needed to be shown.
Thus the length of the thread which wraps along the cycloid from

cusp S to vertex B is set.i from its central position SAO on the figure

to be double the diameter of the generating circles. Or, referring to

equations (10) or (5), and writing jr/2 for the angle and / for the length

of the thread, we have
l=4a (12).

Thus, putting this value in the expression for the period, equation (8)

becomes

r^27r Jlfg (13).
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ExAMpr.ES

—

XIII.

1. Draw a cycloid by carefully rolling on a straight edge a disc of card
carrying a pencil on its circumference. Indicate on this diagram the

base^ a vertex^ a cusp^ and an axis Also state the lengths of the base
and the curve from cusp to cusp in terms of the radius of the generat-
ing circle.

2. Obtain the intrinsic equation of the cycloid from its definition.

3. Calculate the period of oscillations in a cycloid under uniform accelera-

tion parallel to an axis and directed from the base towards the vertex.

4. Show that a cycloid is the involute of a precisely equal cycloid, and
indicate on a carefully drawn figure the relation of the two curves.

5. Assuming that a cycloid is the involute of another, find the period of a
cycloidal pendulum, and explain without mathematical symbols why the

period is independent of the amplitude in this case, though it is not for

a simple pendulum
6. ‘ Establish the isochronous property of cycloidal motion

‘ Show that if the particle oscillates from cusp to cusp, tne direction of

motion rotates with constant angular velocity ’

(Lond. B.Sc., Pass, Applied Math
, 1906, ii. 5.)

7. ‘A circle rolls on the inside of a fixed circle of twice its size
;
pro\e that

every point on the circumference of the rolling circle describes a

diameter of the fixed circle.’

(Lond. B Sc., Pass, Applied Math., 1905, ii 5 )

61. The Brachistochrone.—A notable problem in the history of

mechanics is that of the curve of swiftest descent, or the brachistochrone.

To deal with it in its general form requires the calculus of variations,

which is beyond the scope of the present work. We shall accordingly

restrict the treatment to the problem in its simplest form, which may
be stated as follows :

—

Enunciation ofProblem .—Two points being given which are neither

in a vertical nor in a horizontal line, to find the curve joining them
down which a particle sliding under gravity, and starting from rest at

the higher, will reach the lower in the least possible time.

In the first place, we can see that the required curve must he in the

vertical plane containing the two points. For if it deviated therefrom

it would thereby both make the acceleration along the path less and the

path longer
;
hence for both reasons the time would be greater.

Secondly^ if the time through the entire curve is a minimum, each

portion of the curve must be such that a change in it would increase

the time in that portion.

62. Problem Attacked.—We have now to find by a simple method
some clue to the type of curve required. For th’s purpose we use the

almost self-evident fact, that if a curve exists of minimum time of

descent it must be possible to draw near it on each side curves for

which the times are slightly greater but equal to each other. And what

applies to the whole curve applies to elementary portions of it. Refer-

ring, then, to Fig. 17, let H and R be near points in the brachisto-

chrone, HKR and HLR being very near alternative paths down which
the times are equal, the distance KL being very small In comparison
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with HK and KR. Then the element of the brachistochrone re-

quired must lie between HKR and HLR. i^et KL be on the same
level; then in the paths HK and HL, since the speeds are everywhere

the same at the same levels

(see equation (2), article

52), the average speeds

down each path must be
equal. Hence the time in

either path equals the length

of that path divided by the

same value, v say, which is

the average speed. Thus
the extra time, t say, in HK
over that in HL equals the

extra path length divided

by V. Let fall from L the

perpendicular LM on HK

;

then since KL is very small

compared with KH, HM=
HL nearly, and the extra

distance in question is de-
R noted by KM, which equals

Fro. 17. Derivation of Brachistochrone. KL cos where <!> is the

angle HKL. We accord-

, KL cos 6 /V
ingiy have t= -—

-

(i)

Again, for the lower half of the figure the speeds at any level are

the same in the two paths, hence the average speed in KR or LR may
be denoted by the same quantity, v' say. Also, drawing KN perpen-

dicular to RL, we have extra time t in path LR over that in KR equal

to extra distance LN divided by average speed v' in either path. Or,

writing </)' for the angle KLR, we have

/ KL cos / \T == (2).
V

But, by supposition, r and r are equal ; hence (i) and (2) give

cos(f> cos 6'

/ .

V ^
v'

^

The reader should note that it is by no means implied that the

times of descending the paths HM and HL are equal, neither is the

speed over MK equaJ to v (but possibly double this). It is simply the

extra time in the one path over that in the alternative one, that is,

extra path length divided by that average speed between the levels H
and KL (or KLand R) which is the same for both parts above and below

KL. Again, the speeds over the elements MK and LN are not distinctly

different, but differ by an infinitesimal quantity only
;
but neither of

these speeds are represented by v nor by v\ which are only average

speeds above and below KL as defined.
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63 . Equation of Curve. — Now let the points K and L of

Fig. 17 approach and coalesce so that the one path substituted for

the two is now an element of the curve sought. Then the property

possessed by the paths in common is possessed by this also. But the

and <l>'
now apply to the single inclinations of

the upper and lower parts, the speeds 7/ and v
as before being average speeds in those upper
and lower parts. Thus we may represent by
UVW in Fig. 18 two consecutive elements of the

curve. In the upper element UV the average

speed is v and the path inclined </> to the hori-

zontal, in the lower element VW the average

speed is v' and the inclination <#>'. And to these

elements equation (3) still applies. Hence we
may write as the equation to the curve which is

obtained by infinitely reducing the lengths of UV
and VW

VocCOS<f> (4).

64. Cycloid is a Brachistochrone.—We can now easily show that

this equation is satisfied by the cycloid with base horizontal, vertex

downwards, the start being from a cusp. Thus in Fig. 16 a particle

descending under gravity from rest at B would reach P quicker along

the cycloid than by any other path. To establish this note first that

V*= 2g/t if h is the vertical height descended through in acquiring the

speed V (see equation (2), article 52).

Hence (4) may be written

^occos*<;^ (5).

We have accordingly to find from the equations to the cycloid

values for h and <^.

Obviously h the depth of P below AB equals OA minus the

ordinate of P, or

k—2a^y (6).

And from equation (5) of article 58 we have

s=4asm(l>=:4ady/ds .... (7).

Thus, by integration, we obtain

j
2sds= 8a dy^

or s^ = 8ay . (8).

Hence (6) and (8) yield

h=2a^y:=::2a{i’-sJli(ia^) . . (9).

And by (7) cos’<^= i — sin’</)= i— (10).

Thus (9) and (10) show that the cycloid satisfies the conditu

(5) for the brachistochrone, the fall being from a cusp.

65

.

Construction for the Cycloid as Brachistochrone.—Suppose
with a given initial point B a brachistochrone is required to pass

through a lower point R, join BR by a straight line, and describe on a

Fio. 18. Elements
OF Brachisto*

CHRONE.
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horizontal base through B and in the vertical p^ane containing R a
cycloid with any generating circle of radius a. Let this cycloid cut
BR in P. Then, since all cycloids, like all circles, differ from each
other only in size, to make a cycloid pass through R we need only to
change a m the ratio BP to BR. Thus let the radius of the generating
circle for the required cycloid to pass through R be r. Then we have

.-=aBR/BP (ii).

Examples—XIV.

1. Define the brachistochrone^ and show that every point of the curve must
satisfy the condition z/occos<^, v being the speed of the point describing
It where it is inclined ^ to the horizontal.

2. Prove that a certain part of a cycloid in a specified position forms a
brachistochrone, and construct the curve properly for two points lo
feet apart, the line joining them being inclined at an angle of 45*.

66. Central Acceleration Proportional to Radius.—We now con-

sider the plane motions
which nlay be executed by
a point P subject to an ac-

celeration directed to a fixed

point O in the plane and
proportional to the distance

OP.
Thus, referring to Fig. 19,

let the point P have co-ordi-

nates X and speed compo-
nents u and V parallel to OX
and OY respectively, and let

the central acceleration be
Fig. 19. Central Acceleration pro- —/V, Then, denoting by

PORIIONAL TO Radius. x and y the accelerations

parallel to the co-ordinate
axes, we have as our equations of motion

x=:^p^rcos6=—p^x (r)

and >= —/Vsin (2).

But these equations are the same in form as (r) of article 29;
hence by (4) of the same article the solutions may be written

x=(f sin {/>t+a)
(3)

and sin (J>t+P) (4).

In these equations the constants a, a, b, and /? are to be determined
from the initial displacements and velocities as shown in article 30.

The motion is therefore to be regarded as represented by equations

(3) and (4), in which all the quantities are known. We thus see that it

consists of two simple harmonic motions at right angles to each other,

of same period, but differing in amplitude and phase. The problem
accordingly reduces to the composition of rectangular vibrations.
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67. Composition of Rectangular Vibrations.

Equal Periods ,—By changing the origin of time equations (3) and
(4) of the last article transform to

sin S) and>'=<i^sin// .... (5),

where 8=a— Thus expanding the expression for and using that

for^, we eliminate t between the two equations, and obtain

X y -
^COS 0=

a 0
I—^ sin 5.

Or, on rationalising.

X' 2xy « , , 5,

-a 7 coso+-^=sin*5
ah p

which is the equation of the path of the point P.

Case /.—For 5= 7r/2, this becomes

-

the equation of an ellipse with axes along OX and OY.
Case II,—For 8=0 or tt, (6) becomes

which represents . two coincident straight lines through the origin,

sloping one way or the other according to the sign in the brackets,

which again depends upon the value of 8.

In the general case (6) represents an ellipse with inclined axes,

which evidently, however, lies inside and is tangential to the rectangle

of sides 2a and 2^, their equations being >'= ±^*

68. Different Periods.—So far we have supposed the acceleration

to be directed towards the centre. It then follows that the acceleration

parallel to cx or to is the same for the same displacements in each
direction. If, however, the acceleration per unit displacement parallel

to the X axis is times its value parallel to the y axis, it is seen from
equations (i)-(4) of article 66 that the period of the vibration parallel to

the X axis will be i/«th of its value parallel to the y axis. Thus, in

this case, to find the resultant motion we should have to eliminate /

between equations of the form

and
x=:asin (npt-\-

y^b%\Tipt (9)

This is not easy analytically unless « is a small integer or a vulgar

fraction whose numerator and denominator are small integers. In any

case, however, the resultant motion may be found graphically by taking

a series of values of / and plotting the corresponding values of a: and^
from (9). In these circumstances the acceleration is not central, and
the resulting motion cannot be an ellipse.

But as the case of unequal periods is chiefly of interest in physics

we leave the reader to follow it up in the text-books devoted to that

branch of science. (See, for example, the writer’s Sounds Arts. 32-37,

or Barton and Black’s Practical Physics^ Expt. 12.)
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Examples

—

XV.

1. Show that under central acceleration varying directly as the distance the

plane motion of a point is in general an ellipse. To what may this

reduce m special cases ?

2. ‘ Show that two simple harmonic motions of the same period and in the

same line are equivalent to a single simple harmonic motion of the

common period, and give expressions for the amplitude and phase of the

resultant motion in terms *of the amplitudes and phases of the com-
ponents.

‘Exhibit in diagrams the resultant of two S.H. motions in perpendicular

directions whose amplitudes are equal, and whose periods are as 2 : i,

when the phases of the two components differ by J, and | of the

longer period respectively.’

(Lond. B Sc., Pass, Applied Math., 1905, 11. 3.)

3. ‘ The co-ordinates of a point at time t are
x = a cos 2.nt^y — a sin «/.

‘ Prove that the point describes an arc of a parabola. Determine the co-

ordinates of the ends of this arc and the velocity of the point when
passing the vertex.’

(Lond. B.Sc
,
Pass, Applied Math., 1906, 11. 2.)

69. Tangential and Normal Accelerations.—Suppose a point is

describing a plane curve with any continuously changing speed. Then

Fig. 20. Tangential and Normal Accelerations.

the total acceleration to which it is subject may be regarded as the
resultant of two component accelerations respectively tangential and
normal to the curve at the place occupied by the point at the instant in
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question. It is almost obvious that the tangential component is

concerned only with the change in speed and the normal component
only with the change in direction of that speed. Thus these two
components of the acceleration correspond to the components which
we recognise as characterising the velocity.

Let it be required to express these component accelerations in

terms of the other circumstances of the motion.

Referring to Fig. 20, let a point describe the plane curve PQR,
having at P the velocity OS of magnitude z/, and at the new point Q, at

a time 5/ later, the velocity OT of magnitude v+Sv. Also let the angle

SOT between the tangents at P and Q and the equal angle PCQ
between the normals be 8 cf>^ the radii of curvature PC and QC being
denoted by p and the small arc PQ by 8s.

Then if ^ is the tangential acceleration we have on resolving

parallel to PS
r .t .(v+8v) cos 8i^—v dv , X^=the limit ofL-=— —-— = T, (i)-

0/ at

Again, resolving perpendicular to PS, t e. along PC, we have for f,

the normal acceleration,

V Jv-i- 8v)sm 8 <j> d(f> ds d(j) .

.= thehm.tof^ L

since ^-^=\lp and d(jdt=v. The quantity d<j>lds, or rate of change of
ds

direction per unit length along the arc, is called the curvature^ and is,

as we have just seen, the reciprocal of the radius of curvature. The
centre of curvature denoted by C m the figure is the intersection of

consecutive normals. Thus, if the total acceleration affecting a moving
point IS at any time normal to the direction of the motion, and of value

Cy we have no change in its speed, but only a curvature of the path

produced, whose radius is

(3).

Denoting by the angular velocity d4>ldty and remembering that

vjp^dsjpdi^d^ldty (2) may be written

<r=:^;12=pi2z;/p=/)12’ (4),

forms which are often very useful.

70. The Hodograph.—Instead of using the analytical method of the

preceding article for the component accelerations, it is often convenient

to represent graphically the total or resultant acceleration derived from the

consecutive velocities. This is done in a very elegant manner by the

use of a curve called the hodograph^ introduced into kinematics by Sir

W. R. Hamilton.
Referring again to Fig. 20, we see that the effect in time 5/ of the

total acceleration is to change the velocity OS into OT. Hence, by
the addition of vectors, the effect in question must be represented by
ST. The same would apply to any other lines all drawn from O and
representing the velocities of the point in the path PQR. Thus, if such

lines were drawn from a point O called the poky and their ends S, T, etc.
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connected by a continuous curve, the speed of describing this curve

called the hodograph would represent the total acceleration of the point

describing the path PQR. For, taking the first element ST, we have

ST represents the total acceleration X 5/.

speed of describing ST= ST/S/,which represents total acceleration (i).

And this is the fundamental property of the hodograph which makes
it so useful. If a point move so that when its inclination to a fixed

line is Q its speed is it is obvious that the polar equation of the

hodograph may be written

r=kf{&) (2),

where k is some constant chosen for convenience when drawing to

scale.

71 . Uniform Oircular Motion —As the simplest example of the

use of the hodograph, let us apply it to find the acceleration of a point

describing a circle of radius p at uniform angular speed <0. Then the

linear speed is always

p(a=^vs2Ly. The polar

equation of the hodo-
graph may in conse-

quence be written

r=-v Or, the hodo-
graph is another circle

described in the same
direction and m the

same time, but the

corresponding points

in each are distant a

quarter of the cir-

cumference. These
points are clearlyseen

from Fig. 21, in which the circle of radius p at the left shows the actual

path and the circle of radius v at the right shows the hodograph. The
time T of describing each is obviously given by

T= 27r/(us= 27rp/z;= 27rf>/r (3),

in which Cj the total acceleration of the point in the actual path, is repre-

sented by the linear speed of describing the hodograph. Thus we have

plv-vjc,

or c—v^jp—p^^ (4).

And, since the total £cceleration is here entirely normal we see
that this result agrees with (2) and (4) of article 69. The points P'

and Q' are another pair of corresponding points in path and hodograph.
Sometimes from the conditions of the motion the hodograph is

virtually given, and its use forms the readiest means of investigating the

speed and direction of the moving point after a given time. Thus, for

an unresisted projectile, the hodograph is evidently a vertical straight

line described downwards with uniform speed numerically equal to

the acceleration due to gravity.

Actual Path Hodogr^aph

Fig, II. Uniform Circular Motion.
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72 . Conical Pendulum.—We may approximately realise the above
case of uniform circular motion in a horizontal plane by the arrange-

ment known as the conical pendulum. In this a small bob P is

attached by a strong fine thread to a fixed point

S, just as in the case of the simple pendulum,
but the motion imparted to P at the start is

such as to obtain in a horizontal plane a circular

motion, of radius p say, described with angular

velocity w. But this, as we have just seen, is

only possible under the influence of a central

acceleration of value pa»*, which in the present

case must be derived as a component from the

acceleration g due to gravity. To find the re-

lations which correspond to this motion, let

the length SP of the thread be / and the angle

it makes with vertical 0 . Then, resolving the C
vertical acceleration g into two components, one
along the thread and the other of value c hori-

zontally to the centre (see Fig. 22), we have

^/^=tan 0=CP/SC=p//cos^. . . (5).

But since we obtain from (5) ^
<11*/f= I //cos or <»)= n/w/ cos 0 . . (6). Fig. 22. Conical

. . , , . . ,
Pendulum.

Hence the period of rotation t is given by

T= 27r/(u= 27r V(/cos (7).

The component of g along the thread is, of course, ineffective, as the

thread is supposed inextensible.

Examples—XVI.

1. ‘ Define the hodograph of a moving point. Find the hodograph in the

case of a projectile moving under gravity, and the law of its description.
‘ Sketch the hodograph, as accurately as you can, in the case of a simple

pendulum swinging through a fintte angle.’

(Lond. B.Sc, Pass, Applied Math., 1905, ii. 2.)

2. ‘ Define the hodograph of a moving point, and prove that the velocity in

the hodograph varies as the acceleration in the original orbit.

‘ Hence (or otherwise) prove that the accelerations of a point along and
at right angles to its direction of motion are v and respectively, v
being the velocity at any instant and

<f>
the angle which this velocity

makes with a fixed line in the plane of the motion.’

(Lond B.Sc, Pass, Applied Math., 1908, 11. i.)

3. ‘Obtain expressions for the tangential and pormal components of the

acceleration of a particle which is describing a^plane curve.
‘ Prove that, if these two components are constant throughout the motion,

the angle ^ through which the direction of motion turns in a time / is

given by log(i +5/).’

(Lond. B.Sc, Pass, Applied Math., 1900, ii. 2.)

4. ‘ If a particle describes an ellipse under the action of a force directed

towards its centre, find its velocity at any point of its path, and show
that the ellipse is its own hodograph.’

(Lond. B.Sc., Pass, Applied Math., 1900, 11. 3.)
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73. Angular and Areal Velocities and their Relations.—It is

now desirable to consider more generally the relation between angular
and linear volocities and to introduce the conception of an areal
(or sectonal) velocity. Thus let a point move in the plane curve PQR,

Fig. 23, and have at

P the linear speed v
and, with respect to

the fixed point H, the

angular velocity w.

Also, let the rate V,

at which the radius

vector HP describes

area as P moves m
the curve, be called

the areal velocity (or

sectonal velocity') of

the moving point P
with respect to the

fixed point H. Let

the infinitesimal path
Fig. 23. Angular and Arral Velocities. length PQ be called

ds^ the angle PHQ
be dB^ the radius vector HP be denoted by ^ the angle UPT
between it produced and the direction of P’s motion be and let

p denote the length of the perpendicular HN upon the tangent to

the curve at P. Then the length of the perpendicular PM upon HQ
is ds sm and the area HPQ =</5 say, described or swept out by the

radius vector in time dt as P moves to Q, is given by
dS=^rdss\n <i>^\pds.

Similar expressions are easily obtained for the angular displacements

and velocity and the areal velocity. These are collected in Table n.

Table II. Linear, Angular, and Areal Velocities.

LINEAR ANGULAR AREAL

DISPLACEMENT
ELEMENTS ds r

sspdsjr^

dS= \rds sm
ss^pds

VELOCITIES

•

v-dsjdt^s
i vs\n<j>

(Oszff—
r

—pvjf^

V==S = hrvsm<t)
s=|r®ci) = J/v
= lA say

1

74. Radial and Transversal Velocities and Accelerations.—Let

r and B be the polar co-ordinates of a moving point P referred to the

fixed axes or ‘ frame ’ OX, OY. And suppose u and v to be the radial
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id transversal velocities of the point, that is, the component velocities

spectively parallel and perpendicular to OP. We shall also denote
f f and j respectively

e component radial and
insversal accelerations, u*6u
tiich are effective on the

oving point and change
1 velocity in magnitude
direction with respect

the fixed axes or ‘frame

’

OY. Then let it be re-

lired to express f
id j in terms of r and 6

id their differential co-

ficients.

Referring to Fig. 24, ^ig. 24.
t P (r, 0) be the position

the moving point at

Radial and Transversal Velocities
AND Accelerations.

me f and P' 6 -{-86) be that at time /-pS/.

^ the figure

5/ dt

Then we have

(i)

Id t/=the limit of (*).
0/ dt

Again, if u-{-8u and v-{-8v be the radial and transversal velocities of

le point when at P' at time /-fS/, we have from the diagram the

idial acceleration given by

/=the limit of
(“+ cos 89-x- (y+Bv) sin S

6

it

du d6

'dt
(3).

Also, from the diagram, we have for the transversal acceleration

;= the limit of
(^+^^)<^osS0-v+{u+Su)smSe

^ St

dv
.

dd

^-di^'*Tt-
• • • • (4).

By use of (i) and (2) in (3) and (4) these latter transform into the

impact expressions

f=r-r6\ (5)

id j=:r6-^2r6 (6).

Thus, though r truly represents the velocity of P along OP, does

9/ represent the acceleration of P’s motion with respect to OX and OY
i this direction, but it represents only the rate of change of rate of
lange of OY, This will be made clearer by the following illustrations.

75, Circle uniformly described.—As an example of radial and
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transversal velocities and accelerations, consider first uniform circular

motion. In this case r=su=sOj v is constant, oO ^=0. Then we see
that these agree with (i) and (2), and that from (5) and (6) we obtain

y== — — ro>* andy= o (7).

Thus /and / here agree with our d and c of articles 69 and 71, as

they should do for the circle with constant speed.

Straigiit Line uniformly described—Consider as a second example
the point P moving with constant speed Yin the straight line

or, in polar co-ordinates

rcos d=a .
. (8)

and atan0=P/ (9).

We then obtain from these by elimination and differentiation

r=ysm6, 6=aVjr^f \ . .

r=a*FV^»,and^=-{2flK*sin^)/r* /
* *

Thus, substituting these values in (5) and (6), we get

= o (ii)

and
r2a F* sin $ ,

2a V' sin B
Ii + 1* • (' 2 )-

Or in words, the accelerations are zero in each direction ;
as

should be the case, since the velocity varies neither in magnitude nor

direction.

Examples

—

XVII.

1. Exhibit in tabular form the relations between the linear, angular, and
sectorial displacements and velocities of one point about another.

2. Obtain expressions for the radial and transveisal velocities and accelera-

tions of a point in terms of its polar co-ordinates r and 6.

3. A point moves from rest with acceleration g vertically downwards. If,

at any instant /, its polar co-ordinates in a vertical plane are (r, B\ their

initial values being (tf, o), state in terms of these the radial and trans-

versal accelerations of the point

4. ‘Two points are moving with uniform velocities 1/, v in perpendicular

lines OX, OY, the motions being towards O ; when t-o they are at

distances a, b respectively from O. Calculate the angular velocity of

the line joining them at time /, and show that this angular velocity is

greatest when
au -t-

,

(Lond. B.Sc, Pass, Applied Math., 1907, ii i.)

5. If the radial and transverse velocities of a point in plane motion are both

constant, show that in time / the angle described by the radius vector

and by the direction of motion may be expressed by
^-A log fi + /?/).

76. Areal Velocity Is Constant under any Central Acceleration.—

When a moving point describes a plane curve with an acceleration
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towards a fixed point in the plane, then its areal or sectorial velocity

about that fixed point is constant. This theorem, though so simple, is

yet of such fundamental importance in connection with planetary motion

that we shall offer three proofs of it, one geometrical and two analytical.

Geometrical Proof,—Referring to Fig. 25, let the moving point have

at P a velocity u
represented by OS,
and at the very near

point Q reached in

time 8/ let it have
a velocity v repre-

sented by OT, O
being the intersec-

tion of the tangents

to the path at P and
Q. Then ST will

represent the vector

which,added to OS,
gives the resultant

OT, i e. ST repre-

sents in magnitude
and direction the change of velocity produced in time It by the

acceleration,/ say, directed towards the fixed point.

Thus a line from O parallel to ST will pass through the fixed point,

H say. Take on OH, OR= ST=/8/, and join TR, TH, and SH. Then,
if the initial and final areal velocities at P and Q are respectively U
and we have by definition and the figure

6^=AHOS
and r=AHOT.

But the triangles HOS and HOT are equal, being on the same base

HO and between the same parallels HO and TS. Therefore {/, as

was to be jiroved.

77. Proof by Moments.—Turning now to analytical methods for

a proof of the constancy of areal velocity in a central orbit, we first

recall the theorem of article 2$a, viz. that the moment of a resultant

localised vector about a point equals the algebraic sum of its component
vectors about that point, all being in one plane.

For the resultant localised vector in the present case take the

acceleration of the moving point P directed to a fixed point, O say.

Then its moment about O being zero, the sum |)f the moments for its

components, however chosen, will be zero also. As components take

the cartesian co-ordinates of the moving point P (.r, ^), the origin being
at O. Then using dots for differentiations with respect to time, we
have

(i),

O'" ^(xy-.vx)=o (»).

Whence, on integrating, constant (3).

Fig. 25. Areal Velocity Constant in
Central Orbit.



So ANALYTICAL MECHANICS [arts. 78-79

But the left side of (3) represents the algebraic sum of the moments
of the component velocities of P about O. Hence by the theorem of

moments it represents the moment about O of P’s velocity, which is thus

seen ^o be a constant. But this moment is double the areal velocity.

So, if the linear velocity of P is z/, and the perpendicular upon its

direction from O is the areal velocity about O being we have
2 F=/z;=>4 say, a constant. . . . (4).

78 . Proof by Badial and Transversal Accelerations.—Recalling

now the expressions obtained in article 74 for the radial and transversal

accelerations, we can easily give another proof of the constancy of areal

velocity in the description of a central orbit. Thus from equation (6)

of article 74 we have for the transversal acceleration

= ( 5 ).

But this quantity is here zero, because the acceleration is wholly

radial. Also the right side has in the brackets which is twice the

areal velocity. Hence with the former notation (5) becomes

In other words, the areal velocity is constant, as shown by equation (4).

79 . Differential Equation of Orbit.—Consider the case where a

point P moves in a plane under an acceleration of numerical value f
di’’ected towards a fixed point S in the plane, and let it be required to

find the differential equation of its path or orbit.

We again use the equations (5) and (6) at the end of article 74, which

for our present case become, S being the origin ol r,

(i),

r0~{-2r0=^o (2).

The second of these, as we have previously seen, gives at once

(3),

^ being the constant value equal to double the areal velocity of P about

S. But these equations contain the variables r, 9y and /, from which we

must eliminate t. Thus
dr__dr ^ (A

Now introduce the new variable Uy defined by

u^ijr ....
so that du^’-drjr'^ and —duju*.

Then (4) becomes
r'=-—hduldO ....

(5

)

,

(
6

)

.

So, on differentiating again, we obtain

r=---h{(Tuide^)e=^h^u\(Tuide^) . (7).

Hence (3), (6), and {7) substituted in (i) give

(Tu

~dd^
-hu = f

(
8),



ARTS. 8o-8r] PLANE MOTtONS OP A POtNT 8i

the differential equation required, in which ilu{— r) and 0 are the
polar co-ordinates of the orbit and / is the acceleration towards the
origin. Thus when / is given in terms of u the orbit can be deter-

mined. Or, on the contrary, if the orbit is given, the form of / as a
function of r can be found. We shall return to these cases a little

later.

80. Curvature of Orbit —Suppose we now wish to obtain an expres-
sion for the central acceleration in terms of the areal velocity, the radius
vector, and the perpendicular /
upon the tangent. For this pur-

pose we need to use the relation

rdr=pdpi where p is the radius of

curvature of the orbit at the point

defined by r and p. This relation

is proved in text-books on the cal-

culus, but because of its import-

ance, and also to save references,

it will be briefly given here also.

Thus, referring to Fig. 26, P
and P', apart, are consecutive

positions of the point describing

the orbit under acceleration to S,

SN IS the perpendicular p on the

tangent, C the centre of curvature

of the orbit at P, </> the angle be-

tween the radius vector SPR, and
the direction NPT of the poinPs

motion, 8 \p the angle subtended at

C by PP'. Then Irom the figure we have the following five relations :

—

p=rsin 4i (i),

— B\l/= 8slpy PM= ;60= (sin cos (2)

Thus, by differentiating the first and using it and the others, we
obtain

dp= r cos fji dif>-\-sin dr^r cos f^{d\p'-dB)-^{plr)dr

or pdp—rdr . . . (3),

as was to be shown, thus giving the curvature in terms of r and pP

81. Formula for Central Acceleration.— Referring again to Fig 26,

we see that the normal component along PC of the acceleration / to S

is given by
c=/sin

or, using (i), c=fplr (4).

^ Or more briefly thus and dracSscos <p ,
hence dpjdr’^rdxpjds’^^rfp.

Fig. 26. Curvature of Orbit.
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But in article 69 equation (2) showed that

^=®yp (5)-

Thus from (4) and (5), and writing as before = we have

fPlr=y'lp=h^lp^P, so \.haxf=±k'‘rlp'p. . . (6),

the plus and minus signs being used to suit cases of either curvature

Further, using in addition equation (3) of article 80 we obtain

equations (6) and (Sa) being the desired expressions giving the central

acceleration in terms of the areal velocity, radius vector, and perpendi-
cular on tangent.

82 . Velocity in Orbit.—In Fig. 26, let the osculating circle to the

orbit at P cut PS (produced if necessary) at K, and let PK be denoted
by q. It is called the chord of curvature in the direction of the accelera-

tion. We see from the figure that its length is given by

PK=2CP cosCPK,
or q= 2psin(li=2pp/r (7).

Now by (4) and (5) of article 81

v'=fpplr (8 ).

Hence z;’=^/2= 2/(<7/4) . .... {9).

But this is the velocity acquired from rest under an acceleration f
while passing over a space qj^. Hence the velocity of the moving
point when at P in the orbit is that which it would acquire by moving
from rest under a constant acceleration f equal to that at P, through

a space equal to one quarter o the chord of curvature in the direction

PS.

Examples—XVIII.

I. Show, both graphically and analytically, that under central acceleiation

of any law the sectorial velocity of the moving point about the centre

of acceleration is constant.

2 Obtain the differential equation of the orbit described by a point under
central acceleration of any law.

3. Derive an expression for the curvature of an orbit in terms of the radius

vector r and the perpendicular from the centre of acceleration on to the

direction of motion of the moving point,

4. Establish a formula giving the central acceleration in terms of the con-

stant sectorial velocity, the radius vector, and the perpendicular upon
the tangent. Also show that the dimensions of the expression so

obtained are those of a linear acceleration.

5. Find a general relatidli between the velocity of a point describing any
orbit and the chord ofcurvature in the direction of the acceleration.

6. * A point moves so that the radius vector describes equal areas m equal

times. What may be inferred as to the acceleration under which the

path IS described ?

‘ If the path is an ellipse, and the centre of force is the centre of the curve,

show that the eccentricity is -{V'/V)^] where V, V' are the maxi-
mum and minimum velocities m the oroit.’

(Lond. B.Sc., Pass, Applied Math., 1906, ii. 4.
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83 . Orbits under Natural Law.—Let us now consider the orbits

which may be described under the natural law of central acceleration,

VIZ.

/cx:i//-% or/=/xf^® (i),

where /x is a constant, u being as before equal to i/r.

Then the differential equation of the orbit, given by (8) of article

79, may be written

—-^^4^ )
= o (2).

Then, by comparison with article 29, we see that the solution may
be written

u-iilA'=Acos{e-y) (3 ),

in which A and 7 are arbitrary and depend on the initial conditions.

Thus, on writing

(4),

and using e for —A/^ we may transform (3) into

ilr= I -e cos (d-y) . (5),

which is the well-known polar equation of a conic, the focus being the

pole, / being the semi-latus rectum, and e the eccentricity.

Thus, for the natural law of central acceleration, that of the inverse

square of the distance, the orbit is a conic; but whether an ellipse,

a parabola, or a hyperbola depends upon whether the value of e is less

than, equal to, or greater than unity. And the value of e depends in

turn upon the initial circumstances of the motion. Before, however,

discussing this further by the purely analytical method, let us take

another and more geometrical point of view, applying the hodograph
to the problem of planetary orbits.

84 . Natural Orbits by Hodograph, which is a Circle.—To show
that the hodograph is a circle we have to prove that its curvature

dypjds is constant. We accordingly need the values of and the

element of the curve and the angle between the tangents at its

Fig. 26a. Corresponding Elements of Orbit and Hodograph.

extremities. By the principle of the hodograph (article 70) the element
of its arc described in time 8/, shown by QQ' in Fig. 2 6a, repre-

sents in magnitude and direction the change of velocity of the point in
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that time 8/, and while describing the corresponding element PP' of

the path. Thus, for our present case, we havj the relations

Sj=/8/=/iS//r* (6),

wheref is the acceleration along PS.

Further, since each element of the hodograph is parallel to the

acceleration obtaining for the corresponding portion of P, the tangent

to the hodograph at Q in our case is parallel to the radius vector

PS=r. Thus QF and PS both change direction with the same
angular velocity 0 . But, by article 76, the areal velocity Jr® (9 of

P about S is constant=y4/2 say; hence the angular velocity of the

radius vector and of the tangent to the hodograph are each given by
6=zhlr'. Thus, in the time element 8/, the angle 5^ through which

the tangent QF to the hodograph turns is

S^=^8/=/t8//r* (7).

Hence, by (6) and (7), the curvature and radius of curvature of the

hodograph are respectively

5 i/'/8^=^//x= i/p and (8).

But these values are constant. Hence, for orbits described under a

central acceleration proportional to the inverse

square of the distance, the hodograph is a
circle.

The pole of the hodograph may, however,

be inside the circle, on the circumference, or

outside.

Suppose first the pole to be inside, as re-

presented by O in Fig. 27, and consider the

point Q on the hodograph.
Tnen AQ, the radius of the circle, is p^zfxjh;

the velocity of the point in the orbit;

QF, the velocity in the hodograph, is the ac-

celeration f of the point in the orbit, and so is

parallel to the radius vector.

Thus we see that the velocity v in the

orbit, represented by OQ, may be regarded as the resultant of two
parts OA and AQ, each constant in magnitude, OA being fixed in

direction also ; while AQ, always perpendicular to the radius vector,

moves round, Q describing the circle, while the actual point P describes

the orbit. This consideration is very useful in the graphical treatment

of certain problems.

85 . Orbit a Cpnic.—We may also resolve the velocity io a

different manner. Thus, in Fig. 27, let fall OM perpendicular to

QA, produced if necessary
;

also make QN perpendicular to OAN.
ITien OM represents that component of the velocity of the point P
which is parallel to FQ. But FQ is parallel to the radius vector to P,

Hence OM represents the speed with which the radius vector changes

in length. Or, in symbols
OU^drjdt (9).

Fig. 27. Circular
Hodograi'H for
Planetary Orbit.
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Again, NQ represents the component, perpendicular to the fixed line

OAN, of the velocity of the point P in the orbit. So, if the co-ordinate

of P perpendicular to OAN is denoted by y, we have

^(l^dyjdt (10).

But we see by the figure that

OM/NQ=OA/AQ= a constant, ^ say . . • (n)-

Thus by (9), (10), and (ii)

drfdy^^e ( 12 )

So, on integrating, we have

(13),

showing by the focus-directrix property that the orbit is a conic, b

being the constant of integration. It is clear from (13) that this conic

is an ellipse, a parabola, or a hyperbola according as e is less than,

equal to, or greater than unity; or, by (ii), according as O is within

the circle, on the circumference, or outside it; that is to say, according

to the velocity OQ at a given instant.

86. Alternative Proof that Natural Orbit is a Conic—We can

also show that the orbit is a conic by use of the properties referred to

at the end of article 84, viz that the velocity of P is resolvable into

two parts each fixed in amount,

one in direction also, and the

other always perpendicular to

the radius vector.

Thus, in Fig. 28, let P be

the point descnbing the orbit

under acceleration, /=/a/r*,

directed to S, the origin of

co-ordinates. Let PV be the

velocity V of P. Then it may
be regarded as consisting of the

two parts PA' and A'V, equal Fig. 28. Planetary Orbit is a Conic.

and parallel respectively to OA
and AQ in Fig. 27. Hence, if VN' is let fall perpendicular to PA'N',

which is parallel to SX, we see that z. VA'N'= l PSY'=/? say, A'V=
p, PA'=<fp. Thus, if X and y are the co-ordinates of P, x and y the

components of its velocity, we have by the figure

i:= PA' -f A'N'= PA' -h A'V cos /3,

or x=p{y—ylr) ... f . . . (14).

Also yz=:N'y= pxlr (15).

Thus, since (16),

we have, by differentiation and use of (14) and (15),

rr=XX -\~yy= xpe= ery,

or (17)-

So, by integrating, we have as before

r^fy-^^b ( t 8 ),
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giving the orbit as a conic by its focus-direc*rix property, d being the

constant of integration.

A comparison of Figs. 27 and 28 shows that the line OAN in

the hodograph is parallel to the directrix of the conic, and therefore at

right angles to its axis.

87. Hyperbolic Orbit and its Hodograph.—From what we have
seen as to the relations of the hodograph and planetary orbits, it is easy

to draw the two diagrams and mark off on them a series of positions

for the points Q and P that correspond to each other. So for the

simpler cases of the ellipse and parabola this exercise will be left to

the student. But, because of its special interest in one particular,

the pair of associated

diagrams will be given

for the case in which
the orbit is a hyperbola.

Fig. 29 represents

this case, for e=2y so

the equation of the hy-

perbola

v’ __

becomes

= i . , (19).
a* 3a“ '

Also, the semi-latus

rectum l—a{e^ — i) be-

comes 3n, and the
asymptotes are

J=±^X=± ^sx(20),

and therefore make
angles of 60° with the

axis of X.

The P’s with sub-

scripts on the hyperbolic

orbit correspond with

the Q’s with the same
subscripts on the circu-

lar hodograph in the

lower part of the figure,

whose pole is O, where OA equals twice the radius of the circle.

It will be seen that the right branch of the hyperbola is described

downwards by P, while the lower part of the hodograph from Lj to

L, is described counter-clockwise by Q. This is effected under

acceleration towards S. Then, while Q describes the upper part of the

hodograph (again between the tangents from O) still counter-clockwise.

Fig. 29. Hyperbolic Orbit and Hodograph.
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P describes the left branch of the hyperbola still downwards. But it

will be noticed that the smallest value of the speed of P is reached at

Pi, corresponding to OQs. Hence this left branch is described under
accelerationfrom S. Indeed, this may be seen directly from the figure.

For, not only is the tangent at any P parallel to the corresponding OQ,
since both represent the velocity of P ; but also the tangent at any Q is

parallel to the corresponding PS (or SP), since both represent the

direction of the acceleration. For example, the forward tangent at Q«
represents the acceleration in the same direction from S to P*. Thus
the full lines in orbit and hodograph correspond to attraction to 5",

whereas the broken lines in each curve correspond to repulsion from S

Examples—XIX.

1. Assuming the differential equation for an orbit described under central

acceleration, prove that for the natural law the orbit is a conic. State
also what decides the type of the conic.

2 Prove that for a planetary orbit the hodograph is a circle.

3. Having given that the hodograph is a circle, show that the planetary orbit

IS a conic.

4 With pins at the foci and a loop of thread round, draw an ellipse of

eccentricity 1/2 to represent an orbit. Draw also the circular hodograph,
mark its pole, and indicate several pairs of corresponding points on the

orbit and hodograph.

5. Draw as carefully as you can the two branches of an equilateral hyperbola
to represent possible orbits, and show the corresponding hodograph.

Explain under what conditions each branch of the hyperbola mav be
described and which parts of the hodograph apply to each such orbit

6, Draw a circular hodograph and the corresponding parabolic orbit, marking
corresponding pairs of points on each.

88. Initial Conditions.—Let us now return to the general solution

in article 83 of the differential equation of an orbit under the inverse

square law and determine the arbitrary constants e and y which depend
on the initial conditions. We
rewrite the solution in the foim

(see equations (4) and (5) of

article 83)

.
(i).

Let the initial conditions

be

—

For 0= 0, i/«=r=<r,'

and velocity of P=
,

^
Vo at angle P with

’

radius vector

This initial state is repre-

sented in Fig. 30, in which SP
is the initial position of the fk;. 30. Inhiai. Conditions of
radius vector of length r, PV Orbual Moiion.

represents the velocity Vo^ mak-
ing the angle KPV= /t?, Q is the position of P after the time 8/, and
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PM is a perpendicular let fall upon SQ, so that MQ/MP=cot ^
nearly.

Then by reference to the figure and definition of areal velocity we
have

.

h=v^c%\u^ (3).

Again, by (2) in (i) we have

j=£^(i-«cosy) (4).

Thus (3) and (4) give on elimination of h between them

z^Jcsin*/?— cos 7 . . (5).

We now need another equation giving e sin 7, then we can solve for

e and 7 as required. Referring to Fig. 30, we see that MQ is and
,thus IS equal to — or since r is initially c. Again, MP=

therefore we have

MQ/MP=cot

/

3= — (6).

But from (i), by differentiation, we obtain

^=|'/sin{fl-y)=:-^«smyfor6>= o . . . (7).

-=^-,.sin7 (
8 ),

Hence, from (6) and (7) we obtain

cot /S __fM

c
~

Thus, using (3) again to eliminate h we find

e^sin ^cos sin 7 (9)

So on squaring and adding (5) and (9) we have

I

^o^Sin^^ 2vlcs\X\^P
'

e — iH a
>

2 ^0/ (lo)*

or , + J

Also, taking the quotient of (9) by (5) we find

(ii).

Thus it follows from the second form of (10) that the conic is an
ellipse, parabola, or hyperbola

according as < ,
= ,

or>~ .
• (i»)-

89 . Velocity and Period in Elliptic Orbit.—When the orbit is an

ellipse of semi-axes a ana b we have the semi-latus rectum given by

l=a(j-e‘)= h'li>. (13).

Thus, by (3) and (13) we find

But by (10)



89ART. 90] PLANE MOTIONS OF A POINT

Hence, equating the right sides of these we obtain

(14)-

As we may consider any point in the orbit the point of projection,

we have for the linear velocity v at any instant when the radius vector

has the value r, the expression

'•-0-1) (5)-

Again, the period t of describing the ellipse is area divided by areal

velocity Thus using (13), and remembering that = —<?*)= a/,

we have
Trab 2Trab 2 'trab

nZ/I? \//x (16),

or T cxa*f

for /A constant

By putting (15) in (16) to eliminate the semi-axis-major a, we find
3 2 8

(17).
{2^—rV^y *

• * •

showing that the periodic time is independent of the angle of projection

(/? of last article) provided the conditions are such as to give an elliptic

orbit.

90. Focal Acceleration, Period, and Velocity for an Elliptic Orbit.

—We have considered the orbits possible for a central acceleration

varying as the inverse square of the distance.

Let us now regard the matter from the other

standpoint, and supposing that a point is

known to describe an ellipse with constant

areal velocity about a focus, let it be re-

quired to find the direction and law of the

acceleration. This gives the essential features

of the astronomical problem of the elliptic

orbit of the earth round the sun.

Thus, let the ellipse in Fig 31 represent

the orbit of semi-axes a and semi-latus

rectum /, and let c denote the semi-diameter

CD conjugate to CP, and p the radius of

curvature at P. Draw the tangent at P, and let fall upon it from the

foci S and S' the perpendiculars SY and S'Y' of lengths p and
respectively. 4

Then, by the known properties of the ellipse, we have
p=zc*jaby pjr—p'lr\ pp' ^b'^y b^^aly andr4-r'=:2a . (i8).

Fig. 31. Focal Accei era-
TiON FOR Elliptic

Orbit.

Thus (,9).
r r \ rr c

Also if /t/2 is the constant areal velocity of P about S, and f the

acceleration directed to S, we have by equation (6) of article 81, and
using (18) and (19),
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^ pp^ \^)\ErV~Ef^- I
(20).

where /Jt is written for A®//.

Thus the acceleration is directed towards the focus S, about which
the areal velocity is constant, and is seen to vary inversely as the square
of the radius vector from that focus.

Period.—For the period t of description of the orbit we have

• (2»)-

_^2Tra ^al_ 2 rr

Velocity.—Also, remembering that J>v=hj and using (18), we have
for the velocity at any point in the orbit

^
H I pp' r' 2(2—

r

p ^p ^ap ^ap ar ^ ar

or • (22).

as previously found in equation (15) of article 89. This result may
also be easily obtained by using pv^h and the tangential-normal

equation for an ellipse, the focus being a pole, which is

/ __2 I

~p’^~~ r a

It may be noticed that articles 69, 76, 81, 84, 85, 87, and 90 give

the more elementary parts of central accelerations in a form practically

free from the calculus. It may, therefore, be an advantage to some
students to take these articles consecutively, omitting the other parts

till these are understood.

90a. Simultaneous Elliptic Orbits.—Although an intrusion upon
the pure kinematics with which the present part of the book is con-

cerned, it is perhaps as well to note here that, strictly speaking, we
have not in nature a point S occupied by one body void of acceleration

while the other body at P describes an orbit round it On the con-

trary, the acceleration of the body at P should be reckoned with respect

to a point G on SP, and then the body at S has also an acceleration

towards G which may be regarded as at rest. Further, these two

simultaneous accelerations are proportional to the segments into which

SP is divided. Thus at any instant the acceleration of P towards G is

to that of S towards G as GP is to GS. And each acceleration is in-

versely proportional to <he square of SP as it changes from instant to

instant. Hence we have in any actual case an ellipse described by S

about G as a focus, while P describes the similar ellipse also about G
as a focus.

In the case of the sun and the earth or other planets G almost

coincides with S. Assuming this to be so, we have the acceleration

/x/r* for any of them, and consequently from equation (21)

T*ocfl'* . (220:),

which is orie of Kepler's laws symbolically expressed. In the case of
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equal double stars G »vould be midway in SP. These points may
receive further attention when we deal with attractions in Chapters xi.
and XVI.

91. Focal Acceleration for any Conic.—Let the polar equation of
the conic be

/«==i— e cos^ .
. (23),

I being the semi-latus rectum, u the reciprocal of the radius vector r,

and e being the eccentricity, and let it be described with areal velocity
hj2 about the pole. Then we have, on differentiating,

,(Pu
i ^^=gcosd.

So
. (24)

But by equation (8) of article 79 the left side of (24) equals fjNu^
where/ is the acceleration directed to the pole or origin.

Thus

that is, the acceleration vanes inversely as the square of the radius
vector independently of the value of and therefore this is the law
whether the conic is an ellipse, parabola, or hyperbola.

Examples—XX.

1 Discuss the initial conditions of a point describing an orbit under central

acceleration of the natural law, and show how to determine the type of

conic described and its orientation.

2 Prove that when an ellipse is described with constant areal velocity about
a focus the acceleration is directed to that focus and varies inversely as

the square of that focal distance.

3 Obtain expressions for the velocity at a point m an elliptic orbit under
focal acceleration and for the period.

4. Derive expressions for the velocity at a point in a parabolic orbit and in

a hyperbolic orbit

5.
‘ If the velocity of a planet describing a circular orbit about the sun be
suddenly diminished by a slight amount, show by a figure the relation
of the new orbit to the old one.

‘ Will the periodic time be increased or diminished? ’

(Lond. B.A., Pass, Applied Math., 1906, 1 lo.)

Ans. Point where the velocity is checked becomes the end of the
major axis of new elliptic orbit, the sun being at the distant focus.

The periodic time is diminished according to the expression

’'/'>'o”(2 v^lvo)~^^^ j
where the subscripts o refer to original period and

velocity.

6. ‘Prove the formula for the velocity at any point of an

elliptic orbit described under a central acceleration n (distance) K Ob-
tain corresponding formulae for parabolic and hyperbolic orbits described
under the same attraction.

‘Show that, if a parabolic orbit and rectangulai hyperbolic orbit have
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1

the same latus rectum, the velocity at the epd of the latus rectum is

V3/2 times as great m the latter case as in the former.’

(Lond. B.Sc., Pass, Applied Math
, 1908, 11. 4.)

7. ‘Investigate the law of foice tending to the focus under which an ellipse

may be described, and show that the periodic times in the orbits de-

scribed by particles projected from the same point with the same
velocity are equal.’

(Lond. B.Sc., Pass, Applied Math
, 1909, 11. 4.)

8. ‘A particle P describes a parabola under the action of a force tending to

the focus ; determine the law of force, and prove that the kinetic energy
IS inversely proportional to the distance from the focus.

‘ Prove also that, if M is the foot of the perpendicular from P on the

directrix, the motion of M is the same as that of a particle constrained
to slide without friction along the directrix and atti acted to the focus by
a force proportional to the inverse fifth power of the distance from the

focus.’

(Lond. B.Sc., Pass, Applied Math
, 1910, ii. 4.)

91a. Alternative Proof for Velocity in Elliptic Orbit.—If already

conversant with the kinetics and attractions of particles, the student may
prefer to proceed as follows. By the conservation of energy it is known
that the sum of the kinetic and potential energies of the planet is con-

stant And, by (12) of Art. 355, the latter is — where m is the

mass of the planet. Thus

constant, or

(i).
r

To evaluate the constant C, take the instant when the planet is at an
end of the minor axis of the elliptic orbit and when therefore r=a.
Then, sincepv^h^ we have by using some properties of the ellipse

().

Whence
;
and putting this in (i) we find for the required law

of velocity,
<3 )-
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CHAPTER VI

PLANE ROTATIONAL MOTIONS

92. Uniform Angular Acceleration.— Consider an assemblage ot

points in a plane, each of which moves in the plane with the same
uniform angular velocity <u about the same fixed axis perpendicular to

that plane, no other motion but this being possessed by such point.

Then obviously the relative distances of any of the pairs of points

would remain unchanged. Further, if this common angular velocity

were changed in any way to some other value w
,
so that at each instant

Its value was the same for every particle, still the relative distances of

the particles would be unchanged by the motion about the axis. Such
an assemblage of particles under the conditions named may accord-

ingly be referred to as a rigid body or system^ since it changes neither

shape nor size. Strictly speaking, no absolutely rigid bodies are ever

met with, but the conception and the term are useful, and the state of

things in question is often closely approximated to.

If the assemblage of points or particles, instead of being confined

to a plane, are distributed in solid space and all move parallel to a fixed

plane vrith the same uniform angular velocity about a fixed axi» per-

pendicular to that plane, we have, as before, a rigid system in plane

rotational motion.

Let us now suppose that a rigid body has an initial angular velocity

it)Q about a certain axis fixed with respect to the body and also with

respect to our co-ordinate axes, and let the body have also a uniform

angular acceleration a about this axis of motion. It is required to

determine the subsequent motion.

A little reflection will suffice to show that this case is closely analo-

gous to that of the rectilinear motion of a point under uniform linear

acceleration. Hence by the meanings of angular velocity and angular

acceleration (rate of increase of angular velocity) we obtain at once a

set of equations for rotations like those obtained in article 27 for trans-

lations. Thus, using 6 for angle described in time / and repeating the

former equations, we have the two analogous sets as follows ;

—

Translations, j^oiattons,

t/ssVo-j-at (DssWo-i-at . . . (i),

S^ssVot+iaP 6 =:a)^t+iap , , (2),

t;*= z;j-|-2n!5 to’srtuj-f 2a^ . . (3).

Further, if the perpendicular distance of any particle from the axis

of rotation is r, it is obvious that the relations between its linear and
angular displacements, velocities, and accelerations may be written

r=j/^sat«?/«ss;a/a .... . . (4).



94 ANALYTICAL MECHANICS [arts. 93-94

These equations accordingly serve to solve any problems concerned
with the uniform acceleration of rigid bodies about a stngk axis fixed
both in space and in the body

93.. Angular Acceleration proportional to Displacement.—Con-
sider a rigid body capable of motion about a fixed axis under conditions

which impose an angular acceleration proportional but opposite to its

angular displacement Then, using dots to denote differentiation

with respect to time, we have for the equation of motion

,(i).

The solution of this (see article 29) may be written

^=^osin(//-|-€) (2),

in which and c, the amplitude and phase angle, are to be determined

by the initial conditions as shown in article 30.

We thus see that the motion performed under the specified con-

ditions is a simple harmonic rotation of period given by

T= 27r// (3).

Examples—XXL
1. With angular acceleration 2 radians per sec ^ find (i) the angular velocity

5 sec. after it was 3 radians per sec.
; (2) the angle described in that 5

sec. ;
and (3) the increase in the square of the angular velocity while

one revolution is described.

2. If the angular velocity of a rigid system about a fixed axis increases from
12 to 13 radians per sec. while it turns through 2\ radians, what was the

angular acceleration if uniform.?

3 Find the time required to describe 28 radians with an initial angular
velocity of 3 radians per sec. under nn angular acceleration of 2 radians

per sec *

4. A rigid figure turning about a fixed axis is subject to angular acceleration

- 9 times its angular displacement. If displaced through 30” and let go,

what will be the subsequent motion ?

94 . Composition of Ooplanar Rotation and Translation.—The
composition of rotations about a given fixed axis is clearly a matter of

algebraic addition, so may be dismissed without further remark. But

the case of a rotation or angular displacement, and a translation or

linear displacement, requi»-es consideration. Thus, in Fig 32, let the

linear displacement or translation of a point A in the body be AA' =5“,

and let the angular displacement or rotation of the body be Q also in

the plane of the diagram.

Construction.—Bisect AA' in M, and draw MR and AC at right

angles to AA'. Also draw AB, making the angle — ^/2 with AC, and

produce BA to meet MR in R. Draw RA'B'. Then A'B' is the new
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position of the line in the body originally at AB. That is, A'B'
represents the effect on AB of the rotation and translation which were
to be compounded.

^

Eroof.—By construction

RA'= RA, and is inclined at

an angle 0 with it Hence by
rotation about R, the line AB
moves to the position A'B', in

which the point K has the

prescribed translation AA'=i^, ^

and the line AB has the pre-

scribed rotation BRB'= 0 .

We see by the figure that

s/2—MK tan ^/2= ARsin0/2,
and that the angle MAR is

the complement of ^/2. ^2. Rotation and Translation
Compounded.

95. Instajitaneous Centre of Rotation: Bolling Motion.—The fore-

going example of composition shows that a coplanar rotation and trans-

lation are equivalent to an equal pure rotation about a particular fixed

point. Thus, as regards initial and final positions, any prescribed dis-

f

ilacement in a plane may be regarded as a rotation about some point

In the special case where the motion is translation only this point is

at infinity.) Hence, by taking the steps small enough, we may approxi-

mate to any motion in a plane by a series of motions, each of pure
rotation, about certain points. Each such point, while in use, is called

the instantaneous centre of rotation. Thus any finite motion of a rigid

system in a plane could be regarded as a series of infinitesimal rotations

about an infinite number of instantaneous centres of rotation. The
locus of the instantaneous centre forms a curve in the plane called the

space centrode. Its locus in the rigid body or system forms another curve

called the body centrode. Thus, the instantaneous centre of rotation may
be regarded as the point of contact of the space centrode and the body
centrode. Hence the whole motion of the body may be represented as

the rolling oi the body centrode on the space centrode, and this con-

ception IS often of great value. Thus, as the rolling proceeds, that mathe-
matical point called the instantaneous centre has in general a velocity

both in space and in the body. But the point in the body which for the

instant coincides with the instantaneous centre, has for that instant no

velocity either in space or in the body. And this distinction must be clearly

grasped. As an example, in Fig. 16 of articL 58, consider the circle

EPDF as rolling along the straight line AEB, and let its centre advance
at uniform speed u. Then AEB is the space centrode and EPDF the

body centrode. Also E is the instantaneous centre of rotation in the

position of the figure. And clearly the point E will advance along the

straight line and along the circle with uniform speed u. But consider

now the point P, fixed with respect to the circle and carried with it so

as to reach B, a cusp of the cycloid which it is describing as the circle
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rolls. Then we see that B is always at rest m space, that P is always at

restwith respect to the circle, and, when it reaches B, the point P is at rest

tn space also. For it is then at the cusp of the cycloid, and is at the pause
before describing the next branch of the curve. But, although E moves
along, the straight line at the uniform speed without any check or
pause, It passed through B

j
ust when P coincided with it. And as soon

as E has got beyond B, P has moved perpendicularly away from AEB,
and so has ceased to coincide with the instantaneous centre Thus P’s

first motion, after the pause at B, destroyed its claim to be the instan-

taneous centre, because it took it out of contact with the line AEB.
If the rigid system extends into the three dimensions of space, but

all the motions are still parallel to one plane, it is more fitting to speak
of the instantaneous axis ofrotation, and of the space axode and body axode^

which are the loci in space and in the body of the instantaneous axis.

96 . Analysis of Plane Motion of a Bigid Body.—In article 94 we
dealt with the composition of a rotation and a coplanar translation.

Let us now take a different aspect of the matter and, the initial

and final positions of a line in

the system being specified, find

the centre of rotation, also the

equivalent rotation and transla-

tions.

Thus, in Fig. 33, let AP and
A'P' be respectively the initial

and final positions of a line in

the rigid body Join A A', bisect

It in M, and draw MS at right

angles to AA'. Then obviously

the centre of rotation must lie

in MS Similarly by joining PP',

bisecting it in N', and mak-
ing NT at right angles to PP',

we have another line on which

the centre must lie.

It is accordingly at R, the

intersection of MS and NT. We may therefore describe the motion

from AP to A'P' as a rotation about R through the angle ARA'=
PRP'=PAQ, where AQ is parallel to A'P'. But we may also

describe the motion from AP to A'P' as either (i) a rotation

through the angle PAO about A together with a translation of A from

A to A'; or (2) a rotation through the angle PAQ about jP together

with a translation of t from P to P'.

Fig. 33. Analysts of Plane Motion
OP A Rigid Body.

When AA' and PP' are parallel, the above construction for R
obviously fails. In this event two cases arise according as AP and

A'P' are parallel or not. In the latter case, illustrated by Fig. 34, R is

found as the intersection of AP and A'P'.

Whereas when the initial and final positions of the lines are parallel

as well as those which represent the displacements of their ends as
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AP and the dotted, line A'P" in Fig. 34, the centre of rotation is

at infinity, viz. at the inLersection of MU and SV, the perpendiculars
through the middle points of AA' and PP". In other^words, as is

obvious, the motion in ques-

tion is one of pure translation

only, the displacement of each
point being ecjual to AA' or

PP'.

If the character of a rigid

body’s motion is variable, it

is obvious that the instantane-

ous centre of rotation lies in

the line which bisects at right

angles any known small dis-

placement of a point in the

body. Thus, the intersection

of two such lines gives the

instantaneous centre of rota-

tion. A consideration of the

circumstances of the case, or

repeated constructions, then
determine the space centrode

as the locus of this centre.

The body centrode is often

found most easily by * fixing ’ the body and supposing the ‘ space ’ to

move.
Examples of the application of these principles will be found in

connection with mechanisms treated in Chapter ix.

Fig. 34 Special Construction for
Centre of RofATiON.

97 . Composition of Linear and Angular Velocities.—Velocities,

whether linear or angular, being the rates of increase of the corre-

sponding displacements per unit time, the results obtained for the

composition of translations and rotations still hold, but admit of some
simplification when the velocities in question are instantaneous ones

and not mean velocities merely.

Thus referring to the end of article 94 and supposing that in

Fig. 32 the line AA' shrinks to the infinitesimal element ds described

in time <//, we have

ds/2 — ARd0l2 and MAR= 7r/2 nearly.

So, if the linear and angular velocities are respectively v and o>, we
obtain

dsIdt^ARdBjdt,

or AR =?;/<*>.

That is, the resultant of an angular velocity <d about a given axis

and a linear velocity v in the perpendicular plane is an equal angular

velocity u> about a parallel axis distant zz/w. such distance being per-

pendicular to that of the linear velocity v and in the direction shown
in Fig. 32.

We see that if v is in the positive direction along the axis of y and
r.
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0) denotes the positive rotation in the plane of xy^ that the distance

AR is in the negative direction along the axis of x.

Conversely, any given angular velocity w (say in the xy plane) may
be resolved into an equal angular velocity about a parallel axis distant

p (say' positively along the x axis), together with a linear velocity

4-/(1), perpendicular to the axes of rotation and to the direction ofp
{i.e. positively along the^ axis).

The student should carefully note that although he is provided with

the power of compounding a translation and a rotation into an equal

rotation about some other point, it is not advisable in every case to use

It. On the contrary, it will sometimes be found preferable to solve a pro-

blem by directing attention to the specified components of translation and
rotation especially if accelerations be required. (See Examples

—

xxii.)

98. Composition of An^ar Velocities about Fixed Parallel

Axes.—Let us now determine the resultant of two component angular

velocities and o), about parallel axes which intersect the perpendicular

plane at A and B a distance p apart. Take a point C on the straight

line joining AB, and consider the motions there. Then by the previous

article we have
w, about A= a>x about C and linear velocity (-feu,.AC) perpendicular

to AB,
also <Ua about B= (u^ about C and linear velocity (— Wj.CB) perpendicular

to AB.
Now let C be so chosen that the linear speeds there are equal as well

as opposite Then we have as the resultant motion an angular velocity

about C of value
<u= (Ui+ a)3 (i),

C being defined by AC (u,=CB cu,, or

AB
U)j (U, <Uj-f(Uj

'

And, if other points are taken in the plane, it will be found that the

motions due to the resultant angular velocity about C is the resultant

of the motions due to the component angular velocities about A and B.

It should be carefully noted that these results do not apply to

successivefinite angular displacements but to simultaneous velocities*

99. Linear and Angular Accelerations.—As, in article 97, we
passed from linear and angular displacements to the corresponding

velocities, so we may pass from velocities to accelerations, the same
laws of composition and analysis still holding true.

100. Analsrtical Treatment of Ooplanar Motions.—Let us now
treat the coplanar motions of a rigid system or body analytically.

Referring to Fig 35, let the motions occur in the xy plane, let x\ y' be
the co-ordinates of a definite point O' in the body and x^ y those of any
other point P. Take also axes O'X' and O'Y' meeting in fixed in

the body and moving with it. Also let P have co-ordinates | and
referred to these moving axes O'X' and O'Y', and at time t let these axes
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be inclined at the angle ^ with the fixed axes OX and OY. Then we
have from the figure

cos rl^—rjsin 4'* cos

Thus, by differentiation, remembering $ and rj are constant, we obtain

(^sin ^+iycos

and jJ=y4“(f cos ^— t/sin ^)a»J
• • \

Fig 35. CopLANAR Motions of Rigid System.

where angular velocity of body about a perpendicular axis

through the point xy. These may be put in the form

i= (y—y)(o' andj/=/+(:ii:— y)iu' . . . . (2).

These show that the velocity of the point xy is made up of two parts,

viz. (1) one of translation expressed by x and y\ and (11) one of

rotation in the xy plane about the point x'y' with velocity a>', expressed

by — y)w' along the x axis and H-(^— along thej' axis.

For any other definite point O'' in the body, having co-ordinates

jc'^, y"j we have similarly

x—x"^{y —y''}<i>'' and ji>
—y' 4- x')(a" . . . (3),

w" being the angular velocity about the point (x^y"),

values of in (2) and (3) and those ofy we obtain

Equating the

. . (4).and y ^y'-\-(x'-^x ')(!>" •~-(X'^x')((ii^’ (o'))

But, by analogy with (2) and (3), we see that

X = x"—{y ~‘y*)(o"
\

. (5).and y=y"-\’{x'—x')(o'j

Hence comparing (4) and (5) we see that

0)"—-cd'—cd say . . (
6).

Or, in words, the angular velocity is the same whatever the point

through which the axis is supposed to pass.
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The linear velocity of the axis, on the other hand, depends upon
the position of that axis. Thus from (5) and (6) we have

and
X — 4* ( y

' —
- o\

( 7 ).

101 . Instantaneous Centre; Body and Space Centrodes.— By
putting ^=j>= o in equation (i) we obtain the co-ordinates of the

instantaneous centre of rotafion R referred to the axes X'OY' fixed in

the body. Thus, calling these co-ordinates fo and ?/o» and remembering
(o'= (i>, we have

^0 sin -{->](, cos^l^=xl<o

and ^0 cos 1/'— Vo sin

whence = {x sin cos V^)/w\

,
and >?o= {x cos -f-y sin ^)/o>

/ ^ '

Similarly, putting x=y=o in (2) and writing and y^, for the

corresponding values of x andj', we obtain the co-ordinates of the

instantaneous centre R referred to the axes XOY with respect to which
the body moves. Thus we have

Xfi=x —yfin 2L.x\d.yQ=y-\-xl(ii (9).

If x\ y, and ^ are known functions of the time f (and therefore also

x\ y, and ta), we could substitute and eliminate / between the two
equations (8), and thus determinate a relation between ^0 and rj^. This

would be the equation of the curve described by the instantaneous

centre of rotation with respect to the body. In other words, it would
specify the My centrode already referred to in article 95.

Again, on substituting the known functions of t in the two equations

(9) and eliminating t between them, we should have the equation of the

curve described by the instantaneous centre with respect to the fixed

axes XOY. In other words, we should obtain the space centrode.

102 . Summary of Coplanar Motions.—The chief results we have
obtained for the coplanar motions of a rigid body or system, together

with others which easily follow from them, may now be summarised as

follows ;

—

1. The motion of a rigid body parallel to a given fixed plane at any
instant consists in the general case of

—

(I) An angular velocity about an axis perpendicular to the plane

and passing through any arbitrary point in the body, the magnitude a»

of this velocity being independent of the position of the axis
;
and

(II) A linear velocity v parallel to the plane, the magnitude and
direction of which are dependent on the position of the axis. (See

articles 94, 96, and 97, also 100.)

2. At each instant there is, in general, an axis called the insfan^

ianeous axis of rotation^ such that the whole motion of the body is one

of rotation about it with angular velocity cu. (The intersection of this

axis with the plane in which the motion occurs or to which it is referred

is called the instantaneous centre of rotation.)

In other words, a motion of rotation only with angular velocity «>

about one point is equivalent to one of rotation with same angular
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speed (i> about another point x distant, together with a linear velocity

xoi parallel to the axis of y, t.e. perpendicular to that of x. (See

articles 95 and 10 1.)

3. Two coexisting angular velocities round parallel axes fixed in

space are equivalent to a single angular velocity equal to their algebraic

sum about an axis parallel to and in the plane of the two former, and
dividing the distance between them inversely as the component
velocities. (See article 98.)

4. Two equal and opposite angular velocities whose common
magnitude is cu, round parallel axes p apart, are equivalent to a linear

velocity /w, perpendicular to the plane of the axes. (See equation (2)

of article 98.)

Examples

—

XXII.

I. ‘ Prove that any displacement of a plane figure in its own plane is

equivalent to a rotation about some finite or infinitely distant point.
* If the figure be rotated through 90“ about a fixed point A^ and then
through 90® (in the same sense) about a fixed point By the result is

equivalent to a rotation of 180® through a certain fixed point C
;
find

the position of C.'

(Lond. B.Sc., Pass, Applied Math, igo$, ii. 4

)

2 ‘ Piove that when a lamina is moving m its own plane there is in general

one point of it which is instantaneously at rest

‘A rod moving in a vertical plane with one end on the ground
remains constantly in contact with a small peg. Construct geometiically

the tangent to the path of any point of the rod ; and show that, when
the inclination of the lod to the vertical is a, the velocity of the point

which IS moving vertically is to the velocity of the point wdnch is

moving horizontally in the ratio of tan a to unity.’

(Lond. B.Sc., Pass, Applied Math., 1907, ii. 3)
3.

‘ Es giebt fur jede Bewegung ernes Systems in einer Ebene immer zwei

bestimmte Curven oder Polbahnen, eine feste in der Bewegungsebene
und eine in der beweglichen Ebene, welche beide den Pol enthalten.

‘ Translate, prove, and give illustrations of the proposition.’

(Lond. BSc, Pass, Appiied Math., 1906, ii. 7.)

4. ‘ Explain what is meant by relative velocity and relative acceleration.

‘A circle of radius a rolls on a fixed horizontal straight line with

velocity 7/ and acceleration f. Find the accelerations of the highest

and lowest points of the circle.’

(Lond. B.Sc., Pass, Applied Math., 1907, 11. 2.)

5.
‘ Translate and prove the following statements *

—

‘Jede Bewegung einer ebenen Figur auf einer festen Ebene von der
Stellung S auf Zeit / zu der Stellung S' auf Zeit t' 1st einer einzigen

Drehung gleichwertig. Die Bewegung einei solchen Figur auf einer

Ebene kann sich als Rollen einer zur beweglichen Figur gehorigen

Kurve auf einer festen Kurve darstellen,’

(Lond. B.Sc., Pass, Applied Math
, 1908, ii. 3 )

6. ‘ Explain the terms (1) angular velocity, (11) instantaneous centie, m the

case of a lamina moving in its own plane.

‘The centre of a disc falls vertically with constant acceleration, while

the disc rotates in its own plane (which is vertical) with constant

angular velocity. Prove that the locus in space of the instantaneous

centre is a parabola.’

(Lond. B.Sc., Pass, Applied M\th., 1909, ii. i.)
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7. The centre of a lamina moves in its own plane with constant linear

speed while it rotates in its own plane wkh uniform acceleration a.

Show that the space centrode is the rectangular hyperbola xy-u^ja.
8. A ladder of length L rests on horizontal ground and leans against a

vertical wall. Show that as it moves parallel to a plane perpendicular
to the intersection of ground and wall, its space centrode is a quadrant
of radius L and its body centrode a semicircle of diameter L.

9. A joiner’s square is moved jin a plane with its blade in contact with one
fixed circle and its head or stock in contact with another fixed circle.

Show that the space and body centrodes are similar curves, the former
having double the curvature of the latter.

10 Show how to compound velocities about fixed axes parallel or inclined

II. Discuss analytically the subject of coplanar motions.
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CHAPTER VII

SOLID MOTIONS OF A POINT

103. Solid Oo-ordinates.—To represent the position of a point in

space of three dimensions, in addition to the rectangular co-ordinates

X and we may use another, 2, parallel to OZ and therefore perpen-

dicular to XOY, and thus expressing the perpendicular distance of the

point from the xy plane. We are then adopting the solid cartesian

system of co-ordinates, which is the one most frequently employed.
Taking another view of the matter, we see that this system defines

a point as the intersection of three planes respectively perpendicular to

the three axes of co-ordinates. For to say that the co-ordinates of a

point are a, and c is equivalent to saying that it is on each of the

three planes x-=^a,y=^b^ and s=^, i,e, on the planes parallel to YOZ,
ZOX, and XOY, and distant from them by the respective amounts a,

and c.

Obviously any three intersecting surfaces would define a point, and
other systems of co-ordinates are founded upon this principle. Thus,
on the polar system of solid co-ordinates a point is specified as the

intersection of a sphere, cone, and axial plane
;
on the cylindrical system

a point is given as the intersection of a cylinder with planes through

and perpendicular to its axis. But these systems will be but little used

in this work ; we leave the further consideration of them to the instances

of their occurrence,

104. Bight-handed System.— Reverting now to the cartesian

system of co-ordinates, we have still to decide which way to draw the

axis of z with respect to those of x and jk- In this work we shall adopt
the right-handed system, as uniformly adopted by Lord Kelvin for sixty

years (see Baltimore Lectures

y

pp. 445-6), and as advocated and used by
Maxwell {Electricity and Magnetismy 1873, § 23). In this system ‘the

motions of translation along any axis and of rotation about that axis*

are ‘ assumed to be of the same sign when their directions correspond

to those of the translation and rotation of ar ordinary or right-handed

screw.
‘ For instance, if the actual rotation of the earth from west to east is

taken positive, the direction of the earth’s axis from south to north will

be taken positive, and if a man walks forward in the positive direction,

the positive rotation is in the order, head, right-hand, feet, left-hand.

‘ If we place ourselves on the positive side of a surface, the positive

direction along its bounding curve will be opposite to the motion of

the hands of a watch with its face towards us.’
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Hence if (as usually seems to the writer most natural and con-

venient) the axis of x is drawn horizontally vO the right, and that of

y vertically upward on the blackboard, just as in plane geometry,

then the axis of z must be supposed to project from the board towards
the sf)ectator, and may be represented in perspective accordingly.

Also the positive direction of rotation, as always used in trigonometry,

from X to or counter-clockwise, corresponds on this right-handed

system with the positive direction of advance along the axis of z. Of
course, the axes may be turned about into any convenient position

provided their mutual relation be preserved. ‘Thus, if x is drawn
eastward and y northward, z must be drawn upward.* These two
positions are illustrated in Fig 36. Of course, they may be shown
in other ways to suit the case in hand. It should be noted that the

positive direction of rotation in any co-ordinate plane is that which
corresponds with the cyclical order of the letters indicating the axes in

Fig. 36. Right-handed Co-ordinate Axes.

that plane, as YZ, ZX, XY. Also translation along the positive

direction of the remaining axis OX, OY or OZ in each case bears the

right-handed relation to that rotation.

105 . The Straight Line—If a straight line pass through two
points {a^ b, c) and (x, y, z) distant r apart arid make with the

co-ordinate axes angles whose cosines are /, and n respectively, it

may easily be seen that we have

(jc-a)*+ (v-^)*+ («-f)’=^ (i),

x^a y^b^z—c
I m^n

and (3).

Equation (i) is useful as giving the distance between two points

whose co-ordinates are known, (2) gives the equations of a straight line

in space of three dimensions, (jc, z) being the current co-ordinates,

w'hile (3) gives an important relation between what are called the

direction cosines of the line.

This brief notice will suffice to introduce the system of solid

geometry and render what follows intelligible. For further information

recourse must be had to the text-books on the subject.
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ExAMPLES—XX 1 1 1.

1. State the relations between the three rectangular cartesian axes which
form a right-handed system, and sketch such a set in various positions.

2. Show in perspective the points P and Q, having the co-ordinates (i, i, i)

and (4, 3, 2) respectively.

3 Write the equations of the lines OP, OQ, and PQ, O being the origin and
P and Q as defined in question 2.

4. Find an expression for the angle d= POQ as defined by questions 2 and

3 (see Chapter ii.).

106 . Cylindrical Motion —Consider the motion of a point P on
the curved surface of a right circular cylinder of radius c with axis

along the axis of 2, and
let 6 represent the angle

between the fixed plane

ZOX through the axis of

z and another plane con-

taining that axis and the

point P. This is shown
in Fig. 37.

Let us note expres-

sions for the velocities

and accelerations as the

point moves in any way
on the cylindrical surface.

The velocities par-

allel to the axis, to the

tangent to the base, and
to its radius, i.e. parallel

respectively to PW, PT,
and PC, are easily seen

to be

The accelerations in the same directions are respectively

z, rd, and— (see articles 69 and 71) . . . . (2).

Thus, the magnitude of the resultant or total velocity v is given by

<3).

Also, that of the resultant or total acceleration a ’s given by

(4).

It is also evident that the quotient (any component by resultant) givw
the cosine of the angle between the two; hence the direction is

determined.

107 . Conical Motion.—Consider now the motion of a point P
on the surface of a right circular cone of semi-vertical angle let P s

i, and zero .... . (i).
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distance from the vertex be and let the axiaj plane containing P
make an angle B with a fixed axial plane. Tliis arrangement is repre
sented in Fig. 38, in which the axis of the cone is ONG, the fixed

axial plane ONA and that through P
contains Q also, PNOQ being a rect-

angle. PT is a tangent to the right

section of the cone at P.

Leaving the expression of the velo-

cities as an exercise for the student, let

us consider the accelerations in various

directions.

Thus, the axial acceleration along

QP parallel to ON is

^ON=^^^{;"COsa)=rcosa . (i).

The tangential or transversal ac-

celeration along PT perpendicular to

the plane ONP is, by equation (6) of

article 74,

r^ma.O 2r%\na,6z:zs\na{rB 2r6){ 2 ),

The radial acceleration along NP is

that of Q along OQ, so by equation (5)

of article 74 is expressed by

rsin a— rsin a.^* . . . (3).

To find the acceleration along the generator OP, multiply equation

(i) by cos a and equation (3) by sin a and add, for each of these

products gives a component acceleration along OP. Hence, accelera-

tion along the generator OP is

r— rsin*a 0^
. . .... (4).

Again, to find the acceleration perpendicular to a generator and
outwards in the axial plane, we have to multiply equation (3) by cos a

and take from this the product of equation (i) by sin a. Thus we have

acceleration along the normal GP is

—-rsin acos a (5).

108 , Spherical Motion.—In dealing with conical motion the semi-

vertical angle a was constant, while the distance r from the vertex was

variable. It is obvious that if we substitute for a the variable angle <#>

and for r the constant length a, we shall have passed from conical

motion to that on the surface of a sphere of radius a. These
co-ordinates defining the position of a point on the sphere are shown
in Fig. 39, also the lines parallel to which we shall consider the accelera-

tions. In this diagram ARBOQ represents the horizontal diametral

plane of the sphere, ONCG the vertical axis. The variable plane

OCPR makes the angle B with the fixed plane OCA, while OP makes
the angle <#> with OC. PQ and PN are perpendicular respectively to

OR and OC, while PT is perpendicular to the plane OCPR containing
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the four lines just mentioned, and PG in the plane OCP is perpendicular

to OP. The lines OA, OB, OC, OP, and OR being all radii of the

sphere are each of length a.

Consider now the motion of the point P on the surface of the

sphere, its position being defined by 0 and <l>.
Then adopting what

we have just established for conical motion, we easily obtain from the

figure the accelerations in three directions at right angles, viz. ON, NP,
and PT. Thus, the acceleration parallel to ON

t/* d
=^{acos<j>) =—(— asin</>.^>)=— acos<^>.^’ — flsin<^>.<#> (i).

The acceleration parallel to NP

= sm<t>)—asmcj)J^z:z^{a cos sin
dt dt

= — asin«#).^)*4-<^cos(^.</>— asin</>.0* (2).

The acceleration parallel to PT, i,e, perpendicular to OCPR (see equa-

tion (6) of article 74)
= a sint#>.^+2(^rcos<^),^)^ (3).

Equation (2) multiplied by cos less equation (i) multiplied by sin

gives the acceleration parallel to GP, which

=a<j>-^a sin <l>
cos <i>.6

^
(4).

Lastly, the sum of the products, equation (i) multiplied by cos </> and (2)

by sin gives the acceleration parallel to OP
= 6^ ... ....... (5).

On replacing the constant radius a by a variable, and differentiating
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it when necessary, these results could be extended to any motion in

space of three dimensions.

Examples—XXIV.

1. Obtain general expressions for the accelerations in the principal directions

for a point moving on the surface of

—

A cylinder

;

2. A cone

;

3. A sphere.

4. A point moves with constant speed v on the surface of a right circular

cylinder of radius a and traces out a regular helix whose axial advance

per radian Find the velocities and accelerations of the point radially,

tangentially, and axially.

5 A circular wire 10 cms in radius is in a vertical plane and rotates with

constant velocity 3 radians per second about its vertical diameter ; at a

certain instant a bead on the wire is 30* from the top of the circle, and is

moving downwards along the wire with speed 4 cm /sec. and accelera-

tion I cm /sec.* Find the vertical and radial accelerations of the bead.

109. Spherical Motions under Uniform Acceleration.—The full

treatment of this problem is beyond the scope of the present work
;

it

must accordingly suffice to indicate here the chief features of the motion

executed under these conditions.

It is easily seen to be the general

case in three dimensions of

which the simple pendulum was
the special case in a vertical

plane. The present problem is,

therefore, often known as the

spherical pendulum. Referring

to Fig. 40, we take the uniform

acceleration g to be vertically

downwards parallel to OCG. The
notation and lettering are as in

Fig. 39, but the figure is now in-

verted. Since the particle P is

supposed constrained to remain

on the spherical surface, it has
no motion normal to the suiface, and we are therefore concerned
chiefly with its com^nent accelerations in two directions tangential

to that surface at P. It is convenient to take these directions

in the horizontal and vertical planes through P, thus giving as the

tangents PT and PG respectively. The vertical acceleration at P being

along PM has clearly no component in the perpendicular direction PT.
We can accordingly equate to zero the corresponding expressioa Thus
from equation (3) of article 108 we have

a sin 2a cos 0.^^=o,

Fio. 40. Spherical Pendulum.
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where a is the radius of the sphere. If now we write sin

the above equation becomes

re+ 3f6=zl.^^r'6f)=o.

Hence sin*^>.^=/4 . ... (i),

where h is double the areal velocity of the horizontal radius vector NP
about the vertical axis of the sphere OC.

We have now to consider the component acceleration along PG,
the other tangent. It is clearly g cos MPG=^ sin </>. We may accord-

ingly change its algebraic sign and equate to the expression for the

acceleration along GP given in equation (4) of article 1 08. We thus have

acfi—a sin cos = —^sm <^.

Multiplying by 2a/i<f) and integrating, this becomes

2gajl(cos

or '{iP sin®<#).^“= C-{- 2ga cos

where C is the integration constant. By use of (i) this may be written

in the more useful form

Equations (1) and (2), giving ^ and 0 m terms of </> and constants,

express the relations tliat must be fulfilled at every instant during the

motion.

To obtain a statement of the motion in any given case we must now
insert the initial conditions. Thus at /=o let the particle be at

= «
(3 )j

with no vertical motion, so that is not changing, or

<#>o=o (4),

and with a horizontal speed u. Thus, if the angular speed in the

horizontal plane about OC is then we have «= sin a^o, or, from (i),

^=*^asina . .... (5),

Thus, substituting (3), (4), and (5) in (2), we obtain

«*=C+2^acosa .... (6),

which defines C in terms of the initial circumstances. Inserting this

value of C in equation (2), and using (5) also, we have

a^<l>'+u^(?'ILl-i') = 2gaicos<f>-cosa) (7 ),
\sin <p /

expressing ^ in terms of and the initial state of things.

To find the highest and lowest places, put $=o in (7), when
we see that either <^= a as in (3), or else we may reduce the equation

to the forms

t sin*a— sin*<i . j,
u* r= 2ga sin*«^

cos 9—cos a

and «’(cos<^+cosa)=:2^t/(i— cos*<^)

from the latter of which the factor (cos<#»— cosa) is removed.
(8),
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It accordingly gives other values for cos It is easy to see that

equation (8) gives one value for cos lying between — i and + 1. Thus,
for example, if we make cos</) change continuously from — i to -fi,

the left side of (8) changes continuously from the negative value
— cosa) to the positive value 4“«“(i+cos a). The right side of

(8) for the same range of values of cos changes from zero to the
maximum positive value 2ga and falls again to zero. Hence for some
value of cos </> between i i the equation is satisfied. That is to say,

there is some value, /3 say, of other than a, for which, in equation (7),
the angular velocity ^ vanishes. Hence the whole motion of P lies

between the two horizontal circles on the sphere defined by o and

110. Alternative View of Spherical Pendulum.—A useful insight

into the character of the motion by a spherical pendulum is obtained
by the following alternative view

of the matter:—Take two vertical

planes at right angles to each
other through the centre of the

sphere as shown by AOA'C and
BOB'C in Fig. 41. Now sup-

pose a pendulum suspended at

O and of length I (the radius of

the sphere) to perform simultane-

ously oscillations of amplitudes

CP and CQ in these two planes

respectively. Also suppose that

both these amplitudes, though
in the figure shown large for

clearness’ sake, are really so small that the period of vibration is in

each case represented with sufficient approximation by the simple

expression given in article 53, viz.

T—2TrsJllg (9)*

On these assumptions we may regard the actual motion of P on the

spherical surface as represented with close approximation by the result-

ant of two rectangular simple harmonic vibrations of equal periods.

But this is an ellipse, in the general case which we now require (as was

shown at the end of article 67). Further, since this ellipse, or quasi-

ellipse^ is to be traced on a spherical surface with its centre C at

the lowest point on the sphere, it is evident that the ends PF of the

major axis will be higher than QQ', the ends of the minor axis. Hence

the special extreme values a and fS of <l>
found in article 109 correspond

to the angles COP and COQ in Fig 41.

1 11 . Rotation of Quasi-Ellipse.—Let us now proceed to a further

approximation, and suppose that while the amplitude CQ is still small

and the period t represented by (9), that the amplitude CP is so large

that the ^leriod of the vibration in this plane has a period

<r>T • (^o)j

Fig. 41. Spherical Pendulum by
Rectangular Vibrations
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cr being the value of the period for finite arcs given by the analysis of
articles 54-56. To consider the effect of this on the motion, take
a plan of the quasi-ellipse described. This is shown by the broken
line in Fig. 42, the point moving round in the clockwise direction as
indicated by the arrows. Suppose the moving point to start from P,
then when it next approaches that position it will have completed its
vibration in the vertical plane
through QCQ' in the time t, a
little earlier than the instant at

which It will have completed its

vibration in the vertical plane
through PCP', for this takes the
slightly greater period tr. The
moving point accordingly crosses

the line PCP' at R a little inside

P, and reaches its maximum
elongation at S a little on the
line in Fig. 42.

Q'

1

\ C

Fig. 42. Rotation of Quasi-Ellipse.

Q-side of P, as shown by the full

In other words, the quasi-ellipse rotates about the
vertical axis of the sphere in the direction of its description by the
moving point. Further, the angle PCS, whose magnitude depends
partly on (o*— t), is itself described m the time a nearly. Thus the
curve is not immediately re-entrant, but forms a series of loops in
radial symmetry about the centre C

It can be shown by higher analysis that the rate of this rotation of
the quasi-ellipse is proportional to its area. By an elementary view of
the matter it is at once seen that the speed of rotation is increased *by

an increase of the larger amplitude CP, since this augments the excess
of the periods thus shifting R and S each farther from P. The
increased speed of rotation when the amplitude CQ is increased, and
therefore R shifted nearer P, is accounted for by the fact that the ellipse

is now broader at the ends, and S is still shifted farther from P in spite

of the approach of R.

Of course, when the quasi-ellipse becomes a horizontal circle the
rotation of the figure ceases to be of consequence, so the two views are
harmonised.

The rotation vanishes only when the area of the ellipse vanishes, i,e.

when the motion is initially confined to a vertical plane. And this

accords with our elementary treatment of the problem
The phenomenon of the rotation of this quasi ellipse in the direc-

tion of its description may be easily noticed in the case of a plummet
suspended from a fixed point and properly staged. With a pendulum
started truly in a vertical plane, Foucault showed Jby the apparent shift

of that plane that the earth was rotating.

112 , Accelerations of a Point moving in any Curve.—A plane
curve has at each point a tangent, and a normal m that plane and
a radius of curvature along that normal. But what is called a tortuous

curve has also a change of its plane by rotation about the tangent
;

it

therefore extends to three dimensions in space, and is the general
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example of a curve. The tortuosity of a curve is measured by the

rate of rotation of the plane about the tang'int per unit length along

the curve. Thus, if this angle is denoted by </>, the length along the

curve by and the tortuosity by <r, we have

(r=di>/ds (i).

In this general type of curve the normal in the plane of the curve is

called the principal normal^ and that at right angles to that plane is

called the binormal

.

Let us now find expressions for the accelerations along the tangent,

the principal normal, and the binormal, these three directions being at

right angles to each other. Suppose the moving point P to have the

cartesian co-ordinates at, and z. Then we have

dx dx ds / \

dt ds dt
'

Thus, differentiating again, we find for the acceleration parallel to

the X axis

d^x cPs dx
,
Ids\*/Px /^v

Similarly for the other accelerations, we have

^_dy dy /^ViPy
dP^'df~ds'^\dt) ds^'

*

, dPs dz
,
/ds\*dPz

But dxjdSf dyjdSf and dzfds (6)

are the diiection-cosmes of the tangent ; also if p is the radius of curva-

ture at P, then it may be shown that

pdx/ds*, pdPyjds^y and pdzjds^ (7)

are the direction-cosines of the principal normal. Hence equations

(3), (4), and (5), interpreted by the expressions (6) and (7), show that

the resultant acceleration of the point P is compounded of the

acceleration

d’^sjdP along the tangent (8)

and direction of the principal normal . (9).

Thus the acceleration along the binormal is zero, as there is no

other component left over from equations (3), (4), and (5).

o Examples—XXV.
f

1. Show that a point under uniform acceleration but constrained to remain
on the surface of a sphere describes a spherical $^//rtr/-ellipse provided

the displacements are all small.

2. In the case of a point describing under uniform acceleration a very

elongated path on a spherical surface, show that this quasi-ellipse,

instead of oeing re-entrant, rotates slowly in the sense of description.

3. For a point describing any curve obtain general expressions for its

accelerations along the tangent, the principal normal, and the binormal.
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CHAPTER Vni

SOLID ROTATIONAL MOTIONS

113. Displacements with One Point Fixed: Euler's Theorem.—If

a rigid body move with one point O fixed, it is evident that a spherical

surface S fixed in the body will move on a concentric spherical surface

fixed in space, the common centre of the spheres being the fixed point O.

Thus, the position of the body is specified by stating the positions on
the fixed spherical surface of two points, A and P say, on the spherical

surface S fixed in the body, and therefore moving with it. Thus the

most general displacement possible to a rigid body when it has one
point fixed may be described as the displacement of the two points

from the positions A and P to N and P' respectively, all four points

being on the fixed spherical surface The statement that this most
general displacement is expressible as a determinate angular displace-

ment about a determinate axis constitutes the theorem due to Euler and
revived by Rodrigues.

To establish it let the points A, A', P, and P' be as shown in Fig *43,

O being the common centre of the fixed and movable spheres. Draw
the great circles AA' and PP', bisect

AA' at M and PP' at N, through

M and N draw the great circles MR
and N R perpendicular respectively to

AA' and PP', and intersecting at R
;

join OR, and draw the great circles

RA and RA' Then the rotation

or angular displacement ARA' about
the axis OR shall bring the body
from the position defined by AP to

that defined by A'P'. For on join-

ing R to P and P' by great circles,

we see that the spherical triangles

RAP, RA'P' have all their similarly

lettered sides equal, each to each

;

thus their angles are equal, and
the angle ARP equals the angle A'RP'. To each of these equals

add the angle PR A'. Then the angles ARA' and PRP' are seen to be

equal. Hence the angular displacement ARA' about the axis OR
which carries A to A' also carries P to P'.

114. If the displacements AA' and PP' are very small in com-
parison with OR, the radius of the sphere, then all the spherical triangles

H

Fig. ^3. ^Euifr’s Thkorfm.
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involved become practically plane. The proposition then reduces to a

combined translation AA' and rotation throiigh the angle ARA' of a

plane figure moving m its own plane. The student may accordingly

compare Fig. 43 of the present article with Fig. 33 of article 96.

If A A' and PP' are parallel the preceding construction obviously

fails, but the intersections of PA and P'A' each produced give as their

intersection the point R required, as in the analogous case in article 96.

But, unlike that case of plane motion, the great circles through PA
and P'A' will always intersect^ so that Euler’s theorem holds without

exception.
'

Another view of the matter is to represent the whole displacement

as the resultant of two angular displacements about different axes

meeting in O. Thus, first rotate the body through the angle AOA'
about an axis through O and perpendicular to the plane AOA'. This

would bring A to A' and P to some point, p say, on the surface of the

sphere; and Np would equal AP, and therefore equal A'P'. Thus a

second rotation about OA' through the angle /A'P' would bring p to

P’, and accordingly complete the specified displacement. This shows
incidentally that two angular displacements about intersecting axes are

equivalent to a resultant angular displacement about another axis

through the intersection of the former axes. The composition of

angular displacements will be referred to again in article 116.

115 . Rodrigues’ Co-ordinates.—The axis OR of resultant rotation in

Euler’s theorem may be defined by its direction cosines A, /a, and v,

referred to fixed axes OX, OY, and OZ, and the amount of rotation or

angular displacement about OR may be denoted by x- Then the four

quantities A, /x, v, and x are called Rodri^ieY co-ordinates. They are, of

course, reducible to three by the relation

I (i)*

Take a sphere of unit radius with its centre at 0 as shown m
Fig. 44, and let the intersection

Y of the fixed axes and OR with its

surface be the points X, Y, Z, and
R. Also let three rectangular lines

OA, OB, and OC moving with the

body coincide m its initial or zero

position with OX, OY, and OZ re-

spectively.

X Let it be required to express

Rodrigues’ co-ordinates in terms

of the final positions of OA, OB,
and OC. Since the sphere is of

unit radius the angle subtended

at the centre by any arc of a great

circle is equal to that arc and, for

Fig. 44. Rodrigues* Co-ordinates, sake of brevity, may be accord-

ingly denoted by it. Thus the angle

XOA may be referred to as XA simply, and so for all other angles and arcs
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The final positions of OA, OB, and OC may be denoted by their

direction cosines, nine ^n number. But these nine quantities are

reducible to three independent ones. For we have three relations

between the direction cosines of the form

cos“XA+ros^YA -hcos“ZA= I .... (2),

the other two referring in like manner to the lines OB and OC. Then,
because the three lines are always at right angles, we have three

equations of the form

cos BC= cos XB cos XC 4- cos YB cos YC -f- cos ZB cos ZC= o . (3),

the other two referring to the angles between the pairs of lines OC,
OA and OA, OB.

Thus It will suffice to express A, /x, i^, and \ in terms of any three of

the nine direction cosines, provided those three define the final positions

,

of OA, OB, and OC as shown in Fig 44.

Referring to the figure, we see that in the spherical triangle XRA,
the angle XRA= x> ^tnd the sides containing this angle RX and RA
are equal, since

A=cos RX=:cos RA.
But it is shown in spherical trigonometry that in any spherical

triangle ABC
cos a=cos b cos ^d-sin b sin c cos

the small letters b^ c denoting the sides of the triangle and the corre-

sponding large letters the opposite angles

Thus, applying this relation to the isosceles triangle XRA, twe

obtain

cos XA= cos^RX-fsin*RX cos

or cos XA=A“4-(i— A’)cos X (4)-

We may then by symmetry write the two corresponding equations

cos YB=/x*-f(i~/x*)cos X (5)-

cos ZC= i'"4'(i — cos X • .
. (6)>

Adding equations (4), (5), and (6), and using equation (i), we find

2 cos x=cos XA-f cos YB+cos ZC—i . . (7)

Then, using this in (4), (5), and (6) in succession, we have

KA®=i-|-cos XA— cos YB—cos ZC
K/^^= i — cos XA-f cos YB— cos ZC " . . (8),

Kv®= I —cos XA— cos YB-f cos ZCj

where K= 3 — cos XA— cos YB— cos ZC . .
. (9).

Thus (7), (8), and (9) give X) \ /*> ^ terms of the cosines of

the angles between the original and final dir?ctipns of the three axes

OA, OB, and OC, and so solve the problem.

116. Successive Finite Angular Displacements : Rodrigues*

Theorem.—A body has two angular displacements, about an axis

OA through «n angle a
;
and second^ a subsequent displacement about

an axis OB through an angle ft and both these axes arefixed in space.

It is required to compound these angular displacements or rotations.

The above theorem, being due to Rodrigues, is called after his
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name by Roiith, whose treatment is followed here with but little

modification '

Let the axes OA, OB be drawn from O so that their directions

correspond on the right-handed system with the directions of the

rotations a and /3 about those axes. And let A and B lie on the surface

of a sphere whose centre is at O, as shown in Fig. 45.
On the surface of this sphere draw the great circle AB, and on the

sphere make the spherical angle

BAG equal to a/2 and in a direction

opposite to that of the rotation a

round OA. Also make the angle

ABC equal to ^8/2 and in the same
direction as the rotation /? about O B,

and let the great circles AC and
BC intersect at C. Further, make
the angles BAC', ABC' respectively

equal to BAG, ABC but on the

other side of AB, as shown by
broken lines on the figure, and join

OA, OB, OC, and OC'.

The rotation a round OA will

then, by construction, carry any point

P in OC into the straight line OC',

and the subsequent rotation about
OB will carry the point P back into its original position in OC» Thus
the points in OC are unmoved by the double rotation, and OC is

therefore the axis of the single rotation by which the given displace-

ment of the body may be constructed. The straight line OC is called

the resultant axis of rotation.

If the order of the rotations were reversed, so that the body was

rotated first about OB through the angle and then about OA
through the angle a, the resultant axis would be OC'.

117. To find the magnitude 6 of the rotation or angular displace-

ment about the resultant axis OC, note that if a point Q be taken

in OA, It is unmoved by the rotation a about OA, and the subsequent

rotation p about OB will bring it into the position Q', where QQ' is

bisected at right angles at M by the plane OBC. But the rotation 6

about OC must give Q the same displacement ; hence in the standard

case 6 is twice the external angle between the planes OCA and OCB.
If the order of the notations were reversed, the rotation about the

resultant axis OC' would be twice the external angle of C', which is the

same as that at C. So that though the position of the resultant axis of

rotation depends on the order of rotation, the resultant angle of rota-

tion is independent of that order.

As regards the final position to which it leads, an angular displace-

ment represented by twice any internal angle of the spherical triangle

ABC is equivalent and opposite to that represented by twice the corre-

sponding external angle. For since the sum of the internal and external

Fig. 45. Rodrigufs’ Theorem.
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angles is tt, a rotation* through twice the internal angle ACB would be
(27r—• while that through twice the corresponding external angle ACB'
would be 0, And it is evident that a rotation through the angle 27r

cannot alter the final position of any point of the body.
Hence the rule given by Routh for compounding finite rotations.
‘ If ABC be a spherical triangle, a rotation round OA from C to

B through twice the internal angle at A, followed by a rotation round
OB from A to C through twice the internal angle at B, is equal and
opposite to a rotation round OC from B to A through twice the internal

angle at C.
‘ It will be noticed that the order in which the axes are to be taken

as we travel round the triangle is opposite to that of the rotations.’

Axes fixed tn the Body.—If the axes OA, OD were fixed in the

body^ the rotation a about OA would bring OD into a position OD' say.

Then the body could be brought from its initial to its final position by
the specified rotations about OA and OD' respectively fixed in space

Hence with OD' substituted for OD, the preceding construction will

suffice for the resultant axis and the rotation about it.

Examples—XXVI.

1. Show that any displacement of a rigid body with one point fixed may be
represented by a certain angular displacement

2. If you are given the initial and final positions of three mutually i oct-

angular lines 111 a rigid body which meet in a fixed point, obtain

expressions for the diiection cosines of the axis and the angular dis-

placement about It which would represent the displacement in question.

3. If two specified finite angular displacements occur successively about
determinate axes fixed either in space or in the rigid body, show hov
to obtain the resultant angular displacement.

118 . Oomposition of Angular Velocities about any Axes meeting
in one Point.—If instead of a finite angular displacement about the

axis OA followed by another about OB, or vice versa, as just treated,

we had an infinitesimal angular displacement about one axis followed

by an infinitesimal one about the other axis, it is clear that the points C
and C'of Fig. 45 would coalesce; or in other words, the resultant axis

OC would he in the plane of the component axes OA and OB If now
the body in question has component angular velocities about the axes

OA and OB, the consequent angular displacements about each axis in

time dt can be taken and considered in either order instead of simul-

taneous. We are thus led to the composition of angular velocities

about a pair of meeting axes, a theorem that ^as established for con-

venience sake so far back as article 25^, the point of view there being,

however, somewhat different. We then saw that the component
angular velocities obeyed the usual law of vector addition, which is in

contrast with the case for the composition of finite successive angular

displacements just treated in articles 116 and 117.

Hence, if we have three coexistent angular velocities about three

mutually perpendicular axes, the single angular velocity equivalent to

them is determined in magnitude, and the direction of the axis found by
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the corresponding vector addition in space of three dimensions. Thus,
let the angular velocities about OX, OY, and OZ be and c respec-

tively, and let the resultant angular velocity be ^ about the resultant

axis OR, whose direction cosines are A, ft, and v. Then we have
(i),

also A =^//Lt =:<:/»' (2).

If, instead of three component angular velocities about the co-

ordinate axes, we have any number of coexistent angular velocities

about any axes passing through O, take one as a type and call the

angular velocity u> and the direction cosines of its axis /, w, and n.

Then we may resolve this angular velocity into three component
angular velocities /w, moi, and um about OX, OY, and OZ respectively.

Treating all the others in like manner, and taking the algebraic sum of

all such components about any one axis, we may write

l'(/(o)=a, and =
• (3)

Hence, putting the values from (3) in (i) and (2), we obtain the

resultant angular velocity of magnitude about the axis, whose direc-

tion cosines are A, /a, and
In dealing with a numerical case it is well to arrange the quantities

in seven columns headed, <u, /, w, «, /w, ww, and «(d. Then on casting

up the last three columns we have a, and 4: according to equation (3),

and ready for insertion in equations (i) and (2).

The Composition of Angular Accelerations about meeting Axes
obviously follows the same law as that of angular velocities, and so calls

for no further treatment.

119. Composition of an Angnlar Velocity and an Angular Ac-
celeration about meeting Axes.—Suppose now we have an angular

velocity a> about OX and a coexistent angular acceleration about an
axis passing through

Y I O, and it is required

to compound them.

P
The first step is to

^ resolve the arcelera-

tion into two compo-^— nents a and /? about
at OX and OY respec-

X dvely, the plane XOY
^ ^ being taken so as to

/ contain the axis of the

given angular accel-

/ fl ' eration. Then oi and
a are easily dealt with

by the formulae of

^ article 92.

Fig. 46. Precession derived from Acceleration. We have therefore

to consider here the

composition of the angular velocity w about OX with the angular

acceleration about OY, which jeads us to a somewhat new con-
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ception. Let us begin to consider the motion at the instant /=o.
Then at this instant the angular velocity possessed by the body
is w about OX, and is represented by OM in Fig. 46, there being

at that instant no angular velocity about OY. After the infinitesimal

time 5/, the angular acceleration about OY will have produced
the angular velocity about OY, this being denoted by ON on
the figure. Hence to find the state of things at the instant /=§/ we
have to compound the angular velocities represented by OM and ON.
Their resultant of magnitude about OR inclined with OX is

represented by OL and, according to article 118, is expressed in

magnitude and direction by

(i)

and /x=cos YOL=sin XOL=/?8//^ . (2).

Since there is no acceleration to produce angular velocity about the#

axis of Zj the third direction cosine, is zero; that is, the resultant axis

OR is in the xy plane.

In the limit where the square of vanishes in comparison with

<D*, have from (i)

• • (3)-

And from (2) and (3), when the sine of XOL may be assimilated to

the angle, or, in the limit,

say . .... (4),

where 12 represents in radians per second the angular velocity of OR
in the plane of XOY, le. about the axis of z, ,

120 . Precessional Motion.—Hence, the initial effect on the angular

velocity oi of the perpendicular acceleration /S may be represented by

leaving the magnitude of cu unchanged, while changing the direction

of its axis by a rotation il radians per second in the plane of the axes

of (o and /? and from (o towards p. This rotation of the axis is called

prece^sion^ and 12 is called the rate of precession It is useful and
suggestive to rewrite equation (4) in the form

(S),

and to compare it with equation (4) of article 69. We then see that

there is an analogy between the familiar conception of uniform circular

motion and the present new phenomenon of precession. Thus the

two equations under consideration may be put in words as follows —
Uniform Circular Motion, Precession,

Without changing its magni- Without changing its magni-

tude, to rotate a linear velocity v tude, to rotate an angular

at angular velocity 12 requires a w at angular velocity 12 requires a

perpendicular linear acceleration perpendicular acceleration

v^, <oS},

We may further notice as to the relation of the directions of angular

velocity, angular acceleration, and precession that (for the right-handed

system of axes used in this work) if the first two are positive about the
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axes X and 7 respectively, the last is positive about,the axis of z. These
directions are indicated by arrows in the figure.

It should be noted that, in the ideal case just considered, the axis

of rotation precesses not only m space, t.e. with respect to the

co-ordinate axes, but wtfk respect to the body also
;

for we postulated

neither velocity nor acceleration round the axis OZ, so there can be

no rotation of tlie body itself about OZ.
Thus, if at the instant /=o a certain point K is on the axis of

rotation and therefore on the axis OX, it does not remain on the axis

of rotation and describe a circle in the plane XOY This would involve

an angular velocity of the body about OZ, which does not exist, as it

was not there at first and there has been nothing to generate it. On
the contrary, when the instantaneous axis of rotation has passed from

the axis of the point K would be no longer on the axis of rotation

but would be circling round that axis.

It may naturally be asked how could the motion under discussion

be realised. The following scheme would accomplish it .—Let the

body be a sphere with centre at the origin of co-ordinates and the

diameter KOK' lying initially along the axis of x

;

let two cylinders

with axes parallel to OZ touch the sphere at K and K' and be capable

of a motion round OZ Give to the sphere the angular velocity w
about the diameter KOK' coincident with the axis of x, then let the

cylinders roll upon the sphere without slipping as though the sphere

were at rest^ and so that their axes move round OZ with the angular

velocity Then, though the sphere itself has no rotation about

OZ,* its instantaneous axis of rotation which replaces KOK' would
be moving round OZ at angular velocity with respect both to space

and to the sphere itself,

121 . Eotation about a Moving Axis.—Let us now consider the

Fig. 47. Acceleration entailed by Precession.

subject of articles 119
and 120 from another

point of view, as this

throws an additional

light on the matter. W

e

now start by supposing
the body to have an
angular velocity cu about
an axis OA, which axis

has itself a precession or
angular velocity about
a fixed perpendicular

axis OZ. Let it be re-

quired to find what angu-
lar acceleration, if any,

this velocity and preces-

sion entail Let OA
move in the planeXOY,

and consider the moving axis OA when it makes an angle 12/ with the

fixed axis OX as shown in Fig. 4 7.
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1

Let OL on the axjs OA represent the angular velocity (o. Then,
on the same scale, OM^wcosli/ and ON= w sin 12/ represent at the

instant in question the component angular velocities about the axes

OX and OY respectively. Hence, by differentiation, we may obtain

the angu'ar accelerations ^ and y\ about these axes. We thus have
sin 12/=OP on Fig. 47 . . . . (i)

and 7;= liwcos 12/=OQ do. .... (2).

Whence the jesultant acceleration, found by compounding the vectors

OP and OQ, is given by OR on the axis OB, defined in magnitude ^
and direction YOB by

= or ^= (3)

and tan YOB= tan 12/=tan XOA, or z.YOA=z.XOA
. (4),

t,e, OB remains perpendicular to OA, and therefore rotates with angular

velocity 12 about the axis OZ.
Thus the result may be summed up in words as follows :—If a body

has an angular velocity co about an axis OA, which axis rotates at angular

velocity 12 about OZ perpendicular to OA, then there is an angular

acceleration p=M about the axis OB, which rotates at angular velocity

12 about OZ so as to be always at right angles both to it and to OA.
This proposition holds whether (1) the axis of rotation OA moves

both in space and in the body, or (11) moves in space only, being fixed

in the body. But, whichever is the state of things at starting, so it will

remain if there is no angular acceleration about OZ to change the zero

or uniform rotation which is initially postulated.

The cases of motion considered in this and the two previous articles

are somewhat ideal, and the student is warned against hastily concluding

that they apply rigorously to any special case he may have in mind in

which the constiaints and masses involved may need somewhat detailed

consideration. The subject will be referred to again in Chapter xiv.

122. General Precessional Rotation.—The example already con-

sidered illustrates juecession in its simplest

form, the axis of rotation moving m a plane

because it is at right angles to the axis OZ
about which the precession occurs. In the

general case of precessional rotation the axis

of rotation OC may make any angle ZOC with

the axis of precession
;

it accordingly follows

that OC describes a conical surface of semi-

vertical angle ZOC. It is also easily seen that

any desired relation between the angular velo^

city <0 about OC and the rate of precession 12,

or angular velocity of OC about OZ, can be ^
represented by the rolling of a moving circular

g pkecessional
cone of axis OC and semi-veriical angle 0 on a. rotation representud
fixed circular cone of axis OZ and semi-vertical by Rot i ing Cones.

angle <^, the sum of 0 and <j> being ZOC and
their common vertex being at O. This is shown in Fig. 48, representing

the plane ZOC, which accordingly contains also the line 01 along which
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the two cones are instantaneously in contact. Suppose OC is advanc
ing from the plane of the diagram towards <he reader. Then, since

the moving cone is rotating about the instantaneous axis OI, the point

P will in time move perpendicularly to the diagram a distance

MPa>5/=u)rsin ^8/ (i),

where r denotes OP. Similarly, as OC is moving lound OZ at angular

velocity ft, in time 8/ the point P will move perpendicularly to the

diagram through the distance

NPft8/=ftrsin (^-f ( 2 ).

Hence, equating these two expressions for the element of path described

by P, we have
(i)sin ^=ft sin (j)*

For the simpler case of the previous articles, in which the conical

surface described by the moving axis is a plane, we have 6-\-<ji=irj2.

Hence, equation (3) reduces to

o)Sinf^=ft ........ (4).

Comparing this with equation (4) of article 119 we find

sin^=/^K (5),

which with <^=?r/2— (6),

gives the angles 0 and </> for the rolling cones to represent this simple

precessional motion when <») and p are known.
To find the angular acceleration in the general case of precession

in jvhich the axis of rotation describes a conical surface, we need general

expressions for the angular accelerations about moving axes, which is

dealt with in the next article.

128. Angular Accelerations about Moving Axes.—Take a system

of rectangular mov-

jC ing axes OABC, with

their origin O fixed,

their angular veloci-

ties about the posi-

tions instantaneously

occupied by OA, OB,
and OC being re-

spectively ^1, ^3, and
^8- Let the body or

figure under consi-

deration have angular

velocities Wi, Wj, w,

about these moving
axes, all as repre-

sented in Fig. 49. It

is required to obtain

expressions for the

OA, OB, and OC

Fig. 49. Angular Accelerations about
Moving Axes.

angular accelerations

respectively.

a, y about the axes
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It must be noted that though the six angular velocities referred to

are all about the instantaneous positions of the moving axes, the

velocities are all of magnitude reckoned with respect to axes fixed in

space. Thus, if had the magnitude o‘i, this would mean that at the

instant in question the axes OA and OB were moving in their own
plane away from axes OX and OY fixed in space at the rate of 0*1

radian per second. Again, if w, had the value 0*5, that would mean
that with respect to fixed axes OX and OY the body rotated at the

speed 0*5 radian per second about OC. Thus the body would have
the angular velocity (w,— ^8)=o*4 with respect to OA and OB.

Consider first the angular acceleration ^ about OB. By reference

to equation (3) of article 121, it is clear that it will contain the term

since we have an angular velocity Wj processing towards OB at

the rate 0 ^.

But by a second application of the same principle to the axis OC,
it IS clear that the acceleration about OB must have another term
— due to the angular velocity w, processing at rate from OB.
There is also the term Wa contributed by the rate of increase, if any,

of tne velocity about the axis OB itself. We accordingly obtain for p
the algebiaic sum of the three terms just mentioned. But it is evident

from the symmetry of the notation and the figure that the other

accelerations may be written down by suitably changing the subscripts

to (u and B,

We accordingly obtain for the angular accelerations about the

moving axes the following expressions, each consisting of the rate of

increase of one angular velocity and a pair of products of the o*ther

angular velocities concerned •

—

tt= a>,

^=:a>3— V (l).

These results are valid for any actual case whether the moving axes

move both in space and tn the body or always coincide with certain lines

fixed tn the body. In either case the relations between the w’s and the

B's will follow from the conditions prescribed. Thus, if the axis OA
IS fixed in the body, then ^a=a>a, = ;

hence a= Wi.

124. Angular Acceleration for Steady Precession.—We are now
prepared to deal with the determination of the angular acceleration

occurring in the general processional rotation of article 122. We
suppose the body to have an angular velocity of constant magnitude <0

about an axis OC fixed tn the body^ while thj^ axis describes a conical

surface by moving with an angular velocity of constant magnitude H
about a fixed axis OZ, to which it is inclined at the constant angle B.

We take OZ vertically up and other fixed axes OX and OY horizontally

as shown in Fig. 50; also two moving axes at right angles to OC,
namely OB horizontal and OA in the same meridian as C. It will be
convenient to regard OX, OY, OZ, OA, OB, and OC as each of unit

length, so that O is the centre of a unit sphere on whose surface the

other six points always lie.
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Then, using the notation of the preceding article, we easily see that
= 0j,=a),= o, a)j= <o, w,= w=o. We haS^e thus to find 0^ and 6^.

Suppose that in time S/ C moves to the near position C'. Then the

displacement CC'
may be regarded (i)

as the result of the

angular velocity 12

about OZ, the radius

being sin 6, or (2) as

the result of the

angular velocity 0^

(or (Oj) about OA, the

radius being OC,
which equals unity.

We accordingly find

that —12sin§=0,=
Wj, the minus sign

occurring becausethe

displacement due to

a positive value of 12

is negative, while that

to 61 or a>i is of the

same sign as tne velocity.

Again, m time S/, let B move to B', then BB' has the value 12^/,

sin^e It is described by unit radius about OZ. Now consider OC the

polar axis of our unit sphere, and draw the quadrant from C to B

;

also another meridian from C through B', and an arc of an equator

through A and B cutting the meridian CB' in B". Then the angle

between the two equatorial arcs BB' and BB" is that between their

respectively polar axes OZ and OC, namely 6. Hence BB"=BB' cos 6.

And, since the arc BB" is described in time 5/ with the angular velocity

Og and unit radius about OC, we have
^8S/=BB"=BB'cos ^=(I2S/)cos or 0,

= 12 cos 0.

We may accordingly write the following scheme of values :

—

About the axes ;

—

OA, OB, and OC

;

the angular velocities of \
the My are /

a)i=:-- 12 sin ti>a=o, (i>g= a> , . (2):

the angular velocities ofl
the axes are j

— 12 sin^, ^8=0, 6g=il cos 6
(3 ).

We have also a>j= o)j— u)j
— 0 (4).

Hence, to determine •ihe

equations (2), (3), and (4) in

angular accelerations, we substitute from

the right sides of equations (i) of article

123. We thus find

a=ro . (s).

^=(a>— I2cos ^)I2sin ^ . . . (6),

and 7=0 • • (7 )-

It is seen that if 6/=^7r/2, (6) reduces to

/
3=u)f2 . ,

Fig. 50. Angular Acceleration for
Steady Precession.

. (8).
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in agreement with the results of articles 119 and 12 1 for the case first

considered. •

Further, (6) shows that

if <0=12 cos then /?=o .... (9).

1 25, Most General Motion of Rigid Body with One Point Fixed.

—

The example of precession considered in article 1 22, in which the rolling

cones are both circular, though representing any purely precessional

rotation, falls short of complete generality. Now, if the fixed point of

the rigid body is taken as the centre of a fixed spherical surface, it is

obvious that the most general motion of that body can be represented

by the most general motion of a spherical figure on this fixed spherical

surface. But as in the case of a plane moving in a plane (dealt with in

articles 94-96 and loi), so here this most general motion of the

spherical cap on the fixed sphere may be represented by the rolling of
some line, fixed relatively to the moving cap, on some other line, fixed

on the stationary spherical surface; these lines being respectively the

body and space centrodes, both, however, being spherical now instead

of plane. Extending our thoughts to the interior of the sphere, it is

evident that the body and space centrodes are simply the base lines of

the moving and fixed cones (with common vertex at the centre of the

sphere) which, by the rolling of one on the other, represent the motion
of the rigid body in question. These guiding cones are not necessarily

circular, nor need their bases be bounded by re-entrant curves. On
the contrary, the term cone is here to be understood in its widest sense

as a conical surface generated by a straight line passing through a fixed

point and a fixed line circular, re-entrant, intersecting and re-entrant

or even non-re-entrant.

With these provisos then, the most general motion of a rigid body
with one pointfixed may be represented by the rolling of a conefixed in

the body on a conefixed in space^ the fixed point of the body being the

common vertex of the two cones.

Examples—XXVII.

1. Discuss the composition of angular velocities about intersecting axes.

2. If a simple pendulum were set vibrating at one of the geographical poles
of the earth, how would you expect its plane of vibration to move with
respect to the earth ? How would the plane of vibration of a pendulum
in latitude X appear to move with respect to the earth’s surface ?

3. Trace the analogy between the effect of an angular acceleration on a
perpendicular angular velocity and the c<ftiespondmg case of linear

acceleration and velocity.

4. What acceleration, if any, is needed to maintain an angular velocity of

constant magnitude about an axis which is itself rotating so as to

describe a plane ?

5. Show that the motion of a body consisting of rotation about an axis which
is describing a conical surface may be constructed as the rolling of one
cone on another, and obtain the relations between the various quantities

involved.
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6. Obtain the complete scheme of expressions for the angular accelerations
about a set of rectangular moving axes with ^ixed origin in terms of the
various velocities involved.

7. Assuming the general expressions for the angular accelerations about
moving axes, find the acceleration required to maintain a steady conical
precessional motion. Under what special conditions may this accelera-
tion vanish, and when may it reduce to a simpler form?

8. Explain carefully how to construct the most general motion of a rigid

body with one point fjxed.

126 . (General Displacement of a Bigid Body.—We now pass to the

consideration of the most general displacement possible to a rigid body
having no point fixed^ and shall closely follow the treatment adopted
in Routh^s Rigid Dynamics (1. pp. 186-8, sixth edition, 1897). It is first

necessary to establish the following proposition '.

—

Enunciation .—Every displacement of a rigid body may be repre-

sented by a combination of (i) a motion of translation, or linear displace-

ment^ whereby every point in it has a displacement equal in magnitude
and direction to those of any assumed point P rigidly connected with

the body; and (2) a motion of rotation or angular displacement Cii the

whole body about some axis through this assumed point P, which may
be referred to as the base point.

Proof.—It is evident that the change from initial to final position

may be effected by shifting P from its old to its new position, P' say, by
a motion of translation of the body as a whole, and then retaining P'

as a fixed point while moving any two other points of the body not in

a straight line with P' into their final positions.

But any displacement of a rigid body with one point fixed has been
shown in article 113 to be equivalent to a determinate angular dis-

placement about some axis through that fixed point.

This accordingly establishes the proposition.

Since the above displacements, linear and angular, are quite in-

dependent, their order may be reversed, i e. we may rotate the body
first and then translate it. Further, the motions might occur simul-

taneously.

It may easily be seen that any point P could be chosen as the base
point of the double operation, the translation and rotation being defined

/P'

F

r i

accordingly. Hence the given dis-

placement may be constructed in an
infinite variety of ways.

127. Change of Base Point:
Axes Parallel.—Let us now find

the relations between the axes and
angular displacements when different

points P, Q are taken as base points.

Suppose that the displacement

in question may be represented {a)

by the angular displacement 6 about an axis PR together with the

linear displacement PP', or {b) by the angular displacement about an

Fig. 51. General Displacement
OF A Rigid Body: Axes Paraliel.
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axis QS together wuh the linear displacement QQ' as indicated in

Fig. 51, in which PP' anfl QQ' are not necessarily in the plane of the
diagram.

Consider the method (a) of constructing the total displacement.
Then it is clear that any point, B say, has two displacements—(i) a
translation equal and parallel to PP', and (2) a motion through an arc

in a plane perpendicular to the axis of rotation PR, the length of this

arc being rB where r is the length of the perpendicular BM let fall

from B on to the axis PR. This arc is zero only when r is zero, that

is, when the point B is on the axis PR. We accordingly conclude that

the only points whose displacements are the same as that of the base
point Ite on the axis of rotation corresponding to that base point.

Thus, any line all points of which have the same displacement
must be an axis ofrotation for any point in it taken as base point (

i
).

Through the second base point Q draw QABC parallel to PR.
Then, for each of these points Q, A, B, C, etc

,
on this parallel, the

displacements by the method (a) are a translation PP'
;
and an arc (in

planes perpendicular to PR) of magnitude rB where r is the length of

any perpendicular QK, AL, BM, CN, etc., between the parallels PR and
QABC. Hence, by the statement (i) above, we see that QABC
parallel to PR must be the axis of rotation QS corresponding to the

base point Q. Thus, as P and Q are quite general, we conclude that

the axes of rotation corresponding to all basepoints areparallel (2).

128 . Rotations Equal.—We have still to find the relation .be-

tween the angular displacements B

and ^ which occur about the parallel

axes PR and QS respectively in

the methods {a) and {b) of represent-

ing the total displacements. For
this purpose let us take a new dia-

gram in a plane perpendicular to

these axes PR and QS, as shown in

Fig. 52.

Then, by method (a) of construct-

ing the displacement, we see that

the rotation through the angle B

about PR carries Q to q, where the

chord Q^= 2r sin Bj 2. The whole dis-

placement QQ' of Q is accordingly

the resultant of this and the dis-

placement PP' of P. Or, in symbols,

QQ'-Qy+PP' (3)

It should be noted that P' and Q' are not necessarily in the

plane of the diagram of Fig. 52, any more than they were in that

of Fig. 51.

Again, by method {V) of constructing the displacement, the rotetion

^ about QS carries P to the chord Fp being a(— r) sin <^/a. Thus,

Fig. 52. General Displace-
ment OF A Rigid Body:
• Angles Equal.
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the whole displacement PP' of P is the resultant of that chord and
QQ', giving the equation «

rp=P/+QQ' (4).

Hence (3) and (4) yield

Q^+P/=o,or (5).

Therefore, since P and Q are quite general, we have the result that

the angular displacements corresponding to all base points are equal

129 . Axial Projections Equal.—From equation (3) we may find

the translation and rotation for any given base point, Q say, when those

for any other base point P are known. For, since the displacement
is produced by rotation about the axis PR, it must occur in a plane

perpendicular to PR, and consequently its projection upon PR is zero.

Thus, taking projections upon PR, from equation (3) we find

Projection of QQ' upon PR= projection of PP' upon PR
. (6).

Hence, the projections upon the axis of rotation of the displacements of
allpoints of the body are equal.

Thus QQ' is fully determined. And we already know that QS is

parallel to PR, also that Plence, referring to Fig. 52, if P' is at

any distance, 3 cm. say, from the plane of the diagram towards the

reader, so is Q' at that same distance and in the same direction.

If the projections of PP' and QQ' upon PR are each zero, then all

axial projections of displacements are zero, and the whole displacement

reduces to an example of coplanar rotation and translation, as already

treated in articles 94-102.

130 . Central Axis : Twists and Screws.—It is often important to

choose a base point such that the direction of translation may lie along

the axis of rotation. We shall now examine how this may be done.

Let the specified displacement of the body be a rotation 0 about

PR and a translation PP'. And, if possible, let this displacement be
represented by a rotation fb about QS and a translation QQ' along QS.
These lines are shown in Fig. 53, in which also P'L and Yp are drawn
perpendicular to PR, and therefore parallel to each other

,
M and N

are the middle points of P/ and I.P' respectively.

Then, from articles 127-129 we have the following relations:

—

QS is parallel to PR (7),

= ^ (8 ),

and QQ'=PL=MN (9).

Also, with the former notation, Yp will represent the displacement

of P due to the rotationV= ^ about QS.

Thus, ‘

Q/^=QP 1 /..N

and P/=2QPsm 0/^= LP'j
• • * V ^

Hence, QS lies in the plane QQ'NM which bisects LP' at right angles;

it is also parallel to PR and at a perpendicular distance PQ from it,

such that zPQsin ^/2= LP'. And this forms the solution of the

problem. The distance of the central axis QS may be stated by giving

MQ or NQ', which are the perpendiculars from the plane PLP'; thus
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2MQtan 0/2=LP'. As to the direction of this distance, it should be
noted that NQ' must be measured from the middle point of LP' in the
direction in which that middle point is moved by its rotation round
PR.

Fig. S3, Determination of Centrai Axis.

Having found the only possible position of QS, it^ is still desirable

to show that the linear displacement is really QQ' \long QS. The
rotation B about PR will carry Q through an arc whose chord is

parallel to P'L and equal to aPQsin^/a. That is, this chord is equal

to P'L. Then, taking the displacement PP' in the two steps Yp and
pY\ the first step brings q back to Q, and the second step carries it

from Q to Q' along QS, as was to be shown.

It thus follows that the most general displacement of a rigid body can

be represented by a rotation about some straight line and a translation

parallel to that same line.

Such a displacement is like that of a nut on a screw, and is called a

twist. Hence we may say that a rigid body may pass from one given

position to any other by means of a twist.

In order to specify a screw we must stige (i) the direction and
position of the line round which the rotation is effected, t.e. the central

axis or axis of the screw
;
and (11) the ratio of the translation to the

rotation^ which occur along and about that axis. This ratio is a linear

magnitude called the pitch of the scretv. In the present theoretical work

the pitch of the screw is measured in units of length per radian of

rotation ; in workshop practice it is measured in units of length per
revolution of the thread.

To specify a twist we must further state the amplitude^ ie. the
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magnitude of the rotation or angular displacement occurring on the

screw in question about which the twist is effected.

It should be noted that the twist by which a rigid body may pass

from one position to another is, in general, unique. For, if possible,

let there be two central axes PR and QS; see Fig. 51 of article 127.

Then by that article these axes are parallel. Also, taking PR as the

central axis, the displacement of any point A on QS is found by turning

the body round PR and moving it parallel to PR. Thus A has one
displacement perpendicular to the plane PR A, t.e. to QS, and another

parallel to QS, and accordingly cannot move solely along QS. Hence
QS cannot be a central axis When the rotations are indefinitely small,

the construction to find the central axis is simply stated by Routh
somewhat as follows :

—

Let the displacement be represented by a rotation uidt about an
axis PR and a translation vdt in the direction PP'. Measure a distance

j/=er(sin FPR)/a) from P perpendicular to the plane P'PR on that

side of the plane towards which P' is moving. A straight line parallel

to PR through the extremity ofy is the central axis.

This construction may be illustrated by reference to Fig. 53 of

the present article. From this figure it may be seen that when PP'
shrinks indefinitely, MQ and PQ each coalesce with P<?, which
corresponds with Routh’s construction for the central axis QS.

131. General Motion of a Eigid Body.—On consideration of

article 126, it may be seen that the most general motion of a rigid body,

being a succession of an infinite number of elementary displacements

of the most general type, may be represented by the rolling of a cone^

fixed in the body, on a cone unattached to the body, the latter cone having

a motion of pure translation, the two cones having their vertices in

coincidence. For this rolling of cones gives at each instant the

combination of translation of a point and rotation about an axis

through it, together with a possible variation of every element of that

motion.

The motion of the body would be completely determined by
(i) the dimensions of the two cones and their initial positions, (li^ the

path and velocity at each instant of their common vertex, and (iii) the

rate of rolling at each instant of the body cone on the moving space cone.

Hence the whole motion falls into two parts, that of a point and that

of rolling cones.

Examples—XXVIII.

1. Discuss the gener^ displacement of a rigid body with no point fixed,

showing that if the base point is moved the axes are parallel and the

rotational displacements equal.

2. Reduce the most general displacement of a rigid body to a rotation about
a determinate axis and a translation parallel to it.

3. A point P in a rigid body has a displacement 5^/2 cm. at an angle of 45*

with the horizontal axis, about which it rotates through 60*. Draw a

diagram indicating (i) the central axis, (2) the displacement along it,

and (3) the rotation about it



SOLID ROTATIONAL MOTIONSART. 132] I3I

4. Establish the proposition that any displacement of a rigid body may be
represented as a twist ^out a sciew.

5. Show that the most general motion of a rigid body may be constructed
as the rolling of a body cone on a space cone which has a motion of
translation only, the vertices of the cones being always in contact.

132 . Velocity of any Point of a Bigid Body in most general

Motion.—We have already seen (in article 126) that the most general

displacement of a rigid body may be represented by a linear displacement

or translation of a base point, O say, and an angular displacement or

rotation about some axis through O. Further, we have seen (in article

131) that the most general motion of a rigid body is that of translation

of some point O combined with a rotation about some axis through O.
But the magnitude and direction of the linear velocity of O may change
from instant to instant, also the magnitude of the angular velocity and
the direction of its axis through O may change in like manner. We
may compactly provide for these changes by supposing the magnitude
and direction of each of these vectors to be given by their rectangular

components. It is then a problem, in terms of those components, to

specify the velocity of any point in the body. This we now treat,

following the method of Routh.

Choose any three rectangular axes OX, OY, OZ, meeting at the

base point 0 and moving with O, but keeping their directions fixed in

space. Let «, w be the components of the linear velocity of O and

I) Vi C those of the angular velocity of the body. The usual con-

ventions as to the relation of the positive directions of these six com-
ponents apply as shown in Fig, 54.

Fig. 54. Velocity of any Point in a Rigid Body.

Let Cly F, IT be the velocity components of P, its co-ordinates

being a', /, z. Consider first the expression for 17
,
the x component of

P’s velocity. It obviously consists of three terms, viz. those due to

translation of O in the OX direction and to the rotations about OY
and OZ. These are seen to be u, -f 1^2, and — fy respectively, and so
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give the first equation in the following scheme,, of which the others
follow also from the figure, or may be written- down by observing the

cyclical order of the letters :

—

U =« M
V=v-\-ix-%z\ (i).

Each of the products in the above equations expresses that part of

the linear velocity in the given direction, which is due to the angular

velocity denoted by the Greek letter and the perpendicular distance

denoted by the co-ordinate

Suppose now it is desirable to change the base point from O to CV,

whose co-ordinates are by and the axes at O' being parallel to the

former set at O. Let the linear and angular velocity components for

' O' be respectively u\ 2/, w* and f,
17', f'. The motion of P must be

the same as before
,
hence, for the very same values of Uy Vy and W as

in (1), we may now write, by analogy, the new expressions

y = v'-\-t{x-a)-\\z-c)\ (2),

w' 7)\x—

j

in which Xyyy and z are the co-ordinates of the point P referred still to

the original axes.

Let us now equate the right side of any line of (i) to the corre-

sponding part of (2). Take, say, the third line, then

. . (3).

But this equation holds for any position of P, thus we may change
any one co-ordinate in any way we please with or without alteration of

the others. If, therefore, we put y=Oy in the above equation (3), it

still holds. But we have thereby reduced the left side by $y and the

right side by $y. Hence these two angular velocities are equal. And
this can in like manner be shown to hold for the others Hence

and r=f (4)-

Or, in words, whatever the base point chosen, the component
angular velocities for a given resultant motion remain the same.

By substitution of (4) in (2) and equating the result to (i) we
obtain the linear velocity components of the new base point O' in the

form
u'= u-^-rje— {b'i

(5)

w'=: 7v-i-^b--Yjaj

It is seen that this jUst agrees with what we should obtain directly

from (i).

133. Eesultant Twisting Velocity.—Let the motion of a rigid

body be specified by the linear velocities («, Vy w) of some base point

O, and the angular velocities ({, rj, i) about axes (OX, OY, OZ) meeting

in O and moving with it but keeping their directions fixed in space.

It is required to find the central axis, the linear velocity along it, and
the angular velocity round it. In other words, the three rectangular
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screws and the twisting velocities about them being given, it is required

to determine the resultatft or equivalent screw and the resultant twisting

velocity which occurs about it.

In the treatment of this problem we shall again follow Routh’s
method. Let the direction cosines of the central axis be A, /x, v, the
linear velocity along it be V, and the angular velocity round it be Q.

Then we have to determine these five quantities and make certain

deductions from them. Let P be any point on the central axis, then if

P were chosen as base point, the components of the angular velocity

would be the same as for the base point 0 (equation (4) of article 132).

Also we have seen (articles 25^ and 118) that angular velocities are

vectors, and therefore compounded by vectorial addition
;
hence we

obtain

(i),

and K=$IQ, . (2),

or C=i/A=)j//*=iyj- ... . (3).

Again, we have seen (in articles 129-130) that the velocity of every

point resolved in a direction parallel to the central axis is the same and
equal to that along the central axis.

We accordingly obtain by projection

V=uk-\‘ViJi.’\‘Wv (4).

Taking the product of (3) and (4) we have

.
. (5).

Also, dividing (5) by (i), we obtain as the pitch of the equivalent screw

round which the resultant twist occurs

(6).

Let z be the co-ordinates of any point P on the central axis.

Then the linear velocity of P is along the axis of rotation. Hence its

components, given by equation (i) of article 132, are proportional to

the direction cosines A, ft, v of the central axis, and accordingly

proportional to the components f of the angular velocity about
that axis.

We may accordingly write

$
"

,,

-
"C

~

And these form the equations of the central axis.

Hence equations (i), (2), (4), (6), and (7) present the solution of

the problem under consideration. ^
If we shift the base point, or change the diiection of the axes, it

may be shown from (5) that the value of remains constant. The
product Kft may therefore be called the invariant of the components.

The resultant angular velocity has already been seen to be constant,

and may be called the invariant of the rotation.

If the motion is such that

= o (8 ),

then it follows that either F=^o or fl=o. Accordingly equation (8)
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expresses the condition that the motion is equivalent either to one of

translation only or Xo one of rotation only, x"or either motion to be

not zero we must, of course, have its components not all zero.

The foregoing very brief introduction to the subject of screws and
twists must suffice here. For fuller treatment the reader is referred to

the works on Dynamics by Routh and by Williamson and Tarleton,

also to the original memoirs of Sir Robert Ball, to whom the theory of

screws is principally due.

Examples—XXIX.

1. Obtain expressions for the velocity components of any point of a rigid

body in the most general motion possible to it.

2. Having given that a certain point O in a rigid body has linear velocity

components «, z/, w parallel to the axes OX, OY, OZ, and that the body
also has angular velocity components f about these axes, it is

required to determine the resultant motion as a twist about a screw.
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CHAPTER IX

MECHANISMS

134 . Subdivisions and Treatment.—We now pass to the consideration

of deformable figures, a simple treatment of which will occupy this

chapter and the next. A fairly comprehensive scheme indicating

set of possible subdivisions of this subject is given in Table iii. Thus
by supposing any one of the six types of systems 1-6 to be subject

Table HI. Kinematics of Deformable Figures.

Deformable Systems

A. Mechanisms^ or Partially Deformable Figures,

1. Inextensible Cords and Membranes.
2. Incompressible Fluids.

3. Linkages, etc., with Rigid Links.

B. Elastic Bodies^ or Generally Deformable Substances,

4. Extensible Cords and Membranes.
5. Compressible Fluids.

6. Elastic Solids.

Possible Deformations and Motions ;

—

a. Displacements and Strains.

b. Steady Flow or Currents.

c. Reciprocating Motions and Vibrations.

d. Wave Motions.
e. Vortical Motions.

in turn to each of the five types of motion where such motions are

possible to them, we obtain the various subdivisions.

Some points in this full scheme have, bj^iwever, been already suffi-

ciently touched upon under other headings. Others again lie beyond
the scope of this work. Of the remainder, the various displacements

and motions of mechanisms occupy this chapter, the strains of elastic

bodies being dealt with in the next. The consideration of a few points

of an advanced character will be deferred to those later chapters, where
they are needed in connection with the corresponding kinetical or

statical problems.

It may be well to explain here that the ^partially deformable
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figures* in the table denote those bodies or systems which by their

nature or arrangement absolutely preclude 01 render negligibly small

certain conceivable deformations, other deformations being possibly

very large. The ^generally deformable figures,* on the other hand,
are those of a nature such that no conceivable deformation is thereby

precluded or kept negligibly small, though some deformations may
still be much smaller than others. Thus, the extensible cords could
suffer much greater deformation by bending them than by stretching,

though the latter is not prohibited as for the mextensible cords.

135. Ineztensible Cords.

Multiplied Cord,—The most striking mechanical use of a cord
which is not appreciably extensible but very readily flexible occurs

when It is passed round and round two parallel cylinders or similar

bodies, one end of the cord being fastened to one cylinder, while

the other is free. We then have an example of the reduplication of

a cord or of the multiplied cord. Regarding the cylinder to which
one end of the cord is fastened or fixed, we may inquire what is the

ratio of the displacement s of the free end of the cord to the displace-

ment r of the centre of the moving cylinder, round which say n plies of

the cord pass, all practically parallel to each other. It is easily seen

that we have the relation

(i),

since for every element of the cylinder*s displacement an equal

eleihent of each of the n plies of cord is set free, which total to a

displacement nr oi the free end.

If the displacement r affects the free end of another multiplied

cord, we have only to repeat the equation (i) to find the final dis-

placement ratio. Or, we may combine two or more such equations in

the form
^ = «i^8(«8^s) == etc (

2 ),

where is the number of plies of the cord whose end has the dis-

placement s corresponding to the displacement r^ of the centre of the

first moving cylinder ; is the number of plies of the cord attached

to the centre of the first cylinder, whose displacement r, corresponds

to the displacement r, of the centre of the second cylinder round
which the plies pass

;
and so on for the others.

The above considerations form the first step in the theory of that

simple machine or mechanism often miscalled ‘the pulley.* The
machine in question is s^en to derive its essential character from the

kinematics of the multiplied cord^ which settles its displacement ratio as

shown above. The other details of the machine, such as the provision

of a pulley to lessen friction, are really only modifications of the ideal

case now under notice, though they may be of great practical import-

ance.

If, in the case of equation (i), we inverted matters and regarded

the cylinder to which the cord was fastened as moving, the other being
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our basis of reference, then the n would be replaced by +
Thus we might write, usifig accents for distinction,

j'=(«+i)r' (3)
136.

Connecting Belts.—In the case where an endless cord or belt

passes over two cylinders or other shaped wheels, we are concerned with

the velocity ratio of the two wheels thus connected. The motion is

supposed to occur without slipping between the wheels and the belt.

Thus, if a and ^ are those radii of the wheels at which no slipping

occurs, and j is the length of the belt passing for the angles of rotation

B and <#» respectively, we have

a6=^s=d(l>,

a6=:s=d(j>f

or (4).

That is, the angular velocities of the belt-connected wheels are inversely

as their effective radii.

The above is on the supposition that the belt is uncrossed or open,

so that the angular velocities have the same sign. If the belt is crossed

the displacements and velocities are of opposite sign, so that we should

have

(4a)

137.

Analytical Conditions of Inextensibility.—Consider an
element Sj of a cord, and let the tangential velocity of the cord be i at

one end of the element and at the other. Then, in time 8/; \he
tangential displacements of the two ends will be and
Thus the total increase of length of the element is the difference of

these quantities, viz, Hence the rate of increase of length per

unit length per second will be

Si/Ss, or dsjds (s),

and, for an inextensible cord, this must always be zero.

Taking cartesian components of velocity, we see that the tangential

velocity of the cord at a point is

dx
.
.dy

,
.dz

s^x-—Ky-r + ^

—

ds ds ds (6).

since the terms on the right are the projections on the cord of the com-
ponents of velocity. Hence the general analytical condition for the

inextensibility of a cord may be written

^dx dx^dy dy_^M dz

ds^ ds ds ds ds ds ds ^ •

138.

Incompressible Fluids.—Imagine a chamber prismatic or

cylindrical throughout, having two portions, of which one is small and
the other large in cross-section, the respective areas being a and b.

Let pistons fit tightly in these two portions and enclose between them
a volume v of incompressible fluid. Then we have, as the expression

of the condition of incompressibility, constant. Hence, if a normal
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displacement $ of the smaller piston occurs, and a simultaneous dis-

placement r in the same sense of the larger pLton, we must have
as^bvj or slr=^slr=bla (i),

Fio. 55. Displacements op
Incompressible Fluid

which gives the displacement and
velocity ratio of the pistons as the

inverse ratio of their areas The
arrangement is illustrated in Fig. 55,
in which AA'=s and the

lines at A, A', B, B' representing the

inner faces of the pistons.

It is easily seen that this rela-

tion is the essential principle of

the hydraulic press and the so-called

hydrostatic paradox.

Examples—XXX.
1. Discuss the subdivisions of mechanisms, and draw up a scheme showing

the chief topics needing treatment.

2. Sketch three different arrangements, each showing an application of the
multiplied cord, and calculate the velocity ratio for each.

3. Obtain the analytical condition of inextensibihty of a cord in motion and
passing round curves in solid space.

4. Explain the so-called hydrostatic paradox, and obtain the velocity ratio of

pump plunger and ram in a hydraulic press

139 . Links and their Relative Motion.—As its name implies, a

/Mage IS an aggregate of separate parts called Enks, whose nature, con-

nection, and motion must now be studied. The term linkage is, how-
ever, usually restricted to a certain class of connections which is but

one example of a more general type, called a kinefnatic chain by
Reuleaux, whose classic treatment of this subject will, in the main,

be followed here. In a kinematic chain the connections of the parts

may be of the most general type, and when one part of the chain is

fixed the arrangement is called a mechanism. Hence the title of the

present chapter.

Let us first suppose the links to be rigid, and then inquire how they

may be connected, and what relative motions are thereby permitted.

Consider the following simple examples ofpairs of elements^ which repre-

sent the types of contact of the touching parts of the adjacent links :

—

1. Square prism in square hole. 7. Sphere touching plane.

2. Cube on plane. 8. Sphere touching two perpen-

3. Circular cylinder in circular dicular planes.

hole. 9. Screw in nut.

4. Circular cylinder in circular 10. Spherical cap on sphere.

hole, but with collars to ii. Spherical capon sphere, but

stop end play. working against a circular

5. Cylinder with generator rib.

touching plane. 12. Spherical cap on sphere, but

6. Cylinder with generator and working on a pivot.

base touching perpendi-

cular planes.
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It will easily be seen that the relative motions permitted are recti-

linear in example i, pftine in examples 2,4, 6, ii, and 12, but are

solid in examples 3, 5, 7, 8, 9, and 10.

140. Lower Pairing of Links.—On further examination of the

twelve examples just given it may be noticed that some pairs are in

contact throughout the surfaces of identical geometrical form, both

being plane, or the one convex and the other equally concave (often

termed solid and hollow). Such pairing of links is called by some
writers lower pairings and is illustrated by examples i, 2, 3, 4, 6, 9, 10,

II, and 12. When, on the other hand, the contact is along lines or

points only, the arrangement of links is termed higher pairing. This
form of connection is illustrated by examples 5, 6, 7, and 8, and will

be dealt with in article 14 1.

Reverting now to the lower pairing, we see that in examples i, 4, %
II, and 12 only one degree of freedom is left. Such cases of lower

pairing are said to be closed. In examples 2, 3, and 10 the pairs were

not closed, for in each case two or more degrees of freedom were left

We have yet to assign names to the closed examples of lower pair-

ing Following the nomenclature of Reuleaux and others, we call these

respectively

{a) A sliding pair. (Example i.)

U?) A turning pair. (Example 4.)

\c) A screw pair. (Example 9.)

141. Higher Pairing of Links.—Passing now to the higher paifing

of examples 5, 6, 7, and 8 of article 139, we find that a greater variety

of relative motions is possible. But at each instant the moving link,

being supposed a rigid body, is generally rotating about some axis. It

may also have a motion of translation. The consideration of these two

possible motions affords a clue in the examination of the matter in

hand.

Thus, simple rolling occurs if the instantaneous axis lies in the

common tangent plane at the point of instantaneous contact. But,

when the instantaneous axis is the common normal at the point of con-

tact, simple spinning occurs. If, however, the relative motion is such

that the instantaneous axis passes through the point of contact, but is

neither in nor perpendicular to the tangent plane, then that motion is

combined rolling and spinning. Lastly, if the instantaneous axis does

not pass through the point of contact, there is sliding combined, it may
be, with rolling or spinning according to the inclination of the axis.

Thus if rolling, spinning, and sliding be denoted by the letters

and D respectively, then the possibilities of motion for a sphere on a

plane would be denoted by (Z?), (R and N)^ {N and D\
(£> and R)y and (R, and V).

Similarly, the possible motions of a cylinder with a generator in

contact with a plane would be denoted by (i?), (Z>), (A^ and D)y

(£> and Z?), and (.^, and H).

142. Kon-Eigid Links.—In the classification shown in article 134,
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Table m., A. 3, the term linkage was restricted, to deformable aggre-

gates of rigid parts, but in the classification 'Adopted by Reuleaux the

term linkage includes all the partially deformable figures of Table ni.

Hence Reuleaux calls ropes, belts, chains, and the cylinders on which
they wrap, examples of tension pairings since no motion can be
communicated except by pulling. On the same principle the water in

a hydraulic press is called by Reuleaux an example of pressurepairings

since the desired motion of the piston can only be produced by pres-

sure. Thus, these non-rigid or deformable links give examples of

motions which can be communicated in one way only, and not in the

reverse way also through a given single link, whereas in the case of

rigid links both motions may be transmitted through any single link.

Simple cases of these non-rigid links have already been dealt with

, in articles 135-138.

148 . Plane Linkages.—We now commence the treatment of that

most important class of kinematic chains consisting solely of rigid links

whose whole motion is plane and the relative motion of adjacent links

always an angular one. In other words, we have now a number of

rigid links in a plane, all their contacts being turning pairs. This is

the form of kinematic chain called a linkage) or, if one link is fixed, a

linkwork. The discussion of various types of this class extends to

article 157.

Inversions.—To represent the relative motion of the links we must
reckon the displacements from some frame of reference. Now in any
us^ of a linkage some one link is usually fixed. Hence, the problem of

its motions is in that case obviously simplified, if lines in the fixed link

are chosen as the frame of reference or axes of co-ordinates. If now,

instead of the previous one, a second link is fixed and the motion of

the others redrawn with reference to it, we may have a motion
apparently quite different from the first, and perhaps, in some respects,

really so. The linkage is now said to be inverted. Thus we have for

a given linkage first, second, third, etc., inversions^ the motions being

perhaps apparently very different in each case

For, it should be noticed, that although the inversion of a pair of

adjacent links may cause no alteration in the relative motion of that

pair, yet it may and generally does alter the motion of the moving link

with respect to other bodies.

144. Criterion of Deformahility and Rigidity.—If we consider

linkages or jointed frames typified by the capital letters V, A, N, and W,
it is evident that the fint is deformable^ the second is rigid^ while the

third and fourth have motions which are indeterminate^ if any one link is

fixed and only one displacement is specified. Again, if we have a

quadrilateral linkage, first without diagonals, second with a diagonal, and

third with both diagonals, it is obvious that we have three examples

which are respectively deformable, just rigid, and over-rigid. In the

last case we see that there is a redundant link, or one beyond the

number necessary to make the arrangement just rigid.

We are here almost solely concerned with those arrangements of
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links which are deformable, and that in a determinate manner speci-

fiable by the relative position of one pair of adjacent links.

It is of interest, however to seek an analytical criterion for the

deformability or rigidity of a plane linkage. Thus, following some-
what the method of Henrici and TumeT {Vectors and Rotors^ pp. 183-4,

1903), let us consider n points confined to a plane but without

other constraint, then they possess two degrees of freedom each or in

in all. Next let these points coincide with the centres of the eyes of

rigid links, each link having two such eyes and two only. Then each
link will, in general, introduce a constraint and remove one degree of

freedom. Thus, if there are nt bars fulfilling this general condition,

the number of degrees of freedom of the n points is expressed by
2n— m, But a rigid body in plane motion has three degrees of freedom,

viz. two translations and one rotation. Hence if the aggregate of links,

is just rigid, we have
2«--w= 3 . . . . (i).

We may now find a relation between n and m depending upon the

number of links meeting at an eye. Thus, of the n points or eye

centres, let a number each have only one link there, let points

each have two links meeting there, let be joints of tnrce links

each, and so forth.

Then «= + • • •
• (2)-

Also, since each bar has two eyes, we have for the number of bars

«=|{'^i+ 2'^.+3'^«+4^4+5'^i+6'^«+- • •} (3 ),-

Hence, by (2) and (3) in (i) we have

.... (4),
2 2

expressing the condition that the frame is just rigid. If the left side

of (4) exceeds 3, then the linkage is deformable
;

if the left side of (4)
falls short of 3, then the frame is over-rigid. It must not be supposed,

however, that its degrees of freedom have fallen below 3, because the

member or link added beyond those necessary for rigidity only forbade

a motion which was already forbidden, and consequently introduced

no new constraint. Thus equation (4), or cases where the left side has

a value differing from 3, must be interpreted with caution, as they

only apply to certain assumed possibilities which, though usual, are

not universal.

For another way of obtaining a criterion of determinate deforma-

bility the interested student is referred to S. Dunkerley^s Mechanism^

§9- •
^

145. Use of Instantaneous Centres of Rotation.—Linkages are

used to derive from one motion another motion of a different kind or

magnitude. Hence, we must be able to deal with this derivation or

conversion and determine the ratios of the displacements and velocities

of the various parts. For this purpose we may begin at the fixed link

and pass to those immediately connected to it ;
we can thus find the

motions of certain points in other links not directly connected to the
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fixed one. Then, knowing the instantaneous CQplanar displacements
of two such points, we can find their instantasieous centre of rotation,

and thus determine the relative displacements of all points in the link

in question. The conceptions here involved have already been dealt

with in articles 95-97 and loi. The method of applying these principles

will become sufficiently clear as the various typical cases are dealt with

in order.

Where a linkage is used to produce some particular motion of one
point, say, eg., a straight-line motion, a special treatment may be
necessary to demonstrate this property.

Examples—XXXI.

1 Give examples of the contact of rigid pieces or links which illustrate

relative motions that are rectilinear, plane, and solid, and also lower and
higher pairing.

2 What IS meant by tension pairing and what by pressure pairing ^ Draw
some example of a mechanism illustrating one of these connections,
and calculate the velocity ratio involved.

3. Define plane linkage and hnk-work, also state what is meant by the
inversion of a linkage, giving drawings in illustration.

4. Discuss the various possible states of an aggregate of rigid links as to

deformability, rigidity, etc
,
and obtain an analytical criterion for them.

5. What method is available for the determination of the motions of the
various points m any moving part of a linkwork ? Illustrate your answer
by a diagram

*

146. Quadric Linkages —Let us now consider the relative motions
of a plane quadric linkage having joints which admit of rotation only.

A typical case is obtained if the links have lengths as 2 and 4 for one

Fig. 56. Quadric Linkage and
Instantaneous Centres.

pair of opposite sides, 5 and 6 for

the other pair, as illustrated in

Fig. 56 by KLMN.
The instantaneous centres of

relative rotation of adjacent links

obviously coincides with that of the

pin which connects them. Hence
we have immediately four of the re-

quired centres at the angular points

K, L, M, N. It can easily be shown
that the instantaneous centre for

either pair of opposite sides is the

point of intersection of the remain-

ing sides. Take for example the side

LM as fixed, then K must move at

right angles to KL, whence it follows

that the instantaneous centre of KN
lies on LK, produced if necessary. Similarly since N must move at right

angles to MN, the instantaneous centre of KN lies along MN, produced

if necessary. Thus the centre sought is the point P where LK and MN
intersect. In precisely the same way it is seen that Q, the intersection
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of ML and NK, is thQ instantaneous centre of relative rotation of KL
and MN. It is noteworAy that if any three adjacent links be taken

the three instantaneous centres of relative rotation of the three pairs,

which can be taken from that set of three, all lie on a straight line

through the two joints of the three links. Thus, choosing the three

links KL, LM, and MN, or a, and c, the three pairs are alj Ic, and

cat and the three corresponding instantaneous centres are L, M, and

Q, all lying on the straight line LM, produced where necessary. The
same applies to the other three sets of three adjacent links.

Suppose now that LM is the fixed link or framCt then we may call

LK the crank since complete rotation is possible to it, MN the lever

since it can only move to and fro in a limited arc, while NK may be
called the coupler since it couples the crank and lever (see Fig. 57) If,

on the understanding of LM fixed, we examine the six instantaneous

centres, it is evident that only two, L and M, remain stationary, K moves
in a circle with the crank round L, N swings with the lever in a limited

circular arc round M, while P and Q describe curves which may be
found by the following construction :—Draw N displaced to N' in the

circle round M as centre, K displaced to K' in the circle round L, and
making K'N'= KN. Then producing MN' and LK' to their intersec-

tion we have P', the new position of P. In other words, we have P',

the instantaneous centre for LM and K'N'. It will be found that this

locus of P may be a curve of two branches which intersect at M
and have points at infinity. It is obviously the space cenirode for the

motion of KN. ,

In like manner, by taking the

locus of P as though KN were

fixedt
we should obtain the body \

centrode for KN moving with \

LM fixed. We might also find \
the locus of Q, but it would not

represent either a body or space \
centrode while LM is fixed. ''

147 . Velocity Ratios : Polar
Diagrams.—Continuing our sup-

position that, in the quadric link-

work, LM is fixed as shown in

Fig. 57, let us determine the

linear and angular velocity ratios

for the lever MN = ^ and the

crank LK=a.
Let Qt ^ represent the

instantaneous angular velocities

of the coupler KN about P, of Fig. 57. Velocity Ratios of
the lever MN about M, and of Quadric Linkwork
the crank LK about L respec-

tively. Also let u and v be the instantaneous linear velocities of N
and K. Then we have, from the figure,
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and

Hence

«= 0.PN=<#..MN . .

l»=ftPK=w.LK . .

»_PN . ^_UC.PN
®~PK w~MNrPK

(•).

(»).

(3 ).

Now produce NK to meet in R the line LR parallel to MN. Then
the triangles PNK and LRK are similar, the order of the letters

expressing the corresponding corners. Also describe with L as centre

the arc RV cutting KL in V. Then (3) becomes

«/«;=LR/LK=LV/LK (4),

and <;»/<o=LR/MN=LV/MN (5).

Thus we see from (4) that if LK describes the circle with uniform

motion, and the radius LK represents to some scale the linear speed v
of K, then the radius LV represents to the same scale the instantaneous

linear speed of N.
Again, from (5) we have that if MN represents to some scale the

angular velocity of LK, then LV represents to the same scale the

instantaneous angular velocity of MN.
It IS thus clear that if a number of positions of the linkage were

drawn and the corresponding positions of V found, we could determine

the locus of V, which locus is called a polar dtagfam of velocity. In
the present case the polar diagram resembles an asymmetrical figure

eight as shown in the diagram.

,
148 . Analytical Oonditions for the Crank and Lever.—The letters

N' and K' in Fig. 57 show the lowest positions of the lever and crank,

N" and K" the highest positions, , while the points ky and k! show the

one position of the lever and the two of the crank where the latter is

perpendicular to the coupler.

It may be noticed that NM is like one-half of the beam of a beam
engine, NK being like the connecting rod, and KL representing the

engine crank. The fixed points M and L being the axes of beam and
crank shaft respectively, and the ‘ link ^ LM indicated in the figure by

a straight line, is the equivalent of any convenient form of framing and
foundation of the engine.

The analytical conditions as to lengths of links to permit the

complete rotation of the crank may be written

—

(1) for passing the lower point K' in the circle,

(2) for passing the upper point K" in the circle, ^

provided that, as here supposed,

t<by c<dy a<c (7).

A surer and safer method of ascertaining the possible motions is the

graphical one developed m article 152.

It IS evident from the above inequalities that we should have

nothing essentially new to notice if d were now fixed instead of h

In fact, both inversions would form what we may call the crank and
lever form of the quadric linkage.

149 . Double-Crank Linkwork.—If we now consider for the third
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inversion of our quadric linkage that in which the shortest link, KL=^r,
is fixed, we find that nevii properties appear. Indeed both the links

b and d immediately attached to the fixed link a are capable of com-
plete rotation. We may accordingly call this mechanism a double-

crank linkwork. This is represented in Fig 58, the links being of the

same sizes as before, KL being now the fixed link or frame, b and d
the cranks, and c the coupler.

It is obvious from
the figure that for the

proportions in use the

conditions for passing

round at the right and
left sides may be
written

—

c^a^b-d ... (
8)

and

<5 • •
• (9)

respectively. And
these are equivalent

to the inequalities (6)
of article 148.

It may be further

seen from the figure

(i) that the linkwork
in the lower part of

itsrevolutionsassumes

the crossedform shown
dotted by KLM'N', and (2) that while the crank b passes through
two right angles between M and M', the link d passes through an
angle which differs from two right angles by the very appreciable angle

NoKN'.

/ /
'

/

/

1

I

I

\

\

N,<7/

—3 '-

Fig. 58. Double-Crank Linkwork.

This double-crank llnk^Aork in the asymmetrical form as illustrated

occurs in feathering paddle wheels of steamboats, and also in what is

known as a drag-link coupling, used occasionally on steam engines.

In the symmetrical form, in which b^d and a=r, it occurs in the

coupled driving wheels of locomotives, and may be called parallel

cranks. In this case a and c are greater than b and d.

1 50. Change Points and Dead Points.—If in a quadric linkwork

we have the link a fixed

and either a-\‘b=-C’\-d . . . (10),

or a’\-d^b-\-c (ii).

then it is of the double-crank type, but exhibits a special peculiarity.

For, when the links are in one straight line, it may be easily seen that

while it is possible for the two cranks to rotate in the same senses, it

is also possible for them to rotate in opposite senses. In other words,

the linkwork possesses a change point when the links are all in one
straight line, as from that configuration

;
it may pass by similar

K
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rotation of the cranks to the form of an open quadrilateral
; or it may

pass by dissimilar rotation of its cranks <0 the form of a crossed

quadrilateral. The former is shown by the full lines in Fig. 59 and the
latter by the partly dotted lines, the change point occurring when all

the links are in line with the fixed link a. The linkwork is drawn with

the links a, and d pro-

portional to 6, 5, 5, and 2

respectively, so that the

equality (ii) is fulfilled.

Thus, the term change
point may be defined as

one at which a lack of con-

straint in the hnkwork
allows it to pass over into

another configuration. The
necessary constraint may
be supplied by duplicating

the linkage, the cranks of

Fig. 59 Change Point op a Linkwork.

the second being at an angle with the first.

A dead point occurs if the motion of a certain link, say a crank,

cannot follow from another, say a coupler, although, if the motion of

the crank is first produced, that of the coupler quite readily follows. It

is evident that when, in Fig. 59, all the links he along the line KL, we
should have a dead point at N'. For no motion of the coupler pro-

duced at the end remote from N would then move the crank KN,
though any motion of the crank KN would be readily followed by the

corresponding motion of the coupler NM.
Hence, in the present linkwork, the dead point occurs where the

change point does, as is often the case. But the two are essentially

different. For the change point is present when it is possible to pass

over into a different configuration or to refuse to so pass over, and this

state of things is independent of which link is supposed to move the

other. Whereas the dead point occurs when the configuration of the

linkage is such that motion is possible if a certain link is the driver, but

is impossible if another is the driver, and this state of things has

nothing to do with possible changes of configuration at the point.

151 , Watt’s Parallel Motion.—We now consider the fourth in-

version of the quadric linkage. In this the fixed link is usually the

largest, the two adjacent links being each levers, swinging but not able

to perform complete rotations, and the fourth link is a coupler joining

the ends of the levers and crossing the fixed link or frame when the

latter is represented by a straight line. This inversion may accordingly

be termed the double-lever form of the quadne linkage.

If the fixed link is called the conditions that the adjacent links b

and d should be unable to rotate completely round it may be derived

from (8) and (9) of article 149 by interchanging the c and a and using

the sign Mess than’ instead of its negative. We thus have the

inequalities



ART. isO MECHANISMS W

where also

a^d<d+c) *

a<d, a<dy and Oa
(12).

(>3)-

Such a linkwork was used by Watt in the beam engine to make
one point of the connecting rod or coupler travel approximately in a
straight line, the arrangement being still known as Watt's parallel

motton. It IS of interest to inquire into the necessary conditions as to

the point in the coupler which gives the best approximation.
The diagram necessary for this is shown m Fig. 60, in which the

links Cy and d have lengths respectively 3, 4, ii, and 8, and are

represented by KL, LM, MN, and NK, the link c or MN being fixed.

Watt usually had the two levers b and d equal, but they are made

Fig. 60. Watt’s Parallel Motion.

different in the diagram for the sake of generality. Of course, the

frame represented by the link c is not in practice straight as shown, but

we are only concerned with the length MN.
First consider the linkwork in the position shown by K'L'MN, in

which the links b and d are parallel and horizontal. Let a displace

ment now occur so that the levers rise through the small angles ^/a> and
d^ to the positions ML and NK respectively. Then, on producing
LM and NK to their intersection Q, we obtain the instantaneous centre

of rotation of the link KL (or d) with respect to the fixed link MN
(or d). Now when the links b and d were parallel both were horizontal,

and Q was at infinity in the horizontal direction. Thus the initial

motion of every point in the coupler KL was vertical. But that

point in the connector which still has a vertical motion in the displaced

position is clearly the point E where the horizontal through Q intersects

KL. To determine the position of E in KL we may proceed as

follows :—By consideration of the small angles at M and N, we have

K'K/KN^QK</^ LM ^LM . .

i/0)“ L'L/LM“ KN ‘QL</fl“KN
’ ‘ '

in which dB is the small angle subtended at Q by KK' and LL', and
= denotes * equals nearly.' It is easily seen tb^t since d4> and dia are

small Q is far away, and therefore QK=QL, hence the last ratio at the

right in (14).

Again, by considering the small angles at Q, we have

d<b_KF
• QG~LG“LE '

Hence KE/LE=LM/KN (i6);

or, the segments of the couplers are inversely as the levers which it

couples.
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Thus, as might have been anticipated, if the levers b and d are

equal so also are the segments into which E divides the coupler and
this IS the usual arrangement m actual practice.

The motion of the point E is only approximately rectilinear for a

small distance. Its whole motion, if the levers swing in large arcs, is

a kind of lemniscoid or asymmetrical figure of eight such that the

centre portion of one part is nearly straight, the other central part

being more distorted.

Examples

—

XX!XII.

I . Draw a plane linkage ofsides 3, 5, 6, and 7, and indicate the 6 instantaneous
centres of rotation.

2 Show a crank and lever linkwork with sides 3, 5, 6, and 7, and obtain for

It the polar diagram of velocity ratios.

3. Exhibit the linkage of the previous questions inverted so as to become a
double-crank linkwork, and state the analytical conditions for complete
rotation of each crank.

4. Distinguish between dead points and change points. Sketch an illustra-

tion of a dead point which is not a change point and a dead point which
IS also a change point.

5. Draw a Watt’s parallel motion with horizontal levers of lengths 4 and 6
and a vertical coupler of length 3 Find the point in the coupler whose
motion IS most nearly straight, and obtain its locus for a 30“ oscillation

of the long lever.

152. Graphical Criterion for Rotation in Linkworks.—We have

several times given inequalities upon whose fulfilment depends the

possibility or impossibility of the complete rotation of a certain link.

But these may prove troublesome to remember and apply, and a slight

slip With respect to one of them may lead to an error. It is as well

therefore to note that the subject lends itself to an extremely simple

geometrical construction as

follows :—Let b be the frame,

c, and a the other links,

their lengths being given.

It is required to determine

whether a and c can rotate

completely. Lay off the

link b to scale, on a horizon-

tal line, say. Taking M, the

junction of h and f, as cen-

tre, describe circles of radii

C’\-d and Then it is

clear that the annular space

between these circles repre-

sents the whole space which

can be reached by K, the

junction of d and a, by all

the possible motions of the

links c and d about M, their point of attachment to the frame

or fixed link b. Hence, to test the possibility of the complete

rotation of the link a or LK, we have simply to describe a circle of

Fio. 61. Graphical Criterion for
Rotation in Linkworks.
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radius a with L as centre and note if this circle anywhere passes beyond
the bounds of the annular^pace previously described. If it does, then
complete rotation of a is impossible , if it does not, then complete rota-

tion is possible. This is illustrated in Fig. 61, in which case a can
rotate completely, so is a crank.

Similarly, to test the possibility of ^'s rotation, we describe a circle

of radius c with centre at M and note if it lies entirely within the

annular space formed by concentric circles about L, whose radii are

respectively {a-\-d) and {u'-'d). As shown in the figure, the complete
rotation of c is clearly impossible. The parts of ^ s rotation which are

precluded are shown by dotted lines. The linkwork is accordingly of

the crank and lever type. Indeed its proportions are just those of

Fig. 57 in article 147.

153 , The Pantograph.—A linkwork consisting of a parallelogram

with a side produced and a fifth link fixed is used for copying drawings

to a different scale, and is termed a pantograph. Its arrangement is

illustrated by Fig. 62, from which its essential properties are easily

established. In this figure KFG :

links being KL, LMS, MN, and
NK, of which KLMN form a
parallelogram of sides a and b re-

spectively. In the position shown,

KRS is a straight line, and it al-

ways remains so. For first.^ the

lengths KL, LS, RM, MS are all

constant, and second^ the two angles

marked, viz. KLM and RMS, al-

ways remain equal, since KLMN
IS a parallelogram of fixed sides.

Hence, the ratios KL : LS and RM
is straight) always remain so, i.e, Kl

Further, the ratio KR : KS, or sa

the fixed link, the four moving

Fig 62 The Pantograph.

MS being once equal (when KRS
.S remains straight,

r/^, remains constant, for it is seen

to be equal to LM . LS. Thus while the point R traces about K as

pole the curve whose polar equation is r=:/{6 ),
the point S simul-

taneously traces the same curve, and similarly placed about K, but

enlarged in the ratio s/r.

It may be noted here that in actual practice for beam engines

Watt’s parallel motion was combined with the kind of pantograph just

dealt with, so that one point, like E in Fig. 60, being constrained to an

approximate straight-line motion, a second point copied it as K would
copy R, in Fig. 62, if S were fixed. *

^

154 . Peaucellier’s Cell.—This eight-part linkwork due to M.
Peaucellier was devised in 1864, and solves the problem of drawing

accurately a straight line by geometrical means. It is represented in

Fig. 63, and, while the point B describes the circle GBA, the point C
describes the straight line HC at right angles to AFGH.

The link AF is fixed, and the equal link FB rotates about F. The
two links AD and AE are equal, and finally the four links BD, DC,
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CE, and EB are all equal Hence, by symmetry, ABC is always a
straight line, also B and C always lie on a cfrcle whose centre is at D,
thus by the properties of the circle

AB.AC=AD*— BD*= a constant .... (i).

Produce AF to H, cutting at G the circle ABG whose centre is F, and

let fall from C on AH the perpendicular CH. Then we have by the

construction

AB/AG=cos BAH = AH/AC.
Or AG.AH= AB.AC.
Thus by (i) we see that AH is a constant (2).

Hence the conditions imposed on the points A, B, C by the linkwork

are precisely those which correspond to the accurate description of the

straight line CH by C, while B describes the circle of radius FB=FA
about the centre F. Thus C' and B' show another pair of correspond-

ing positions of the tracing points C and B. It is obvious that if A
passes inside the rhombus BCDE, the point C still traces a straight line.

165 . Hart’s Cell.—Let us now consider some of the properties and
uses of a linkage in the form of a contra-parallelogram as shown by
KLMN in Fig. 64, m which KL=MN and KN= LM.

The contra-parallelogram may be regarded as derived from the

ordinary parallelogram folding one half through two right angles

about a diagonal. 0r, it may be considered as consisting of the inclined

sides and diagonals of a symmetrical trapezoid. Thus LN is parallel

to KM. To examine the motion and properties of the contra-

parallelogram we may draw certain lines which, though not corre-

sponding to any material in the links themselves, behave exactly like

the rhombus in Peaucellier’s cell (shown in Fig. 63). Thus in Fig. 64
bisect KN at B, LM at C, LN at D, and KM at E. Then, by con-

struction and the properties of similar triangles, we see that BDCE is
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and always remains a vhombus, its sides being also of constant length,

namely, each equal to fhe half of either of the links KL or MN
Bisect KL in A, then by similar triangles ABC is a straight line.

Attach at AB the

equal links AF and LON
BF, AF being fixed,

also draw CH per- / N. / \ \
pendicular to AF. / \

y

\
Then the six -part / / \
linkwork, consisting / \ \
of AF, FB, and the 1/ \
contra -parallelogram \
KLMNK, consti- \
tutes the Hart Cell

j / \ \
It has the property / \ / \ x. \
that as B moves in / \ » \ N. \
the circle BA of cen- ^ • \ nA
tre F and radius FB, i

the point C traces ac- K \ / C ' M
curately the straight \ /

line CH at right Vp
angles to the fixed pjQ g. Hart's Cell with Central Points.
link AF. That it

possesses this property is easily seen by comparing in Figs. 63 and

64 the points AFBDCE. In the former figure these points are

connected by the eight actual links of the Peaucellier cell, while in

the latter figure, showing the Hart cell, beyond the links AF and
FB we have the contra-parallelo-

t N gram KLMNK which, as already

shown, serves the purpose of

/I / 1\ maintaining the distances re-

/
I

\ /
I
\ quired, though there are no links

\ /\ \ \ at AD, AE, BD, DC, CE, and

j I y ' \ EB, as in the Peaucellier ar-

/ 1
/ N. I \ rangement.

yy l\.r\ Alternative Propor-

l ^ \ ^ona for Hart's Cell.—The pro-

ry^\ '
i \A portions and use of the Hart cell

1 1 !
just discussed are not the only

K N' ones pc^sible. The points A, B,

Fro, 65. Hart’s Cell with C mifjht have been taken

General Ratio so as to divide KL, KN, and
ML in some other constant

ratio instead of being points of bisection as chosen. Thus, let

KA/KL=KB/KN= MC/ML=;f. Then, it is seen from the pro-

perties of similar triangles that ABC are in a straight line parallel to

KM and LN as shown m Fig. 65. We can also easily show that

AB,AC is constant.

Fig. 65. Hart’s Cell with
General Ratio
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Thus, using again the properties of similar triangles, we have

AB= «LN, AC= ( I -«)KM, *

or AB.AC=«(i-«)KM.LN (3).

But from the figure we have

KM= KN'-fN'M=^cos</)+acos 0\ / ^

and LN= KN'-KL'=:^cos<^-flCos0J
where a=KL=:MN,^=KN=LM, ^=LKM, <#>=NKM.

Also sin ^=LX=N'N=^sin ^ (5).

Thus, substituting (4) and (5) in (3), we obtain

AB.AC=«{i— a*)=const (6).

Thus, as shown for the Peaucellier cell in equation (2) of article 154,

if B moves in a circle passing through A, its centre being at F, C
•moves m a straight line CH at right angles to AF. (See also Figs.

63 and 64,)

167. Parallelogram Linkages —If we have a parallelogram of sides

a and b including an angle the diagonals being c and the ordinary

expressions for each of the triangles into which the diagonals divide it

give

— 2(2/5 cos

cos

Thus ^ +df*= 2 (a® -F^*)= constant (i).

Hence if the sides are equal and the diagonals lie along the co-

ordinate axes and are denoted by x and >, we have

constant,

and xdx-\-ydy:=.o , . (2),

or dyjdx^-^xjy (3),

which gives a useful relation between the corresponding small changes

in the respective diagonals.

If we have a succession of rhombuses, the sides of one figure passing

for an equal length beyond the crossing to form half of the next figure,

we obtain the linkage called the lazy-tongs. If the succession of figures

lies along the axis of x, which accordingly coincides with one diagonal

of each, then obviously a given change ^ in the y diagonal results in

changes of magnitude dx in each of the x diagonals, which lie end to

end. Hence at a distance of m rhombuses from the origin we shall

have a displacement -^mdx consequent upon the change in any
one of the y diagonals. This we might express by writing

, dX—mdx (4),

or • X^mx,
A familiar example of a parallelogram linkwork is afforded by the

parallel cranks of coupled driving wheels on locomotives.

Examples—XXXIII
1. Apply the graphical criterion for a double-crank linkwork to a linkage of

sides 2, 4, 5, and 6. Will it still be a double-crank linkwork (1) if each
side is increased by 2, and (11) if each side is doubled ?
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2. Describe a form of pantograph, and establish its property of copying any
curve on a different sdhle.

3. Explain carefully the linkwork called Peaucellier’s cell, and show that one
point of it draws a straight line while another describes a circle.

4. Show that the pioperty of Peaucellier’s cell is attained by Hart’s cell with

fewer links.

5. Sketch a pair of lazy-tongs, and find its velocity ratio for the position

shown.

158. Slider Crank Ckain: Instantaneous Centres.—This important

kinematic chain is derived from the quadric linkage by substituting a
slidingpair for one of the four turning pairs. As each of the four links

IS fixed in succession it produces four distinct mechanisms, which we
shall deal with presently. We may, however, first note with advantage
the positions of the six instantaneous centres of the relative motions of

the links in this slider chain. Thus, using the same notation as in

article 146 for the quadric linkage, and the same methods as there

employed, we obtain the results shown m Fig. 66, In this figure the

links <2, and c are united by
turning pairs at K, L, and M
respectively, the corresponding in-

stantaneous centres being obvi-

ously their centres of junction

denoted by these letters. The
link or block c shown by M slides

on the link or bar d denoted by
KM

; hence the instantaneous cen-

tre for the relative motion of c and
d is on the line drawn through M
at right angles to KM, but is situ-

ated at infinity in either direction

along that line. It is accordingly

indicated on the diagram by N at

±00. Take next the centre for

h and d. It is evidently at P, the

intersection of KL with the line Fig 66. Slider Crank Chain and
through M at right angles to KM. Instantaneous Centres.

For L must move at right angles

to KL and the centre lie along KL, while M moves along KM, and
the centre accordingly lies along the perpendicular to KM at M.
Finally, consider the centre of instantaneous rotation of a with

respect to c. If we imagine the block c fij^d, K must move along

KM, so the centre in question lies along the perpendicular to KM at

K, while L must move at right angles to MI., so the centre lies

along ML, produced if necessary. The instantaneous centre sought

IS therefore as shown by Q. Thus of the six centres five, K, L,

M, P, and Q may usually be shown in the diagram, but the sixth,

N, corresponding to the sliding pair of the block c on the bar d, is

always inaccessible.

159 . Velocity Eatios obtained Analytically.—W’e shall now con-

1



*54 ANALYTICAL MECHANICS [art. i6o

sider what may be called the first inversion of the •slider crank chain, in
which the link or bar d is fixed, and so bkomes the frame. The
resulting mechanism then illustrates the case of the direct-acting

engine, the block c

becoming the cross-

head, b the coupler

or connecting rod,

X and a the crank. The
important relations as

to displacement and
Fig. 67. Analytical Diagram for velocity between the

Direct-Acting Engine. crank and coupler
will be first treated

•analytically and afterwards graphically. Referring to Fig. 67, let the
crank KL, of length make at a given instant the angle B with the frame
KOMX, the inclination of the coupler LM of length h^na being at the
same instant Let fall the perpendicular LL' from L to the frame
KOX, where O denotes the central point in the traverse or stroke of
M, and denote OM by x. Then we have by construction

L'L/d:=sin sin

whence n cos c/)= (i).

Also .ir =:KM- KO=KM-LM
= KL'-fUM-LM

‘ = a cos cos (2).

Thus (i) in (2) gives

cv=a(cos \/«*--sin*0) .... (3).

Now differentiate (3) with respect to time, writing v for the linear

speed of M and <0 for the angular speed of L. We thus obtain

af t
cos^ \

And if is large compared with unity, as is usually the case, this

reduces to the approximate formula

»=» sin 61^1 + -^—) (5),

in which u is the linear speed of the crank pin L without regard to

sign.

Referring to (3), we see that acos^ would be the displacement for

simple harmonic motion^ so that the other terms a{ n//?— sin*^— «)
are corrections for the obliquity of the connecting rod or coupler. Of
course, if « is 00 these corrections reduce to zero. And quite low
values of n make the corrections small

;
thus if n is only 5, even then

<Jn* -- sin**^ —//never exceeds — o*ii.

160. Velocity Ratios Graphically Treated.—Referring now to

Fig. 68, we will treat the same problem graphically. Thus, the link d
being the frame as before, and b the coupler, we produce the line KL
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of the crank and draw from M a perpendicular MP to KM, thus finding

at their intersection P ^he instantaneous centre for ^’s motion with

respect to d. Thus, the ratio of M’s velocity to that of L or vju is

given by the ratio PM/PL. Produce ML to meet at V the line KV
drawn perpendicular to KM. Then the triangles PLM and KLV are

similar.

Hence
y_PM_KV
^“PL^KL '

(6).

Accordingly if u is constant and represented to scale by KL, v, at

the instant to which the diagram applies, is represented to the same
scale by KV. As it is

inconvenient to have

any variable angle like I

that shown between the

lengths KL and KV, we
may describe about K
as centrewith radiusKV
the arc VR, thus trans-

ferring V to R. It is

thus seen that R is one /

point of the polar dia- !

gram of velocities of M. \
Another method of

graphically exhibiting •

the velocity of M is to Fig. 68. Graphic Treatment for Direct.

drawVS parallel to KM, Act ing Engine.

cutting MP in S. Then
S is one point of a cartesian diagram of velocities in which the

ab^^cissae are the displacements of M and the ordinates the velocities

of M.

161 . Other Inversions of the Slider Crank.—In articles 159 and 160

we have considered what may be called the first inversion of the slider

crank chain, namely, that in which the bar d is fixed, the resulting

mechanism being that utilised in the direct-acting engine. Three new
mechanisms result if each of the other links is in succession fixed.

Thus if the link b is fixed (see Figs 66, 67, or 68), we obtain the

mechanism used in the oscillating engine, in which a is the crank as

before, d is now the piston rod, and c is the oscillating cylinder.

Again, if the link a is fixed, we obtain tlj^ Whitworth quick-return

motion, in which the link b may rotate uniformly^ while d moves with a

variable motion in complete rotation if b>a^ but with a swinging

motion only \{ a>b.
Lastly, if c is fixed, we have the mechanism used in the pendulum

pump. The link c here takes the form of steam and water cylinders

and their connecting framework, d is the piston, rod, and plunger,

while a takes the form of a small flywheel, of which the junction of a

and d moves vertically, while the junction of a and b rotates about the
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former point and swings about the junction of ^ and c. It is this

swinging orpendulum motion of the link b which gives its name to the

mechanism.
The displacement and velocity ratios in any of these mechanisms

yielded by the various inversions of the slider crank may be dealt with

as already explained in articles 159 and 160 for the first inversion.

The fuller discussion of the subject belongs rather to special treatises

such as the classic by Reuleaux (translated by A. B. W. Kennedy), or

the excellent and more recent Kinematics of Machines by R. J. Durley,
which should be consulted by those wishing for further information.

162 . Screw Pairs.—The last example of lower pairing that we shall

consider is afforded by screw pairs, m which the relative motion of the

parts so paired is obviously a twist SlS defined in article 130. Kinematic
thains involving screw pairs frequently occur in machines. Cases of

special interest are presented when two screw threads of dtjferent

pitches, p and q say, are cut upon the same cylinder, each such thread

engaging an appropriate nut, the nuts sliding without turning in a

frame which also carries the screw and allows it to turn without sliding.

We have thus a chain of four links involving two screw pairs, two
sliding pairs, and one turning pair. Hence on turning the screw,

while one nut advances endwise the distance p the other advances the

distance so that the relative motion of the nuts is (/-y). An
example of this character is often seen in the screw couplings of railway

carriages, in which or the screw threads are of the same pitch

numerically but of opposite hands.

If we extend our survey so as to include fluid links, we may note

as further examples of screw pairs—(i) ships’ screw propellers, (li)

turbine water wheels, (lii) windmills, (iv) the rifle barrel and its pro-

jectile, and (v) steam turbine engines. For in each of these cases we
have screw surfaces in use whose relative motions are accordingly of

the type called a twist. In case (iv) the screw pair consists of the

projectile and the rifled bore of the barrel, the fluid link being the gas

which drives the projectile endwise. In each of the other cases the

fluid link assumes the form of one surface of the screw pair so as to

fit the other surface, which is of solid material.

163. Higher Pairing.—We now conclude the treatment of kinematic

chains by a brief reference to examples of higher pairing, the contact

between the elements here allowing them greater freedom of relative

motion because they touch only along lines or points as already

mentioned in articles 139^41-
Taking first examples of plane motion, the case of toothed wheels

formed from right circular cylinders needs consideration. These are

called by engineers spur wheels. It is shown in technical treatises that

if the teeth of both wheels in gear are involutes of the circle of constant

obliquity, or have their faces formed of appropriate epicycloidal curves,

and their flanks of corresponding hypocycloidal curves, then the

velocity ratio of the pair is constant and inversely as the radii of certain

circles known as the pitch circles. These circles are concentric with
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the wheels, and lie rather nearer the tips of the teeth than their root.

They are purely geom^rical lines, are in contact at the pitch point

when the wheels are running in gear, and the pitch of each wheel (that

IS, sum of tooth and space) is measured on this circle, and is, of course,

of the same value in each of the wheels gearing together. Hence the

radii of pitch circles of any two wheels which are to gear together are

proportional to their respective numbers of teeth. We accordingly

have the working formula for relative speeds :—Angular velocity ratio

of gearing wheels is the inverse ratio of their numbers of teeth.

It IS evident that this still applies approximately if the connection

is not by direct meshing and contact of the teeth but by the inter-

vention of a chain, as is usual in pedal bicycles. But the conditions

for accurate constancy of velocity ratio may not be the same as before,

and are perhaps rarely fulfilled in either case in actual practice.

Other examples among mechanisms of higher pairing and plane

motion are afforded by cams, ratchets, locks, and escapements.

The case of the possible motion of an inclined ladder is an example
of plane motion and higher pairing, and is easily dealt with by reference

to its instantaneous centre.

Perhaps the commonest examples of higher pairing in solid motion
are given by (i) bevel wheels^ in which the teeth are formed on cones,

their axes being inclined and intersecting; and (ii) the worm and
wheels in which the axes are at right angles and not intersecting. The
worm IS simply a short screw, and the worm wheel resembles a spur

wheel, but has the teeth set obliquely (and often hollowed out algo) to

suit the worm with which it gears.

It IS evident that the velocity ratio for bevel wheels is simply

the inverse ratio of their teeth numbers, while that for the worm
and wheel is the inverse ratio of teeth number and number of threads.

Thus if the wheel has fifty teeth and the worm but a single thread, the

worm turns round fifty times to the w^heel’s once.

Many other examples of both higher and lower pairing are dealt

with in treatises on mechanisms, but are beyond the scope of the

present work Students requiring further information on this subject

may with advantage refer to Dunkerley’s Mechanism.

Examples—XXXIV.

1. Explain by a diagram what is a slider crank chain, and find its instan-

taneous centres.

2. Sketch a slider crank chain with a coupler four times the length of the

crank, and obtain an expression for its velocity ratio. What does this

approximate to when the coupler is much longer ?

3. Obtain a graph for the velocity ratio of a slider crank chain whose
coupler is six cranks long.

4. What forms are assumed by the slider crank in other inversions ?

5. Give several familiar examples of screw pairs, and state the velocity ratios

which hold.

6. Enumerate and discuss several examples of higher pairing.
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CHAPTER X

STRAINS

164. Simple Strains.—In dealing with elastic bodies the terms stress

and strain were introduced in 1854 by the late Professor Rankine
and have been found very useful. In the following year Kelvin
modified the original usage as regards stress, and gave 1 definitions of

both terms, that for strain being as follows :

—

Definition.— ‘ A strain is any definite alteration of form or dimen-
sions experienced by a solid.’

It is easily seen that a slightly modified form of this definition will

allow us to apply the term to the compression or dilation of a fluid.

The term has been so used by Kelvin and Tait in their Natural
Philosophy {yo\. i. p. 116, 1890), and we shall follow that precedent
here. It is obvious that in the case of a fluid we cannot so easily

identify the individual particles in their primitive and strained positions,

but we can note the volume change, and that is all we require. Indeed
for our present purpose we may say that a strain is a change in the

dimensions of any given figure.

The mathematical theory of elasticity and even that of strains,

which forms the kinematical preliminary to it, are both beyond the

scope of this work. The subject of strains will accordingly be con-

sidered here at first in a very restricted form, the lines of a fuller

treatment being just indicated later.

Imagine a unit cube with its edges parallel to the co-ordinate axes

and centre at the origin. Now let all lines in the cube parallel to the

axis of X be elongated by the very small amount a^ so that the faces

parallel to the yz plane each move normally from it by the distance

<1/2, remaining parallel to their former positions. Also let it be under-

stood that this elongation of lines parallel to the x axis occurs pro-

portionally throughout the length of each line as well as uniformly

over the yz faces. Let a similar uniform and proportional small

elongation of amount e occur parallel to the^ edges, and finally one of

amount i parallel to the z fcdges. Then, if the primitive position of a

point P in the unstrained cube has co-ordinates (^, y, z), and shifts to

P' with co-ordinates (xlf y\ z') in consequence of the strain, the opera-

tions we have described may be represented by the equations

x'-’X=ax'\

y-j’=o’l <i)-

2=: izj

1 Encyclopaedia Bntannica, ninth edition, vii. p. 819.
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Thus the first three vowels of the alphabet here denote the fractional

elongations (or briefly elongations) occurring parallel to the axes

and z respectively.

The form of these equations shows that the elongation occurs propor-

tionally along each line, and also that each face moves normally to

its own plane and remains parallel to itself, for the change of x depends
on the X co-ordinate alone and not on y or a, and so for the other

co-ordinates.

As will be seen more fully later, the above strain is of the type called

homogeneous^ because it is all over alike. It is also called a pure strain,

that IS, devoid of rotation of the body as a whole, because the three

diameters of the cube elongate simply without rotation. Lines inclined

to the diameters may change their inclination even in this case.

Further, since the directions or principal axes of elongations are

parallel to the co-ordinate axes, the strain as expressed by the equations

(i)assumes a verysimple analytical form,and can be very easily dealt with.

Fractional Change of Volume.—If we now consider a parallelepiped

of edges x^y^ and a, in the unstrained state, we see that by (i) it has edges

(i-ffl)jf, {i^e)y, and {i-\-i)z in the strained state; hence its strained

volume is ( I +<*)(! -f i-a-^e-]rt)xyz nearly, if the elonga-

tions are so small that their products are negligible, which we shall

always suppose to be the case unless otherwise stated. Hence, to

this approximation, S, the fractional change of volume, is given by the

sum of the elongations, or

S=a-\-e-\-i . . . ... (2 ).

Thus, the condition for no change of volume is obviously

.
. (2a).

165. Typical Pure Strains.—A few strains that it is important to

notice are collected in Table iv. as given in article 68 of the writer’s

Sound,

Table IV, Typical Pure Strains.

Cases.

Elongations parallel
TO AXES or

Strains.

X y z

1 a € t General Pure Strain about co-ordi-

nate axes.

2 a 0 t Plane S^ain.
Simple Eloi^gation.3 0 e 0

4 d d d Uniform Dilatation, h-'^d.

Shape unaltered.

5 d 0 d Uniform Plane Strain.

6
i

e 0 -e Simple Shear. 1 5 ~ 0
Volume unchanged]x =

7 a -1 - i Elongation a with lateral contrac-

tions 1, or axial strain.
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The first strain in Table iv. is the general pure strain with elonga-

tions parallel to the axes of co-ordinates, the s'icond the same reduced
to two dimensions, the third an elongation merely. All these have
involved change of both size and shape \ the fourth is a case in which,

though the size is increased, the shape remains unaltered. The fifth is

but a simpler case of the second. The sixth, called a simple shear^ is

of special importance, since it presents the case of a change of shape
without change of volume^ the e being supposed small. Of course, the

negative elongation denoted by — ^ in the z column represents a con-

traction parallel to the z axis and equal in amount to the elongation

occurring parallel to the x axis. The seventh and last case in the table

is also specially important, since it is what occurs when certain solids

are pulled parallel to one axis, the other two axes being unacted upon.

Thus, as shown by the symbols, an endwise elongation a is accompanied
by-— i,

—
/, i,e, lateral contractions, in the two perpendicular directions.

The ratio of i to a in these cases is called Poissons ratiOy and will here

be denoted by a-

;
thus

o-=i/a (3).

The algebraic difference of the elongations of a very small simple

shear equals what is called the amount of the shear^ a term which will

be explained more fully later. Hence, denoting it by x» we have

X= 2^ (4).

166. Composition and Resolution of Small Coaxial Pure Strains.

—We may now take a few simple cases of composition and resolution

of .these simple small pure strains with elongations parallel to the

co-ordinate axes. To compound two strains means to find the resultant

strained state when two such strains are successively applied to the

same figure. Now it is shown by the mathematical theory of elasticity

that in general two pure strains result in a strain which is not pure
;
in

other words, two pure strains give as their resultant a third pure strain,

plus a rotation Moreover, it is not indifferent whether the pure strain

or the rotation be first applied, the two not being commutative. But
with our present limitation to strains along the same co-ordinate axes

this difficulty will not trouble us, as, in that case, two or more pure

strains will give a pure strain as their resultant. Further, since the

applications of elongations d and e to any axis means first multiplying

all lengths parallel to it by and then by the resultant will

be the factor (i -f -\-e). But since d and e are each supposed to be

very small, the resultant factor is nearly. That is, the

resultant elongation is the simple sum of the two or more component

small elongations. We may thus write down the component elongations

in order of the axes* along which they occur and add them for the

resultant elongations.

167 . Plane Strains.—Take first the case of compounding a

uniform plane strain and a shear so as to produce a general plane

strain ; i,e referring to Table iv., we are to compound strains 5 and 6

to build up strain 2.

We thus have the components (d^ o, d)
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and . (e, o,-e)

With which to build up (<7, o, /).

Hence ^=/,

or 2</=a-f-/=S (5),

and 2^=fl--/=x (6).

Thus the general plane strain resolves into a uniform plane dilation

whose elongation is half the sum of the initial elongations, and a simple
shear whose elongation is half their difference. Or, taking the quantities

on the right sides of (5) and (6), we may say that a plane strain involves

a fractional increase of volume equal to the sum of the elongations, and
a shear whose amount is their difference.

168 . Uniform Dilatation and Two Shears.—Let us now build up
the first strain in the table from a uniform dilation and two shears by*
the following scheme :

—

fW d. d)

Components -{(?,, o,—

[
(e^y—e^, o)

Resultant (<2, <r, t)

Then by addition we have =
d —e^= ey

and d—e^ =/.

Whence 3^=<74-^-f f=:8, ’j

y^=a+e-2t=i(d-i),\ . . . (7):

and 3<;,=a— 2«+/= 3((/— c),j

Since we have thus built up with the given strains, the most general

one in the table, it is evident that any other strain can be made from
these by giving suitable values to a, and t. Hence we have the

important kinematical theorem that any of the strains in Table IV, can
be built up of one strain involving change of size onfyy and two others,

each of which involves change of shape only. Thus, for the third case

in the table, a simple elongation (o, o), we have from (7), putting

a!=/= o,

= and — 2^/3 (8).

169 . Composition of Axial Strains.—We now take three strains of

the type in the last line of Table iv. with which to build up any of

those in the table. We begin therefore by obtaining the first case,

which being general includes all the rest. Taking the value of o- the

same throughout, we have accordingly the following scheme :

—

(ra,)
*

aj,— ira,)

g,)

Components

Resultant

Hence by addition

Lve accorai

](
4 (-<ra„

_±!_ IL
dt,— era* —

— <r<z, — a,=r:|.

L

and
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Whence, on solving for and ^„ we find

( I + o'X I — 2tr)= a( I — (tJ

-

f /)o-'j

+ — 20-)=tfri-.<rW(/+fl!)crV .... (9).

^3(l+o-)(l-2(r)=/ (i— tr)+ (fl4-(?)orJ

Thus, to build up the simple elongation c along the y axis from three

axial strains, we have merely to write «=oandf=o in (9). We then

find as the solution

aiU-{-(r)(^i — 2(r)= e<r 'j

«a(l+0’kl“2cr)= tf(i—a-)l (lo).

— 2(r)= ^o-
J

This result will enable us to find in a later chapter what lateral

forces must be applied to prevent contraction or bulging. (See equation

(10) of article 462.)

Again, to analyse a uniform dilatation {d, d) into three axial

strains, we write rt=:^'=/=^ in (9) and obtain the solution

£Zj=irj=a8= ^//(i--2(r) (ii).

Lastly, let us compound axial strains so as to result in the simple

shear (^, o,— tf). Then, writing these values on the right side of (9)
instead of (a, /), we have

^2= O
\

(12).

fl!3=-<?/(i+(r)J

170 . Sliear viewed as a Sliding.—It is now important to take an
entirely different view of the strain called a simple shear. We have

hitherto regarded it as consisting of an elongation (e) with equal con-

traction (— ^)at right angles.
2 .

Fig. 69. Rhombus before and
A Simple Shear.

But it is also possible to re-

gard it as a progressive rela-

tive sliding of undistorted

planes
;

for, strange as it

may appear at first, these two
statements of the matter lead

to precisely the same type of

X strain. The agreement of

these two descriptions can
best be traced out by refer-

ence to the Figs. 69, 70,

and 71.

In Fig. 69 a rhombus be-

fore shear is represented

by the full lines ABCD, and
^ after the shear (^, o, — ^) by

the dotted lines A'B'CD'.

Though the elongations are supposed to be very small, they are repre-

sented large in the figure for clearness’ sake. The primitive or un-

strained rhombus has semi-axes OA= i+^ and OB= i. Thus, to our

usual approximation for small strains, the semi-axes of the final or

strained rhombus are OA'=(i — i nearly and OB'= i -\-e. Hence
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the strained rhombus has axes and sides of the same size as the original

one ; the angles at corre^ondmg letters with and without accents are

accordingly interchanged. Thus, the acute angles at A and C become
obtuse ones at A' and C' exactly equal to those Originally at B and D,
which by the strain have become the acute ones at B' and D' equal to

those at A and C.

It accordingly follows that by a proportionate sliding of all lines

parallel to one side, say BA, in the direction from C to D while BA is

itself fixed, we can change the original figure to the shape of the final

one, but by this sliding we should also displace the centre of the figure

and rotate the axes. This is easily

seen by reference to Fig. 70, in

which as before ABCD represents

the original rhombus, and ABCD' DV
now represents the final form and \
position of the equal rhombus after

the strain, BA being held fixed. In
this case we must not regard the figure

as a hnkwork which swings with links

BC and AD of fixed lengths about B
and A as centres. On the contrary,

we must regard the solid body, which
the figure represents, as divided into

infinitely thin plane layers parallel to

BA and perpendicular to the diagram
and sliding parallel to BA, as though pio. 70 Simpi k Siilar as a
It were a pile of paper or a thick book Sliding paraliei 10 liA

whose covers are AB and CD, which
remain the same distance apart during their relative motion, each sue h

sheet of paper or leaf being undistorted as it slides

Amount of Shear.—This new view of the simple shear also leads

to a new mode of measuring it. Thus,

F1G.71. Simple Shear as a
Sliding parallel to BC.

referring to Fig. 70, the sliding dis-

tance DD' divided by the perpendicu-

lar distance AM is a measure of the

shear, and is called its amount, Flence

we may say generally, the amount of

a shear is the amount of relative siid-

tng of parallel undistorted planes per

unit distance apart. Though this defi-

nition shows 4hat the amount of the

shear, is strictly twice the tangent of

the angle MAD, it is evident that for

very small shears we may also regard

it as the value in radians of the angle

DAD'.
171. A Shear presents two Slid-

ings.—We have still to notice that the

shear may be viewed as a sliding of undistorted planes parallel to the
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1

other pair of sides of the original rhombus^ 'Thus if, as shown in
Fig. 71, we keep BC at rest, we may pass from the primitive rhombus

ABCD to the strained

one A'BCD' by the pro-

portionate sliding of un-

distorted planes in the

direction AD parallel to

BC.
The amount of the

shear is now the quotient

DD' divided by CN, and
IS obviously of the same
value as before.

The fact that a shear

presents these fzvo slid-

tngs of undistorted planes

occurring simultaneously

and parallel respectively

to AB and to BC may
be illustrated to a class

by the frame, of which a

photographic reproduc-
tion IS given in Fig. 72.

The outer part is of
mahoganywith brass bolts

and lock nuts at the cor-

ners, which have slots to

allow opposite sides of

the rectangle to be ap-

proached or separated by
the hands, thus represent-

ing the first view of the

shear. The inner rhom-
bus IS of brass, and re-

presents also the shear
on the first view, the

elongations and contrac-

tions being as in the

rhombus ABCD of Fig.

69. Across this rhombus,
parallel to one pair of
sides, a number of white
cords pass to represent

the sliding of one set of

undistorted planes. In
the direction parallel to

the other pair of sides

black cords pass to repre-

and their simultaneous

B. Strained Position.

Fig, 72. A Shear presents two Slidings.

sent the other set of undistorted planes
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sliding in another direction. If the model is held in front of a

brown or grey backgroiltid both sets of cords are seen simultane-

ously
;

or, if held in front of a black board or white screen the

white or black cords are respectively brought into prominence as

desired, the other set being at the time scarcely noticeable. It should

be borne in mind that this model is to represent the simultaneous

double sliding of two sets of undistorted planes, and must not be
supposed as correctly representing evety feature of a shear. Thus the

brass rhombus causes the parallel cords when sliding to slightly change
their distance apart, which is unlike the actual shear.

172. The Amount of a Small Shear is twice its Elongation.

—

Denoting now the amount of a small shear by x> its elongations being

{(f, o, we can easily show, by reference to Figs. 69 and 70 of

article 170, that x= i>. the amount of the shear is double the

elongation^ or equals their algebraic difference. Thus, referring to Fig. 70
and then to Fig. 69, we have

x/2=tan MAD(Fig. 7o)= tan (OBA— OAB)(Fig. 69).

But, on Fig. 69,

tan OBA=i4-^andtan OAB= <f)= i —(? nearly.

Hence, by the formula for the tangent of the difference of two angles

'
1 +(!+«)/( I +«) *

’

or X=2«=''-(-<) ( 13).,

as was to be shown.
It should also be noticed from Figs. 69, 70, 71, and 72 that the

plane of the elongation and contraction which describe the shear in the

first way is also the plane of the slidings which specify it in the second

way. This plane is called the plane of the shear. The axes of the shear

are those of the elongation and contraction, and are obviously, for the

small shear under consideration, inclined at angles of 45" to the lines of
sliding^ which are the intersections of the plane of the shear with the

parallel undistorted planes that slide

Examples—XXXV.

1. Define strain^ and state the condition for a strain to be pure. Give
two examples of strains, and find in each 4:ase the volume change
involved. •

2. Specify five different strains, expressing each by its elongations along
the co-ordinate axes. Show that any homogeneous strain may be
made by compounding a strain involving change of size only with
others, each involving change of shape only. Give a numerical
example.

3. Show that three axial strains are competent to build up any homogeneous
strain whatever.
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4. Find the axial strains to produce— ,

{a) A uniform dilation whose fractional volifme change is o*oo6.

ip) A simple shear of which the amount is o 006.

{c) A simple elongation equal to o'ooi.

Take cr~o'2 throughout, and check your results by addition of the axial

strains obtained.

5. Explain carefully how a shear may be viewed as a progressive sliding of

parallel planes without other distortion of those planes. Prove also

that for a small shear its amount is twice each of the elongations

involved.

173 . Homogeneous Strains.—It will be well now to slightly broaden
our view and pass from the pure strains hitherto considered to homo-
geneous strains, which form a rather more general class. The distinction

between the two was just mentioned in article 164; we may now define

as follows, quoting Kelvin and Tait :

—

Definition.— ‘If, when the matter occupying any space is strained

in any way, all pairs of points of its substance which are initially at

equal distances from one another in parallel lines remain equidistant, it

may be at an altered distance
;
and m parallel lines, altered, it may be,

from their initial direction; the strain is said to be homogeneous.’
Properties of Homogeneous Strain.— ‘Hence if any straight line be

drawn through the body in its initial state, the portion of the body cut

by it will continue to be a straight line when the body is homogeneously
strained. For, if ABC be any such line, AB and BC, being parallel to

one line in the initial, remain parallel to one line in the altered, state

;

and therefore remain in the same straight line with one another. Thus
it follows that a plane remains a plane, a parallelogram a parallelogram,

and a parallelepiped a parallelepiped
’

'

Further, similar and similarly situated figures in the primitive state

remain similar and similarly situated figures after a homogeneous strain.

The lengths of parallel lines in the body are all altered in the same pro-

portion. Thus, any plane figure changes to another plane figure, which

IS a magnified or diminished orthographic projection of the first on
some plane. Accordingly, an ellipse remains an ellipse and an ellipsoid

remains an ellipsoid. For, since the sections of an ellipsoid are all

ellipses, they can only be changed to other ellipses, which are therefore

the sections of another ellipsoid. The circle and sphere are here each

included in the more general terms ellipse and ellipsoid.

In particular, let us notice that a circle becomes an ellipse in which

any pair of conjugate diameters were perpendicular diameters of the

circle. But the ma^^or and minor axes of the ellipse are perpendicular

conjugate diameters, and therefore have not been changed in mutual
inclination by the strain, though they may have been moved thereby

from their original directions when perpendicular diameters of the

circle.

174. Strain Ellipsoid.—Take next a sphere in the primitive or

1 Natural Philosophy, Part i., articles 155-156, p. 116, 1890.
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unstrained figure, an4 describe a cube about it. Then the homo-
geneous strain will chan^ the sphere to an ellipsoid and the circum-

scribing cube to a parallelepiped, not, however, in general to a rectangular

one. But the six points of contact of the sphere and the cube, being

the ends of three rectangular diameters of the sphere, become the ends
of three conjugate diameters of the ellipsoid, and are still the points of

contact of the inscribed and circumscribed figures. Hence if, at the

outset, we rightly chose the orientation of the cube with respect to the

strain about to occur, then that cube would become a rectangular

parallelepiped touching the inscribed ellipsoid at the ends of its three

perpendicular conjugate diameters, i,e. its principal axes. We must
remember, too, that whatever happens to a sphere in one part of a body
experiencing a homogeneous strain, happens also to any other sphere

anywhere else in that body.

That ellipsoid which is produced by a homogeneous strain from a'

portion of the body initially spherical is called the strain ellipsoid.

Thus, as we have seen, the principal axes of this ellipsoid being derived

from perpendicular diameters of a sphere have suffered no change in

their mutual inclination^ but they have, in general, experienced a common
change in their directions from the configuration which they had when
diameters of the primitive sphere.

But we have also seen (in articles 113-115) that a rigid body with

one point fixed can pass from one position to any other by rotation

through a calculable angle about a specified axis through the fixed

point. Hence, there must be one line in the figure devoid of change
in inclination. And this line is the axis about which the three

rectangular axes maybe regarded as rotating from their original to their

final position without any change in their mutual inclination.

The three principal axes of the strain ellipsoid are called theprincipal

axes of the strain by which it was derived from a sphere. The principal

elongations of a strain are those which occur along these axes. When
the strain is as general as possible for the given axes, all the elonga-

tions are different. Hence, the principal axes of the corresponding

ellipsoid are all different. Thus, if the sphere were of unit radius and
the elongations (<r, i) where a>e>i, the semi-axes of the ellipsoid

in order of decreasing magnitude are and i-ff, along the

axes of X, and z say. Then, along the axis of x the elongation is a

maximum, along that of z a minimum, while along the axis of y the

elongation is a minimum for all directions in the xy plane, but a maxi-

mum for all directions in the plane, A contraction is to be counted

as a negative elongation, and the above statement taken in the algebraic

sense. ,

If two of the elongations are equal, the ellipsoid becomes an
ellipsoid of revolution, t.e, a spheroid, oblate, or prolate. If all three

elongations are equal, it becomes a sphere, and the strain is a uniform

dilation or contraction.

176 . Analirtical Representation of Homogeneous Strains.—Let us

now express a homogeneous strain by a set of equations. Take O, the
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origin of cartesian axes, at a point of the body that remains unmoved
by the strain Let x, z be the co-ordinates any point P before the

strain, and x\y\ z' those of P', its new position in consequence of

the strain, which we will suppose to be as general as possible subject to

its being homogeneous Now we have seen that any three perpendicular

diameters of a sphere in the primitive state become three conjugate

diameters of the strain ellipsoid, and are consequently in general changed
in length and in mutual inclination. Hence to fully express a homo-
geneous strain we need to indicate what becomes of three lines not

originally coplanar. For simplicity’s sake we will take these along the

co-ordinate axes and of unit length. Obviously each line can suffer a
change both of length and of inclination, and the latter needs two
angles to specify it. We accordingly need three constants to state what
happens to each of our three unit lines, ue, nine constants in all. We
•may conveniently take these as constants expressing the displacements

of the ends of the three unit lines parallel to each of the co-ordinate

axes respectively.

Thus, let the end of the unit line from the origin along the axis of x
shift by dy and g parallel to the axes x^ and z respectively. Let

the end of the unit line along

the y axis have like shifts by Cy

and h. Finally, let the end of

the unit line along the z axis

have shifts r, /, and 1. Then,
if we multiply the shifts for a
unit line by the value of a co-

ordinate in the same direction,

X say, we should obtain the

shifts for the end of a line of

original length x. This there-

fore applies to the x co-ordinate

of P, similar remarks holding

for the y and z co-ordinates.

But the strained values and
positions of these three co-

ordinates meeting in O, and originally Xy y, and a, are the three
adjacent edges of the oblique parallelepiped whose opposite corner is P',

the strained position of P.

The shifts from P to P' parallel to the fixed co-ordinate axes are
accordingly given by the expressions

Fig. 73. Nine Constants of
Homogeneous Si rain.

x^-^x^ax-^-by -\-cz

« y'—y —dxA-ey A-fz

z' gX’Yhy-^iz^

(14).

It is seen that the coefficients on the right side are the first nine
letters of the alphabet taken in order. We also see from (14) that the
shifts of any point in a body experiencing a homogeneous strain are

linearfunctions of its co-ordinates. The equations can easily be verified

by reference to Fig. 73, which shows the meaning of the nine constants,
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and represents by PQ, QR, and RF the values of /—y, and
z —z respectively. •

Of the nine constants in (14), it should be noted that the vowels
a, <?, t denote the elongations parallel to the axes of 7, 2:, as in

Table iv. and elsewhere. The consonants <r, d,f, g, h, on the other
hand, show the amounts of the shears reckoned as the relative slidings of
the three pairs of planes to which the co-ordinate axes are normal, one
of each of these pairs of planes having slidings in the two directions
parallel to its edges. Thus, referring again to Fig. 73, ^ shows the
amount of the shear suffered by the body by the sliding of the plane
Fx parallel to the axis of ie. d is the relative slide parallel tojv, of
planes parallel to yz^ per unit distance apart along the axis of x.

Similarly g is the amount of the shear reckoned as the sliding of the
same planes parallel to 2, and so on for the other four consonants, as
may be seen from the figure. *

176 . Rotation in Homogeneous Strains.— Let us now inquire if

the homogeneous strain expressed by (14) involves any rotation; if so,

what modification in it would
correspond to the elimination of

that rotation, and so reduce it to

a pure strain. To deal generally

with the problem requires the

use of solid analytical geometry
and the discussion of the result-

ing cubic equation. But the

following simple geometrical

treatment gives a useful prelim-

inary insight into the matter

Consider a cube of the un-
strained substance, and take co-

ordinate axes parallel to its edges
with origin at its centre, also let

its sides be of length two units.

Take a section of this cube in

the xy plane as represented in

Fig. 74. Hence, since 2=0 in

the plane of the diagram, the

equations (14) reduce to

Fig. 74. Unequal Slides involve
Rota riON.

x'—x^ax-{-hy\

y'-y=^dx-\-ey L, (15).

z'-^o—gx-^hy] »

But as the constants a and e express elongations without rotation
along the rectangular axes of x and y respectively, we may omit them
from our present consideration. Further, since the components of
will only involve a rotation of our sectional plane about the axes ofy
and X respectively, and be invisible in the diagram, we ignore them also,
and confine our attention to the constants which may express rotation
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in the plane of the diagram that is about O (or^ about the axis OZ).
Hence for this plane case (15) finally reduces to

x' —x-=^by y'—y—dx (16).

Thus, following the equations (16), the square PQRS, as shown in

Fig. 74, is changed by the strain to the parallelogram P'Q'R'S'. And
it IS seen that not only are the diagonals of the square PQ and RS each

rotated, but that they are both rotated in the same direction^ viz. counter-

clockwise, if d>b. Now, if the original square had been subject to

unequal elongations parallel to the axes of x andjv, the diagonals would
have been each rotated, but in opposite directions

; P and S approaching
and P and R separating, or vice versa. Thus we see that opposite

rotations of certain lines originally perpendicular are consistent with a

pure strain. But rotations of such lines in the same way are not con-

sistent with a pure strain, for they clearly involve a rotation on the

whole in the direction in question.

177 . Conditions for Pure Strain.—If now d and b interchange the

values assigned to them in the diagram (Fig. 74); or, keeping the same
values, the positions of these consonants in equations (16) are inter-

changed
;
then, in either of these equivalent cases, the pure strain in-

volved IS the same in character and magnitude as before, and the

rotation is the same in numerical value, but reversed in sign.

Hence, if d and b have the same values, the rotation, if any, is still

reversed by their interchange. But since the interchange of equals has

no effect, there cannot be in that case any rotation to reverse. This

could also be easily seen by drawing d equal to b on Fig 74, when
obviously the diagonal PQ would be simply lengthened without rota-

tion, and the diagonal RS shortened only, also without rotation

Referring again to equations (14) of article 175, we have now shown
that the equality of d and b means no rotation about OZ of the sections

parallel to the plane of XY. Similarly, therefore, the equality of g and
c would mean no rotation about OY of the section parallel to the plane

of ZX. Finally, the equality of h and/would correspond to no rotation

about OX of the planes parallel to YZ. Thus, with all the three

equalities fulfilled, we have a strain devoid of rotation. We may
accordingly write as the conditionsfor a pure strain

d=b,g=c, and h==f (17),

the pure sttain being itself analytically expressed by

x'—x—aX’Yh'^^^\
y —y=:.bx-\-ey-^-fz\ (i8).

Y = cx-\-fy -Yh]

Thus, the nine constants for the homogeneous strain (equation (14)

of article 175) being reduced by three on introduction of the conditions

for a pure strain of equation (17), leave us the six constants of equation

(18). And it may easily be seen that six consonants are necessary and
sufficient to specify any quite general pure strain, since three constants

are needed for the three principal elongations, and three more to define

the principal axes about which they occur. For, with respect to the
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co-ordinate axes, twa angles give one principal axis of elongation, and a

third angle then sufficed to fix the other two pnncipaj axes of elongation,

since all three are mutually perpendicular.

178. Pure Strain analytically derived from Homogeneous Strain.

—Let us now derive the conditions for a pure strain in a more formal

analytical manner. In the primitive state, let Xy z be the co-ordinates

of a point P distant r from the origin, and, by the strain, let this

becomp P' of co-ordinates x\ y\ z distant ^ from the origin, but

without angular displacement of the line OP, which accordingly suffers

elongation only m the ratio r : /=i : A. say. Then we have

x'lx=^yiy=z'jz—X (19).

Also, both before and after the strain, the line OP, or OP', has

diiection cosines

xlr,yjr,zjr (20);'

or, the same letters with accents all through.

If we were to write x=xXy etc., from (19) in equations (14) of

article 175, we should obtain three linear equations, and on eliminating

from them the two ratios of Xy y, and z we should leave a single equation,

namely, a cubic in A, which must accordingly have three roots. Of
these roots one must be real, and the other two may be both real or

both imaginary.

But, for our present purpose, it is unnecessary to write these

equations and derive the cubic. We need only to take the case in

winch the three roots are real, Aj, A2, A, say. These correspond to

three directions along which elongation free from rotation occurs, and
we shall further suppose them to be mutually perpendicular, points on
each line being denoted by x^y, and r, with subscripts i, 2, and 3
like the A’s. We have accordingly to determine the condition that the

roots should be real and correspond to mutually perpendicular lines.

Then, making in equation (14) the substitutions x'—Xx, etc., for

two of the lines, and writing a for (i+a), c for and t for (i+0>
we find

A 3
= aXi+ 2+ ^2^3

]
X^^=dx^-^iyi+/zA (21),

K^^—gXi+hy^+ LZi)

and
Aj^,

=

ax^ -f hy^ -f czt 1

A^3=^-^8+«Jt'8+/2:, V (22).

Now multiply the three equations of (21) by ^#,^3, and z^ respectively

and add the results. From this sum subtract that obtained by multi-

plying the three equations of (22) by x^, y^y and and adding. We
thus find as the difference of these two sums

= (^3-A,)(j*:2X5-f>'aJ)/a+0a2a). . (23).

But, remembering that the cosine of the angle between two lines is

the sum of the products of their corresponding direction cosines, and
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noting (20), we see that the condition for perpendicularity of the lines

and r, is
^

+ -22^8=0 (24)-

Hence the right Side of (23) vanishes, and consequently the left side

also.

The conditions that is perpendicular to each of the lines r<^ and r,

must also be introduced, and may be written

-byi >^2 -f ^1^2= OI
/ V

From these two equations (25), by the ordinary algebraic elimination,

we obtain

... ^ . .
. (26).

y^Zi ^3 3^2 z^x^—’Z^x^ x^yi— >^8^'a

Substituting (24) and (26) in (23) we have

{^-/)xi+(c-g)yi+ {d- 6)z,^o .... (27).

But, since the order of subscripts is indifferent, this relation must
hold for the co-ordinates of points on each of the three mutually

rectangular lines along which elongation occurs free from angular dis-

placement. This can be true only when each of the coefficients of

Xf y, and z vanish. We accordingly find as the condition for

reduction of a homogeneous to a pure strain

• h=f c=gt and d^b . (28)

And this agrees with (17) of article 177, and reduces the expression

of the strain to the form shown m (18), requiring six constants only.

179, Pure Strain along Co-ordinate Axes.—Of the six constants

for a pure strain, we have seen that three were required to define the

principal axes of elongation. Hence, if these are chosen as the

co-ordinate axes, the corresponding defining constants disappear, and
therefore, in order to fully specify the strain, we then need only the

three constants which express the principal elongations. We have thus

returned to the simple case with which we began in article 164 as

expressed in equation (i). This result may be deduced analytically

also from the equations of article 178. Thus, if we put ^i, r, along

the axes of x^ y, and s respectively, we have

y^= Zl=o, Ar2= aa= o, x,=jyt= o.

Then by regarding equations (21), (22), and (28), it may be seen

that d=g^i^h=c=f=o \ , ,

and A,=a=i+<i, A,=f=i+#, A,= t=i+i/ ’ '

We may accordingly compactly summarise, as in Table v., the

characteristics of the homogeneous and pure strains already noticed,

and may refer to any one of these strains by simply quoting the

corresponding set of co-efficients.
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Table V. Coefficients for Homogeneous Strains.

The Body of the
Table shows the
coFhFiciEN rs OF
THE CO-ORDINATES

JT, y, AND Z

TO EXPRESS—

General
Homogeneous

Strain

General
Pure

Strain

Pure Strain
ALONG THE CO-
ORDINATE Axes

J', X, y, », X, y, z

and - 2”.

a b c
d e f
g h t

a 0 0
0 e 0
0 0 /

Examples—XXXVI.

1. Define a homogeneous strain, and enumerate some of its properties. A
bar of india-rubber about three inches long and half an inch square is

in tuin pulled, bent, and twisted in the fingers
;
describe the strains in

each case, showing by sketches what becomes of straight lines, circles,

etc
,
drawn in the substance m jts unstrained state.

2. Show that a homogeneous strain can be specified by stating the figure

produced by it from a sphere in the primitive body.

3. Define s^ram ellipsoid^ and explain how it is derived, illustrating your
answer by some simple examples

4. Represent a homogeneous strain by a set of equations involving nine

constants, and illustrate your answer by a sketch showing the meanings
of each constant.

5 Show that a homogeneous strain of the most general type involves

rotations m addition to a change in dimensions, and simplify the

expressions for the strain so as to remove the rotations.

6. Represent by equations homogeneous strains requiring for their specifica-

tion 9, 6, and 3 constants respectively, and show by diagrams and
descriptions what each class of equations leally denotes.

7. Show analytically that the nine constants of a homogeneous strain reduce

to six if rotations are absent, and to three if the co-ordinate axes are

taken along the principal elongations.

180 . Equation of the Strain Ellipsoid.—The principal axes of

elongation being now taken as the co-ordinate axes, the equation of the

strain ellipsoid assumes m consequence a simple form. Thus if, in

the primitive figure, we take a sphere of unit radius, we may denote it

by the equation

- (30).

Then, on subjecting it to the strains of eloil^ations a, /, this sphere

becomes the strain ellipsoid, whose equation is
*

.
-^1- 4.- -

(i+a)-

or

(3 «).

of semi-axes a, c, i, which equal (1+^), and (i+O respectively.

By giving to a, and i any of the values shown m Table iv. of
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article 165, we obtain the strain ellipsoid corresponding to the particular

type of strain in question. Thus for case i wfc have the general type,

the ellipsoid having three unequal axes as shown in (31). In case 2

only two of the axes are changed from their original unit values
;
in

case 3 only one of them is changed. For case 4 the ellipsoid is a
sphere. For case 5 the sections parallel to the zx plane are circles,

the semi-axes along y remaining of its original unit value. For the

simple shear shown m case 6 the axis of y remains unchanged, that of

X has the elongation e, and that of z the equal contraction^ or negative

elongation Finally, in case 7 we have an elongation a along the x
axis, and contractions t along the other two axes. Thus for cases 3,

5, and 7 we have ellipsoids of revolution.

181 . Cone of Given Constant Elongation.—Let us now consider

the possible directions in which the elongation has a given constant

value, say i : \ These will evidently be given by the directions from

the origin to the intersection of a sphere of radius A with the strain

ellipsoid of semi-axes a, 6, and t. Hence we may write the equation

of this sphere in the form

(3^)-

Subtracting (31) from this we obtain, for the required locus, the

equation

or Ax^ By’^ Cz’^— o . .
. (34).

These last two equations represent 2. general conical surface with vertex

at the origin. Various special cases need notice.

Case I,—Let a>A>€= t. The ellipsoid is then one of revolution

about the axis of x^ and from (33) we see that the locus becomes
= o (35),

which is a right circular cone about the axis of x^ as might have been
anticipated on geometrical grounds

If we now reduce A so as to equal e and t, it is evident that the cone
shrinks to two planes coincident with the plane of yz and represented

by the equation

. . . . (35a).

Case II.—Let a>A=€>t. The ellipsoid is now general, and the

elongation A equals the medium principal elongation. Then we see

from (33) that the locus i;educes to

t Ax'^—Cz’^— o . . .
. (36).

That is, the cone reduces to two planes intersecting on the axis of y.

But, since these planes are also sections of the sphere of radius A, we
see that they are the two central circular sections of the ellipsoid.

Case III.—Ztf/a=(i 4-^), A=€=i,and 1=1— ^ being very small.

Then this gives us the simple shear of elongations e in the plane of zx.

Referring again to (33), we see that the locus now reduces to

— 2®= o (37).
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which represents two planes intersecting each other perpendicularly on
the axis of y, and incliifed at angles of 45* to the axes of z and x.

Further, since these planes are the intersections of a sphere of radius

A=i, they are the two central circular sections of the ellipsoid and of

their primitive size. And this fact, of no distortion caused by the strain,

holds for allplanes parallel to those of (37).

182 , Shear Ellipsoid derived by Slidings.—But we have seen in

articles 170 and 17 1 that a simple shear may be viewed as a pro-

portionate sliding of undistorted planes parallel to each other. Hence
the strain ellipsoid representing a simple shear should be capable
of derivation from the primitive sphere by this method of sliding,

and we may now easily see that this is the case. As a preliminary,

let us note that all the sections of the ellipsoid parallel to the,

central circular sections are also circular, since all parallel sections

of an ellipsoid are

similar. It remains

then to show that the

circular sections of the

sphere and ellipsoid

by a given plane are

equal, and that the

same amount of shear

suffices to slide any

such section of the

sphere to the position

it must occupy as the

corresponding section

of the ellipsoid. To
illustrate these points

clearly in a diagram it

is desirable to deal with

a finite shear of elon- Fig. 75 Strained Ellipsoid derived

gational ratios e, r, and Slidings.

I /c along the axes y,

and z respectively. A section in the zx plane of the primitive sphere

and the strain ellipsoid is shown in Fig. 75.

In this figure the central circular sections are shown by EOF and
GOH. Draw OJ perpendicular to EOF and meeting the circle in

J, then draw through J the line JK parallel to EOF and tangential to

the circle at J and to the ellipse at K, also joip KO and produce to K'.

Then KOK' and EOF are conjugate diameters. • Hence OJ and OK
bisect in the sphere and ellipse respectively all chords parallel to EOF,
one of the central circular sections. Thus the amount of the shear

when viewed as a sliding parallel to EOF, as shown by the arrows,

is measured by JK/OJ. Draw Aai and parallel to EOF and
through the extremities of the major and minor semi-axes of the ellipse.

Then we see that the primitive lines aiOhi must rotate clockwise to

their final positions AOB through the angle KOa^ or BO^j. Thus the
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sliding of the parallel undistorted planes involves a rotation and derives

A from Oj and B from \ whereas, if the same^strain ellipsoid is derived

from the sphere by the elongations i :
« parallel to the axis of x and the

contraction c : i parallel to the axis of the A is derived from a and
B from b, the strain being pure, that is, devoid of rotation. It should

be noted that in either case lines parallel to the axis of y perpendicular

to the plane of the figure suffer no elongation or contraction. Thus,

for the pure strain, unit lengths along the axes of and z change to

lengths €, I, and i/e respectively, these three rectangular axes suffering

no angular displacements. Whereas for the shear when occurring as a

system of slidings parallel to EOF, only the axis of y remains without

angular displacement, and is the axis about which the lines Oai and
rotate to the final positions OA and OB.

Of course, the slidmgs might occur parallel to the other circular

section GOH, as shown by the dotted arrows, in which case the points

A and B would be derived from and b^ respectively, and the rotation

involved is equal and opposite to that in the former case.

Thus, if a diametral section, like EOF, of the primitive sphere is

maintained at rest, the shear produced by a set of slidings involves

a roiaiion in the sense of those slidings in addition to the pure strain as

expressed by the elongation ratios. If, on the other hand, a point on
the surface of the sphere, say J, is kept at rest while a shear occurs by
these slidings, then we have a shift of the centre besides the above
rotation and the pure strain.

•

183. Analytical Treatment of Shear Ellipsoid.—In the preceding

article certain relations between the circle and the ellipse were referred

to in general terms and without any formal proof. Some of them rest

on well-known properties and need no further proof, others requiring

proof may be treated m various ways The ordinary cartesian treat-

ment will be outlined here and the necessary quantitative relations

established.

The pnmitive sphere of unit radius and the strain ellipsoid of semi-

axes e, I, and i/c have for their sections in the zx plane the respective

equations

z'+x^= i .... (38),

and €V+j:7'’=i •
• (39)-

The equations of EF and GH derived from these are respectively

€Z-{‘X=o and (Z—x (40)*

The radius OJ, perpendicular to EF, is

‘ (41),

J has co-ordinates (i/ Vc’-l- 1, </ Vc’-f i) (42),

and JK, parallel to EF, and tangential to the circle at J, is

€z^x=:^€^+ i (43).

But this fulfils the condition for tangcijcy to the ellipse, which it touches

at the point K, whose co-ordinates are

(<7 %/<' fi, i/« (44)-
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Thus, the tangents of the angles XOK, XOH, and XOJ are respec-

tively

i/€*, i/€, and € . . . (45).

Also JK is c—i/f, and since OJ is unity, we see that the amount of
the shear is given by

X=JK/OJ=e-,/* .... . (46).

Thus, if the elongational ratio where e is vanishingly small,

we find

X=i+<f— 1/(1 +<?)=2tf nearly . . . (47X
as shown in article 172 of equation (13).

Also, we see by (45) that where € is practically unity, as for

the small shear just considered, the lines OK, OH, OJ all coalesce and
make with the axes of 2 and jc the angle ?r/4. Hence we see, as before,

that the two sets of planes of no distortion are perpendicular to one
another and bisect the angles between the axes of elongation and con-

traction.

That the shear is of the same amount everywhere really follows

from the fact that we could make the sphere and ellipse of any size we
like within the volume subject to the strain in question, but we can also

prove it analytically thus. Take the line PQRS parallel to EF, then
its equation may be written

(4S)>

where /=LO, and the difference of the ^’s for either (i) P and Q
or (11) R and S is, by (38), (39), and (48),

(49)-

Thus, denoting by ^ the angle between EF and OC, we have

tan ^=e, cos 6>=i/ + sin ^=6/ +
and so find PQ— NP/cos i)/ i,

and OM=/ sin 0=/c/ +
Hence, the amount of the shear which carries P to Q and R to S
is given by

X= PQ/0M= (€*— i)/e=e~i/e . . , (50),

and IS thus seen to be independent of / and to agree with (46).

Consider now the rotation involved when the shear is produced by
slidings parallel to EF, which remains at rest. It is easily seen that A
is derived from aj and B from hj, the equations of Aaf and aBhi being

respectively €24-^= « and ca4-^=1 (51).

The co-ordinates of aj and hi are also seen to be

(2«/(«’+i), (€*-i)/(«*+i)) and (-(«’-i)/(«.‘+ i), 2€/((’+i));

thus Oai and Ohi are at right angles, and the angle through which each

rotates about the axis of from its initial to its final position, is given by

tan\;'=:(e*— l)/2€=(c~.i/e)/2= x/2- • • -(52)-

Therefore, in the case of a vanishingly small shear of elongation e, and
with slidings parallel to EF, we should have the rotation expressed by

tanv^=^ (53).

M
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184. Composition of Pure Strains and Rotations.—Although the

composition of strains and rotations in gent^ral (/ e. when they are

about axes inclined in any way) lies beyond the scope of this work, it

seems desirable to point out that the resultant of two finite pure strains

occurring in succession may involve a rotation in addition to the dis-

tortion. Hence on afterwards applying another pure strain to undo
that already produced, we reach the striking result that three successive

pure finite strains may yield a rotation only, without relative change
of the parts of the figure. This is shown by Tait in his Dynamics
as follows :

—

Let the first pure strain be represented by

x' =ax-\-hy-\-cz\

y'=bx-\-(.y-Vfz\ (54),

and the second pure strain by
X — o!x -1-b'y -b c'z' 1

y'='^'*'+«y+A' ^ . (ss).
z"=c'x'-\-f'y'-^i'z']

in which the Greek letters a, c, and i represent as before the elongation

ratios, and are respectively equal to i-Ya, and i+f*
Hence, by substituting in (55) the values of x^y^ and z expressed

in (54), we can express x'\ v", and z" in terms of x, y, and z In other

words, we can express the resultant of the two pure strains when
applied in the order given. To show that this resultant involves a

rotation, we need only fill in two of the coefficients. Thus

x"=( )x+{ab-\‘b'€-{-c'/)y+(. . .)z]

y'—(//a-{-€b+fc)x-Y{ )y4-( • » • (s^)*

)^+{ )/+(• •

Now the criterion of a pure strain is that three equalities exist between
the nine constants as proved in articles 177 and 178, shown in

Table v. article 179, and as illustrated by the bj c, and / in (54) and

(55). But it IS clear that in the general case these equalities will not

be satisfied in (56), consequently a rotation is, in general, involved.

For example, an elongation along one axis followed by an equal con-

traction along another axis not at right angles to the first involves a

rotation.

The reader should also note that the resultant of a pure strain and
a rotation usually depends on the order in which they occur, for these

operations are not in general commutative.

185. Restrictedt Strains.—We have hitherto dealt with strains

chiefly in three dimensions, and supposed that the individual points of

the primitive and strained figures can be identified and followed during

the occurrence of the strain. Of course, these assumptions apply only

to solid bodies extending throughout this tri-dimensional space. But
the modifications required for other cases need only brief mention.

Thus, for fluids^ the strain reduces to a change of volume simply, and it

may become impossible to identify any points and follow them in their
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motion during the strain. Again, in the case of thin extensible

membranes^ we are alm^Jst reduced to a surface, and often a plane

surface, in which case we have only plane strains to consider. Lastly,

for elastic cords of negligible thickness, if straight, we have simple

elongation.

If, however, the cord passes round constraints so as to occupy solid

space, It is sometimes of importance to find an expression for its rate

of stretching per unit length per unit time. Equation (7) of article 137
was simply this rate of stretching equated to zero. Hence w'e have for

our present case where it may be finite

ds_^dx dx dy dy di dz , v

ds ds* d$ ds* ~ds ds‘ ds
w ^

We have now dealt sufficiently for our purpose with pure and homo-
geneous strains. Whatever theory of heterogeneous stiains may be

needed later will be then developed as required, and with immediate
reference to the special problem under discussion.

Similar remarks apply to other possible motions of deformable
bodies as vibrations and waves, for since we are only subordinately

concerned with them their kinematics may be taken along with the

kinetics of each such problem.

Examples—XXXVII.

1. Define strain ellipsoid.^ and write down its equations for {a) a uniform
dilation of 0*003 fractional volume change, {b) a shear of amount 0*004,

{c) an axial strain of elongation 0*008 and lateral contractions 0*002.

2. In the case of a unit sphere in the primitive body becoming an ellipsoid

in the strained body, find the locus of the constant elongations, and
discuss some of the chief cases which arise.

3. What special significance have the two circular sections of the strain

ellipsoid in a certain case ?

4 Draw carefully the strain ellipsoid for a shear of elongations one-tenth

and amount one-fifth nearly, showing how it may be regarded as derived

from the unit sphere by progressive slidings of iindistorted planes.

5. Show analytically that the shear ellipsoid may be derived from the sphere
by an elongation and equal perpendicular contraction, or by shdings at

angles of 45'’ with the above directions and of an amount double the

elongation.

6 Show that the successive application of two pure strains inay result in a
rotation. Is this possible if each of the pure strains involved only
elongations about the same co-ordinate axes ?
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PART III.—KINETICS

CHAPTER XI

PHYSICAL BASIS

fl86. Physical Conceptions.—In Chapter iii. the fundamental con-

ceptions or intuitions of space and time laid the geometrical basis for the

kinematical development which followed in Chapters iv.-x. In these

the combination of displacements, velocities and accelerations was
sometimes seen to tally more or less closely with various natural occur-

rences familiar or rare. But the accelerations were in all cases simply

postulated without any conditions being prescribed under which alone

they might be expected to obtain. And that which was supposed to

move was often only a mathematical point, linear, plane or solid figure

or a combination of such ideal parts.

In order, therefore, to make our description of phenomena at once

mckre extensive and more precise, we must now introduce new and
physical conceptions. We must conceive bodies as moving and know
something as to the conditions under which their accelerations may be
expected to occur. Then, having laid this ])hysical basis in the present

chapter, we can build upon it in combination with the kinematical

theorems already developed, any subsidiary experimental data being

introduced where required.

The chief new physical conceptions that need introduction here are

the following four :

—

(i) MasSf or Inertia
;

(ii) Gravitation^ or the tendency of all particles to approach each

other

;

(lii) Friction^ or resistance to relative sliding of bodies in contact

;

and
(iv) Elasticity^ or resistances to change of volume or shape

Two limiting cases of 'elasticity are especially noteworthy. If the

resistances to change of » shape and volume are both infinite, the body
IS said to be rigidl If the resistance to change of shape entirely

vanishes, the substance is a frictionless fluid.

Following the fundamental physical conception of mass and arising

from it, others naturally occur, being products and quotients of the

new and old quantities, such as force, momentum, work, etc., and need-

ing definition merely. The consideration of some of these can be

deferred till they are needed in the development of the subject. But
one of them, force^ had better be taken now along with mass. And as
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this conception of mass was only slowly developed, and very various

views have been held coficerning it and force, a brief historical account

may be useful, in which of necessity other topics must be referred to.

187. Mechanics before Newton.—The earliest mechanical theories

related wholly to statics of solids and fluids, dynamics being founded
by Galileo (1564-1642), and continued by Huyghens (1629-1695).

Galileo experimentally investigated the motion of falling bodies,

timing by a water-clock the rolling of a ball down an inclined groove.

He thus discovered that the distances descended on a given incline

were proportional to the squares of the corresponding times This he
had previously shown theoretically would be the case if the velocity

was simply proportional to the time. He thus established that bodies

fall with constant acceleration, accderation being an entirely new con-,

ception to which he was led by this investigation.

He further showed that bodies by falling acquired a velocity such

that they were able to ascend to the level from which they fell. If this

ascent were inclined and made less and less steep, the time of ascent

was more and more increased. So that if the slope were continually

diminished, this time might be indefinitely prolonged. He thus groped
his way to the fundamental conception of inertia.

For motion from rest with constant acceleration, Galileo thus used

the two relations which, in our notation, are written

v=^aty and s^at^ji.

The importance of the third relation, derived from these, namely*:

—

v^=-2as^ was perceived by Huyghens, who thus laid the foundation for

important advances. For, soon after Galileo, it was noticed that a body
having velocity had a ‘ something’ m virtue of which a resistance could

be overcome. Was this something, this efficacy, proportional to the

velocity simply or to its square? Huyghens seemed to ha\e seen quite

clearly that a doubled velocity enabled a body to ascend against its

weight for a double ime, but through a fourjold distance. So that the

efficacy as regards time is proportional to the velocity simply
;
but, as

regards distance, is proportional to the square.

Huyghens solved problems on the dynamics of several connected
bodies, whereas Galileo restricted himself to a single body. Thus the

compound or bar pendulum was treated, the centre of oscillation

determined, and the acceleration of gravity found by pendulum
observations.

But it should be noted that throughout this period before Newton,
the conception of mass had not been deafly formed. ‘ It did not

occur to Galileo that mass and weight were differerft things. Huyghens,
too, in all his considerations, puts weights for masses. . .

.’

188. Newton’s Principles.—To Sir Isaac Newton (1642-1726) we
owe (1) the enumeration of those principles of mechanics which still

form the basis of its formal development, and (ii) the discoveiy of

universal gravitation. Perhaps it was in connection with the latter that

the distinction between weight and mass was first felt
;
weight being
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something different for a given body on the eartJb and on the moon,
but its mass, the difficulty of starting it and df stopping it, being the

same everywhere.

The enumeration of the mechanical principles Newton arranged in

a number of definitions, axioms or laws, and corollaries, all interpersed

with remarks. These were contained in Frmapia^'^ in Latin;

hence the very different versions of them which appear in various text-

books. The definitions and laws are given here with an indication of

the scope of the corollaries and some of the more important explana-

tory remarks, the English version of Evans and Mam being chiefly

followed.

189. Newton’s Definitions.

‘Definition i.

—

Quantify of matter is the measure of it arising

from its density and hulk conjointly,

‘This quantity of matter is, in what follows, sometimes called the

body, or mass. It is known for each body by means of its weight
;
for

it has been found, by very accurate experiments with pendulums, to be

proportional to the weight.

‘ Def. 2.—The quantity of motion of a body is the measure of zV,

arisingfrom its velocity and the quantity of matter conjointly.

‘ Def. 3.
—The innate force of matter is itspower of resisting^ where-

by every body^ so far as depends on itself perseveres in its state., either of
rest, or of uniform motion in a straight line.

*‘This is always proportional to the body, and differs in no respect

from the inertia of the mass, except m the manner of viewing it. To
the inertia of matter is due the difficulty of disturbing bodies from
their state of rest or motion

;
on which account the innate force may

be called by the very suggestive name, force of inertia.

‘ Def. 4.—An impressedforce is an action exerted on a body, tending

to change its state either of rest or ofuniform motion in a straight line.

‘ Def. 5.
—A centripetalforce is one by which bodies are drawn, impelled,

or in any other way tendfrom allparts towards some point as centre.

‘ Of this kind is gravity^ by which bodies tend to the centre of the

earth
;
magnetic force, by which iron approaches a magnet

;
and that

force, whatever it may be, by which the planets are perpetually drawn
away from rectilinear motions and forced to revolve in curves.

The quantity of this centripetal force is of three kinds, absolute,

accelerative, and motive.
c

‘ Def. 6 —The absolute quantity ofa centripetal force ts a measure

of it which ts grtater or less according to the efficacy of the cause which
propagates itfrom the centre through the rei^ions ofspace all round it

‘Just as magneticforce is greater in one magnet and less in another,

according to the mass of the magnet, or the intensity of its magnetism.

‘Def. 7.— The accelerative quantity of a centripetal force is a

1 Philosephtae Naturahs Prtnctpta Mathemahca (London, 1686),
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measure bj it proportional to the velocity which it generates in a given

time. •

‘ Just as the power of the same magnet is greater at a less distance,

less at a greater. Or, as gravitating force is greater in valleys, less on
the peaks of high mountains, and so less the greater the distance from
the earth ; but at equal distances the same on all sides, because it

accelerates equally all falling bodies.

‘ Def. 8.— The motive quantity ofa centripetal force is a measure of
it proportional to the motion which it generates in a given time

‘Just as weight is greater in a greater mass, less in a less mass
;

and, in the same, is greater near the earth, less in remote space.
‘ These quantities of forces may for brevity be called motive^ accelera-

tive^ and absolute forces
,
and, for the sake of distinctness, may be

ascribed severally to the bodies which tend to the centre, to the*

positions ot the bodies, and to the centre of the forces
,
so that, in fact

the motive force is ascribed to the body as if it were the effort of the

whole composed of the efforts of all its parts
; the accelerative force to

the position of the body, as if there were diffused from the centre to all

places around it, some power efficacious towards moving bodies which
are in those places

,
and the absolute force of the centre, as if at this

point there were situated something which was the cause of motive
forces being propagated through space in all directions

;
whether that

cause be some central body (just as a magnet is at the centre of

magnetic force, or the earth at the centre of gravitating force) or any
other cause which is not ascertained. This is simply a mathematical

conception ; the physical causes and seats of the forces are not here

considered.*

190. Newton’s Axioms, or Laws of Motion.

‘ Law I.

—

Every body perseveres in its state of rest^ or of U7iiform

motion in a straight line^ except in sofar as it is compelled to change that

state byforces impressed on it.

‘ Projectiles persevere in their motions, except in so far as they are

retarded by the resistance of the air, and driven downwards by the

force of gravity. A hoop, whos6 parts continually draw each other

from their rectilinear motions by cohesion, ceases to roll only in conse-

quence of its motion being retarded by the air. But the larger bodies

of planets and comets, whose motions, both progressive and circular,

take place in less resisting spaces, retain these motions longer.

‘ Law II.

—

Change of motion is proportional ip the moving force im-

pressed, and takes place in the straight line tn which that force is im-

pressed.

‘If a force produce any motion, twice the force will produce twice the

motion, thrice the force three times the motion, whether it has been
impressed all at once, or by successive gradations. And this motion

(since it must always take place in the same direction as the force

which produces it) is—if the body was originally in motion—added to
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Its original motion if that motion was in the sam^ direction, subtracted

from It if in the opposite
;
or if in an inclined •direction, is added to it

in an inclined direction, and compounded with it, the position of the

body being determined by the motion in such direction.

* Law III .—An action is always opposed by an equal reaction; or, the

mutual actions of two bodies are always equal and act in opposite

directions.

‘ Whatever presses or pulls something else, is pressed or pulled by it

in the same degree. If a man presses a stone with his finger, his

finger is also pressed by the stone. If a horse draws a stone tied to a

rope, the horse will be (so to speak) drawn back equally towards the

stone: for the rope being stretched at both ends will by the same
attempt to relax itself urge the horse towards the stone and the stone

towards the horse ;
and will impede the progress of one as much as it

promotes the progress of the other. If a body impinge on another and
by its force change the motion of the other in any way, the latter will

in its turn (on account of the equality of the mutual pressure) undergo
the same change of motion in a contrary direction. To these actions

are equal the changes, not of velocities, but of motions ; that is, in

bodies not hindered in their motions by other forces. For the changes
of velocities, which also take place in the same direction, are—since

the motions are changed equally—reciprocally proportional to the

bodies. This law holds also in attractions/

, 191 . Newton’s Corollaries.—To his three laws Newton appended
six corollaries. Of these the first and second relate to the principle of

the parallelogram of forces (or impulses), the third to the conservation

of momentum in spite of mutual actions, the fourth to the inability of

mutual actions to disturb the motion of the centre of gravity of the

system, while the fifth and sixth refer to relative motions.

192 . Newton^s Disciples and Critics.—From the foregoing transla-

tion of the definitions and laws laid down by Newton, in this one
branch of his varied activities, some notion may be formed of his tran-

scendant greatness. The doctrines thus formulated have been accepted

as a sufficient and satisfactory basis of dynamics and statics by
numerous writers, including the authors (Kelvin and Tait) of the

classic work on Natural Philosophy.

On the other hand, some, while agreeing in the mam with the in-

formation Newton gave, have seriously criticised the verbal forms in

which he gave it.
^

Others have gonQ, further than this, and taken a distinctly different

view of most of the points in question.

But possibly Newton would have been unintelligible to his contem-
poraries had his thought and language been abreast of the most advanced
thought of the present day.

Of matters so fundamental, probably no statements logically perfect

can be humanly invented. Certainly no such statement can be at

once brief and full, conveying to friends and foes alike the self-same
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message. Yet the brqyity seems highly desirable, to facilitate memoris-
ing and quotation. Htfnce, for any audience in any age, the best

attainable enunciations of such principles are probably those that

briefly convey the essential truths to the audience in view, even though
they may be slightly redundant in parts needing emphasis, or logically

incomplete in others of minor importance. Thus, much of the modern
endeavour to modify Newton’s enunciations must not be taken either

as any disparagement of his greatness or as any claim to present-day

superiority. It is rather an attempt to restate very similar contents in

forms more suitable to the audiences now addressed.

Before going into details, four general lines of criticism of Newton’s
enunciations may be noticed.

Firstly^ it has been the task of modern criticism to disentangle the

mere definitions from the statements of natural fact.

Secondly,^ it has been urged that the first law is logically unnecessary

because only a special case of the second. Some defend the first law

as being necessary to remove the pre-conceived notions from men of

Newton’s time, while otheis regard it as permanently necessary.

Thirdly-) there is a strong body of opinion that Newton’s definition

of mass is incomplete and illogical, and must be replaced by one in

which the ratio of masses is the negative inverse ratio of mutual
accelerations. On this view Newton’s third law becomes unnecessary.

Fourthly^ it has been pointed out that since all motion is relative,

force is relative also, and that accordingly to complete the laws some
statement is necessary as to the base, axes, or frame of reference,to

which they must be referred, and for which alone they are valid.

We may now fitly pass into details, noticing at some length the

criticism and constructive scheme of Mach, and more briefly the views

of some other writers

193 . Criticisms by Mach.—In his Science of Mechanics (Prague,

1883, American Edition, Chicago, 1902), Dr. Ernst Mach, after devoting

fifty pages to the achievements of Newton, passes on to a synoptical

critique of the Newtonian Enunciations. After quoting the Definitions,

Mach writes (p. 241 of American Edition).—‘Definition i is, as has

already been set forth, a pseudo-definition. The concept of mass is not

made clearer by describing mass as the product of the volume into the

density, as density itself denotes simply the mass of unit of volume.

The true definition of mass can be deduced only from the dynamical
relations of bodies.

‘To Definition 2, which simply enunciates a yiode of computation, no
objection is to be made. Definition 3 (inertia), however, is rendered

superfluous by Definitions 4-8 of force, inertia being included and given

in the fact that forces are accelerative.

* Definition 4 defines force as the cause of the acceleration, or

tendency to acceleiation, of a body. The latter part of this is justified

by the fact that in the cases also in which accelerations cannot take

place, other attractions that answer thereto, as the compression and
distension, etc. of bodies occur. The cause of an acceleration towards
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a definite centre is defined in Definition 5 as contripetal force, and is

distinguished in 6, 7, and 8 as absolute, acceferative, and motive. It

is, we may say, a matter of taste and of form whether we shall embody
the explication of the idea of force in one or in several definitions. In

point of principle, the Newtonian definitions are open to no objection.*

Mach then quotes the laws and deals with them and the appended
corollaries as follows:— * We readily perceive that Laws I. and II. are

contained in the definitions of force that precede. According to the

latter, without force there is no acceleration, consequently only rest or

uniform motion in a straight line. Furthermore, it is wholly unneces-

sary tautology, after having established acceleration as the measure of

force, to say again that change of motion is proportional to the force.

It would have been enough to say that the definitions premised were
not arbitrary mathematical ones, but correspond to properties of bodies

experimentally given. The third law apparently contains something
new. But we have seen that it is unintelligible without the correct

idea of mass, which idea, being itself obtained only from dynamical
experience, renders the law unnecessary.

‘The first corollary really does contain something new. But it

regards the accelerations determined in a body K by different bodies
J/, F, as self-evidently independent of each other, whereas this is

precisely what should have been explicitly recognised as a fact of
experience. Corollary Second is a simple application of the law enun-
ciated in Corollary First. The remaining corollaries, likewise, are

simple deductions, that is, mathematical consequences, from the con-

ceptions and laws that precede.
‘ Even if we adhere absolutely to the Newtonian points of view, and

disregard the complications and indefinite features mentioned, which
are not removed but merely concealed by the abbreviated designations

“Time” and “Space,” it is possible to replace Newton’s enunciations

by much more simple, methodically better arranged, and more satis-

factory propositions. Such, in our estimation, would be the following.*

194. Enimciations by Mach
‘a. Experimental Proposition,—Bodies set opposite each other

induce in each other, under certain circumstances to be specified by
experimental physics, contrary accelerations in the direction of their

line of junctions. (The principle of inertia is included in this.)

‘A Definition,—The mass-ratio of any two bodies is the negative

inverse ratio of the mutually-induced accelerations of those bodies.
^ c. Experimental Pr^osition—The mass-ratios of bodies are inde-

pendent of the character of the physical states (of the bodies) that con-

dition the mutual accelerations produced, be those states electrical,

magnetic, or what not
,
and they remain, moreover, the same, whether

they are mediately or immediately arrived at.

* d. Experimental Proposition,—The accelerations which any number
of bodies A^ By C, . . . induce in a body E, are independent of each

other. (The principle of the parallelogram of forces follows immedi-

ately from this.)
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‘ e, force is the product of the mass-value of a

body into the acceleratioh induced in that body.
‘ Then the remaining arbitrary definitions of the algebraic expres-

sions “ momentum,” vis viva,” and the like, might follow. But these

are by no means indispensable. The propositions above set forth

satisfy the requirements of simplicity and parsimony which, on econ^

ornico-scientific grounds, must be exacted of them. They are, more-
over, obvious and clear; for no doubt can exist with respect to any
one of them either concerning its meaning or its source; and wc
always know whether it asserts an experience or an arbitrary con-

vention.’

195. The Tribute of Mach to Newton.—‘Upon the whole, we
may say, that Newton discerned in an admirable manner the

concepts and principles that were sufficiently assured to allow

of being further built upon. It is possible that to some extent

he was forced by the difficulty and novelty of his subject, in the

minds of the contemporary world, to great amplitude, and, there-

fore, to a certain disconnectedness of presentation, in consequence
of which one and the same property of mechanical processes appears

several times formulated. To some extent, however, he was, as it is

possible to prove, not perfectly clear himself concerning the import,

and especially concerning the source of his principles. This cannot,

however, obscure in the slightest his intellectual greatness. He that

has to acquire a new point of view naturally cannot possess it sc

securely from the beginning as they that receive it unlaboriously from
him. He has done enough if he has discovered truths on which

future generations can further build. For every new inference there

from affords at once a new insight, a new control, an extension of oui

prospect, and a clarification of our field of view. Like the commandei
of an army, a great discoverer cannot stop to institute petty inquiries

regarding the right by which he holds each post of vantage he has won,

The magnitude of the problem to be solved leaves no time for this.

But, at a later period, the case is different. Newton might well havt

expected of the two centuries to follow that they should further examine
and confirm the foundations of his work, and that, when times oJ

greater scientific tranquillity should come, the principles of the subject

might acquire an even higher philosophical interest than all that is

deducible from them. Then problems arise like those just treated of, tc

the solution of which, perhaps, a small contribution has here been made,
We join with the eminent physicists, Thomson and Tait, in our rever

ence and admiration of Newton. But we cafn only comprehend with

difficulty their opinion that the Newtonian doctrines still remain the

best and most philosophical foundation of the science that can be

given
’

196. Retrospect by Mach—‘If we pass in review the period ir

which the development of dynamics fell,—a period inaugurated b>

Galileo, continued by Huyghens, and brought to a close by Newton,—
Its main result will be found to be the perception, that bodies mutuallj
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determine in each other accelerations dependent /)n definite spatial and
material circumstances, and that there are hnasses. The reason the

perception of these facts was embodied in so great a number of

principles is wholly an historical one
;
the perception was not reached

at once, but slowly and by degrees. In reality only one great fact was
established. Different pairs of bodies determine, independently of

each other, and mutually, in themselves, pairs of accelerations, whose
terms exhibit a constant ratio, the criterion and characteristic of each
pair.

*Not even men of the calibre of Galileo, Huyghens, and Newton,
were able to perceive this fact at once. Even they could only discover

it piece by piece, as it is expressed in the law of falling bodies, in the

special law of inertia, in the principle of the parallelogram of forces, in

the concept of mass, and so forth. To-day, no difficulty any longer

exists in apprehending the unity of the whole fact. The practical

demands of communication alone can justify its piecemeal presentation

in several distinct principles, the number of which is really only deter-

mined by scientific taste. What is more, a reference to the reflections

above set forth respecting the ideas of time, inertia, and the like, will

surely convince us that, accurately viewed, the entire fact has, in all its

aspects, not yet been perfectly comprehended.
‘ The point of view reached has, as Newton expiessly states, nothing

to do with the unknown causes^' of natural phenomena. That which,

in the mechanics of the present day, is called force is not a something
th^Lt lies latent in the natural processes, but a measurable, actual

circumstance of motion, the product of the mass into the acceleration

Also, when we speak of the attractions or repulsions of bodies, it is not

necessary to think of any hidden causes of the motions produced. We
signalise by the term attraction merely an actually existing resemblance

between events determined by conditions of motion and the results of

our volitional impulses. In both cases either actual motion occurs, or

when the motion is counteracted by some other circumstance of

motion, distortion, compression of bodies, and so forth, are produced ’

{^Science of Mechanics^ Chicago, 1902, p 246.)

Examples—XXXVIII.

1. On what points are physical conceptions needed to enable us to pass
from kinematics to kinetics 1

2. What do you know of mechanics before the time of Newton?
3. Give an outline of Newton^s definitions and critically examine them.

4. State Newton’s laws ofonotion and carefully comment upon them
5. Enumerate some respects in which Mach criticises Newton’s principles

6. What enunciations does Mach piopose in place of Newton’s laws of
motion ?

7. Write a critical essay on Mach’s position with respect to Newton’s
principles of mechanics.

197 . Karl Pearson’s View —The attitude of Professor Pearson to

the laws of motion as shown in his Grammar of Science (London,

1892) is, in some respects, distinctly radical, and may have to wait
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long for wide-spread adoption. It must accordingly suffice to quote

here his own summary of the chapter of about fifty pages in which his

five laws of motion are developed and those of Newton are criticised.

‘ Summary.

‘The physicist forms a conceptional model of the universe by aid

of corpuscles. Those corpuscles are only symbols for the component
parts of perceptual bodies, and are not to be considered as resembling

definite perceptual equivalents. The corpuscles with which we have to

deal are ether-element, prime-atom, atom, molecule, and particle. We
conceive them to move in the manner which enables us most accurately

to describe the sequences of our sense-impressions. This manner of

motion is summed up in the so-called laws of motion. These laws hold

in the first place for particles, but they have been frequently assumed
to be true for all corpuscles. It is more reasonable, however, to con-

ceive that a great part of mechanism flows from the structure of gross

“matter.”
‘ The proper measure of mass is found to be a ratio of mutual

accelerations, and force is seen to be a certain convenient measure of

motion, and not its cause. The customary definitions of mass and
force, as well as the Newtonian statement of the laws of motion, are

shown to abound in metaphysical obscurities. It is also questionable

whether the principles involved in the current statements as to the

superposition and combination of forces are scientifically correct when
applied to atoms and molecules. The hope for future progress lies^in

clearer conceptions of the nature of ether and of the structure of gross

“matter.”’

198 . Love’s Treatment.—In his (Cambridge,

1897), Prof. A. E. H Love expresses indebtedness to KirchhofT,

Pearson, and Mach, and adopts for the basis of the subject a set of

rules, of which he then speaks as follows :

—

‘ The system of definitions and rules which we have laid down lead

to a system of differential equations for determining the motions,

relative to a frame, of a system of particles, or of a body or a system of

bodies, conceived to be made up of particles. It may be regarded as a

purely ideal system, and its validity is unaffected by the question

whether it has or has not any relation to the observed motions of

natural bodies. The subject, so treated, is known as Rational

Mechanics. The objects of which it treats are pure objects of thought.

Its development consists in the logical deduction of particular results

from the general principles laid down. •

‘ The application of Rational Mechanics to the formulation of the

Laws that govern the motions of natural bodies consists in the state-

ment that It is pos.sible to assign masses to the bodies and to choose a

frfeime of reference determined by parts of natural bodies, such that the

observed motions of natural bodies, relative to the frame, obey the

Laws of Rational Mechanics with certain limits of exactness ;
that in

fact the observed motions coincide with the motions described in the
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phraseology of Rational Mechanics so closely th^it no discrepancy can

be observed/ •

199 . Lodge on Axioms.—Sir Oliver Lodge, m a paper to the

Physical Society of London {Proc.^ vol. xii. pp 291*292, 1893) on The
Foundations of Dynamics^ spoke as follows on fundamental laws or

axioms :
—

‘ The setting forth of an axiom I regard as a kind of

challenge, equivalent to the statement—“ Here is what seems to me
to be a short summary of a universal truth ; disprove it if you can. I

cannot prove it; it is too simple and fundamental for proof; I can
only adduce hundreds of instances where it holds. I have indeed
critically examined a few special cases and never found it fail, but a

single contrary instance will suffice to overthrow it ; hence, though U
be hard to prove, yet if not true its disproof should be easy : find that

contrary instance if you can I If no disproof is forthcoming for a few
generations, the axiom is likely to get accepted. Meanwhile its un-

deniable simplicity is a practical advantage, even though in the course

of centuries a flaw or needful modification in its statement may be dis-

covered.” ’

Of this nature are some of the principles already given, and the

following also by Newton on gravitation which now needs notice.

200 . Univergal Gravitation —Kepler (1571-1630) analysed the

observations of Tycho Brahe to find the true motion of Mars. After

ye^rs of labour emerged his first two laws, and subsequently (in 1618),

his third, which relates to other planets. Kepler’s laws may be stated

as follows (see Pioneers of Science by Sir Oliver Lodge, 1893, p. 56)

—

Law I. Planets move in ellipses, with the sun in one focus

Law II. The radius vector sweeps out equal areas in equal times.

Law III. The square of the time of revolution of each planet is

proportional to the cube of its mean distance from the sun.

From these laws and other considerations of his own, Newton
passed to his grand conception of universal gravitation. This idea is

to be gathered from various parts of the Principia and by Tait

{Properties ofMatter^ p, 113, 1890) is expressed thus •

—

Law of Gravi-

tation. ‘ Every particle of matter in the universe attracts every other

particle with a force whose direction is that of the line joining the two,

and whose magnitude is directly as the product of their masses, and in-

versely as the square of their distance from each other.’

It is now very questionable whether the law of inverse squares holds for

small distances of the order of those between adjacent molecules. But

the law still serves our purpose, as we are here concerned only with

much greater distances.

201 . Friction: Coulomb, Morin, Beauchamp Tower.

Leaving for a little the most fundamental bases of mechanics, let us

now notice in order the subsidiary matters enumerated in article 186.

The essential laws of friction for dry surfaces, with which we are chiefly

concerned, seem to have been first enunciated by Coulomb in 1781, and
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were confirmed by the experiments of Morin, 1830-1834. For know-

ledge respecting lubrtcakd surfaces we are greatly indebted to the ex-

periments of Beauchamp Tower (see Proc. Inst, of Mechl. Engineers,,

1883-1888). The subject of friction is fully treated by Prof. J.

Goodman {^Mechanics applied to Engineerings 1908, pp. 240-260), from

whose tabulated comparison of dry and lubricated surfaces the state-

ments in Table VI. are abridged.

Table VI.

—

on Friction.

Dry Surfaces. Lubricated Surfaces

I Thefnctional resistancebetween i. The frictional resistance is al-

surfaces in relative motion is nearly most independent ofthepressure
proportional to the normal force (or bath lubiication, and approaches the

total pressure) between the two sur- behaviour of dry surfaces as the

faces. The upper limit of the ratio, lubrication becomes meagre,
resistance normal force, is called

the coefficient of friction (/x).

2. The frictional resistance is 2. The frictional resistance varies

nearly independent of the speed for directly as the speed for low pres-

low pressures For high pressures It sures. But for high pressures the

tends to decrease as the speed m- friction is very great at low velocities
,

creases becoming a minimum at about 5/3 ft I

per sec., and then increases nearly
j

as the square root of the speed.

3. The frict.onal resistance is not 3. The frictional resistance de-

gieatly affected by the temperature, pends more upon the temperature
than upon any other condition.

4 The frictional resistance de- 4. The frictional resistance with a
pends largely on the nature of the flooded bearing depends but slightly

material of the rubbing surfaces. upon the nature of the material of

the rubbing surfaces.

5 The fi iction of rest i? slightly 5. The friction of rest is enor-

greater than that of motion, but mously greater than that of motion,

may be reduced by vibration, to that especially with thin lubricants,

lower value. which are then probably squeezed
out.

6. When the pressure between 6. When the pressure becomes
the surfaces becomes excessive, excessive (requinng much higher
seizing occurs. pressure than for dry surfaces) the

lubricant is squeezed out and seizing

occurs.

7. The frictional resistance is 7. The frictional resistance is least

greatest at first, and rapidly de- at first, and rapidly increases with

creases with the time after the two the time after 'the two surfaces are

surfaces are brought together, per- brought together, perhaps due to

haps due to polishing. partial squeezing out of the lubricant.

Since we are here concerned chiefly with dry surfaces, paragraphs 1, 2,

4, and 5 in the first column are the most important. And, owing to the

remark about vibration under 5, we may always use the smaller value for

the frictional resistance.
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202. Laws of Hooke and Boyle.—We must now pass to the

necessary physical conceptions respecting tlfe simple elastic bodies
with, which we have to do. For our purpose these are sufficiently

expressed ( 1
) for gases, by Boyle’s Law, and (ii) for solids and liquids,

by a generalisation of Hooke’s Law.
What we now know as Hooke’s law was expressed by him in Latin

in the form ‘ ut tensio sic vis.’ This may be translated as the extension

so is the force. Let us pass from this particular case of strain to strain

in general. And let the single word stress be used to denote any set of
equilibrating forces applied to a body^ i.e. any set of forces which would
have no apparent effect on a rigid body. Then we may restate the law
in a generalised form thus, strain is proportional to the corresponding

stress. This law only holds within very small limits, which we shall

suppose are not passed over in the strains and stresses under treatment.

Hence, for a given substance and a given type of stress and strain, the

quotient, stress divided by strain, is a constant which measures the
particular elasticity of the substance in question.

Obviously, therefore, the elastic behaviour of bodies, under the

limitations mentioned, depends upon and is sufficiently specified by its

various elastic constants, the details of which we shall examine later.

These constants are called moduli of elasticity^ as bulk modulus, or

bear special names, e.g. rigidity.

For gases, Boyle’s law states that the volume of a given mass of gas,

kept at a constant temperature^ is inversely as its pressure. This is only
a yery approximate statement, but is near the truth for moderate
pressures and for temperatures far above the point of liquefaction

of the gas in question. It accordingly serves our purpose here.

203. Eelative Character of Motion and Mechanics.—Since motion
is relative, force and mechanics usually have a like relative character.

Hence, in each class of problems, it is important to notice that the

laws of motion, gravitation, etc., should be construed with respect to

axes appropriate to the phenomena under discussion.

It may be difficult to give an instruction, at once general and
precise, as to the choice of co-ordinate axes. Yet no difficulty in this

respect usually occurs in the development of the subject. Especially

IS this the case if, at the outset, the fact has been recognised that

discretion in this matter must be exercised. We then obtain, for each
problem, the system of mechanics possessing just that kind of relative

character which it needs.

Thus, for terrestrial .motions, comprised within a few miles and
a few minutes, the oo-ordinate axes may be fixed in the earth. This
gives us at once the ordinary mechanics of the factory, the field, the

road and the railway, which may be called terrestrial mechanics.

When concerned with planetary rotations or their orbital motions,

or in dealing with Foucault’s pendulum, the tides, the seasons, etc., the

axes may be directed by the so-called fixed stars, yielding a system that

might be called planetary mechanics.

Hence, proceeding in this manner, as larger spaces and longer
times were surveyed, a number of systems of mechanics might be in

turn developed, each suitable and sufficient for certain problems, each
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succeeding system embracing new problems and conferring a deeper
insight into the old odes,

We might thus repeatedly approach, though perhaps never attain,

a system of mechanics deservedly regarded as absolute and universal.

In the meantime, the relative systems serve for all practical

purposes, although perhaps the formulation of an absolute one may
be a legitimate problem for philosophy. 1

Examples—XXXIX.

1 What IS Karl Pearson’s attitude towards Newton’s principles of

mechanics ?

2 What do you understand by rational mechanics ?

3 Explain precisely what you mean by an axiom, and state on what under-
standing It is accepted

4. Enunciate the law of universal gravitation. Do you believe it applies

under all conditions ?

5 Give a brief outline of what is known about friction.

6 State and explain the laws of Hooke and Boyle
7. Explain what you mean by the relative character of mechanics and give

illustiations Can we reach or approach an absolute mechanics ?

204. Measurement of Time.—Similar remarks to those in Art. 203
apply to the measurement of time. For all ordinary purposes we may
be content to adopt the second of mean solar time as the unit of time

;

just as, for terrestrial mechanics, we may fix our axes of co-ordinates

in the earth But for astronomical purposes sidereal time is used.

And, if we wish to express the retardation of rotation of the earth

(due to the tidal friction acting on it like a band brake), it is evident

we must go a step further and choose some measurer of time which
is believed or imagined to suffer no change throughout centuries, as e.g,

a perfect clock truly rated by the earth centuries ago Kelvin and Tait

suggest {Natural Philosophy

^

Art. 406) as such a timekeeper ‘a carefully

arranged metallic spring, hermetically sealed in an exhausted glass

vessel.’ The period of vibration corresponding to a given spectral line

(say the line for sodium) might also be used, and has been suggested

by Maxwell {Electricity and Magnetism^ vol. i Art. 4, page 3, Oxford,

1873; see also Kelvin and Tait’s Natural Philosophy^ part i
,
Art. 223,

p. 227, Cambridge, 1890).

205. Attitude towards Physical Axioms.—We may now fitly

revert to the subject of axioms and the place they fill, which was just

referred to in Art. 199. Though such physical laws or axioms cannot

1 The General Theory of Relativity, developed by A Einstein and others, makes any

one relative system as valid as another, though some may be more convenient But
though this modern theory has thrown much light on the relations of space, time, gravita-

tion and other physical quantities, it seems to have pushed the ideal of an absolute system

farther out of reach rather than brought it nearer. This book, however, is scarcely the

place for any attempt at a risumi of Relativity, for the theory in question scarcely aftects

the ordinary slow -motion mechanics with which we are here chiefly concerned,

N
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be formally proved, we may legitimately trust them provisionally, at

any rate as > rst approximations. But since ^eir acceptance is based

on their inherent probability and the lack of any disproof, it must be

noted that our trust in them should be coextensive with the experience

upon which their acceptance is based. Any pushing of belief in them
beyond such limits should be of the nature of an experiment. Thus,

the Newtonian principles are accepted as consistent with an experience

having certain bounds of space and time and relating to gross or

ponderable matter with speeds within certain limits. May we push
them and legitimately build upon them outside these limits? May we
apply them to that medium called the ether, conceived as co-extensive

with the physical universe and supposed endowed with inertia and
elasticity but not with gravitation ? May we apply them to the very

small corpuscles or electrons of modern science, moving at speeds

•comparable with that of light? This may be done, but only tentatively

and in an exploring manner, the results being continually tested by
experimental checks In fact we are now m a position to appreciate

the following quotation from E. Mach {Science of Mechanics^ pp. 237-

238, Chicago, 1902):

—

‘The most important result of our reflection is, however, that

precisely the apparently simplest mechanical principles are of a very

complicated character, that these principles are founded on uncom-
pleted experiences, nay on experiences that never can be fully completed,
that practically, indeed, they are sufficiently secured^ m view of the

tolerable stability of our environment, to serve as the foundation of
mathematical deduction^ but that they can by no means themselves be
regarded as mathematically established truths but only as principles

that not only admit of constant control by experiment but actually

require itI

206. Mass at High Speeds.—In illustration of the pieceding article

we may note that the electron (or elementary negative electric charge)

now so prominent in physical research is believed to behave as having
different inertias at different very high speeds, this inertia being more-
over different along and perpendicular to the direction of motion.
According to the theories of Prof. H. A. Lorentz of Leiden, if the so-

called longitudinal and transverse masses at speed v are denoted by m^
and w, respectively, and that at infinitesimal speeds by we have

= Wo/y* and w2 = /«o/y> where y= Vi ^ being the speed of
light. The motions are here reckoned with respect to the ether which,

on this view, is considered not to share any of the translatory motions
of gross matter.

It is possible tha! the ether, if in the above sense ‘ stagnant,’ may
prove to be the best base in which to fix our co-ordinate axes for

an absolute system of mechanics.

207. Quantities usually proportional to Mass.—It is perhaps
desirable to note here that though Newton defined mass as quantity of
matter proportional to product of density and volume, most other
writers have regarded mass as the inertia or measure of sluggishness of

a body. And it thus appears in the definitions of Mach and of Pearson.
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Really, in the general^use of the terms ounce, pound, or ton, for mass
or weight, we have m6re»or less clearly m our minds several different

quantities which we often vaguely assume or believe to be proportional.

Thus, in buying food of a standard quality we are concerned with its

nutritive or heat-generating properties and believe these quantities

to be proportional to its weight We might say we were here, if any-

where, concerned with quantity of matter. Again, if material is dis-

posed in different places on a cricket bat or a golf-club, we may be

chiefly concerned with the inertia of that material, whether wood or

metal. Thirdly, if we hang a piece of iron or lead to balance a sash

window or pull a door to, we are concerned with the weight of that iron

or lead. There are other cases in which we are concerned with the

c'/ar/'fc resistance of a given piece of a certain substance, or with its use-

fulness as a conductor of heat or electricity, etc. Now the first four

quantities are the most important to us mechanically, viz. quantity oj

matter, inertia^ weighty and elastiaty. The first three we often take to

be strictly pioportional. The last we take to be proportional to any
one of the others for a given definite shape in the simplest cases, like

the stretching of a wire of given length.

But, since it may prove that none of these quantities are strictly

proportional in any perfectly general view of matters, it must be clearly

grasped in which sense tlie word mass is used in mechanics It is used
fundamentally in this work to denote inettia or sluggishness of a body
to change its velocity in magnitude or direction It is ‘^o used in the

theory of Lorentz just noticed in Art. 206 From which it appears

that at those high speeds, mass (or inertia) is not proportional to quantity

of matter, if electrons are counted as matter and quantity is gauged by
number of electrons, as Nature’s identical elemental units.

208 Retrospect.— It is now time to glance in thought over the

various views advanced as to the basis of mechanics, and to endeavour
to extract some simple rules for guidance, some sufficient foundation to

build upon. Nothing can be said or written on this topic which is not

open to attack from several quarters. Nothing can be stated which shall

be at once full, precise and brief. Yet it seems desirable that some
short enunciations should be made which, to the sympathetic student,

will convey a view of the foundations of mechanics that, while yielding

much to modern criticism, both as to form and substance, avoids going
to an extreme m any direction. With much diffidence, an attempt in

this direction is submitted in the next article. Each statement is

accompanied by a brief symbolic expression of the law or definition

under its title. The notation in each case will bg readily understood
from the context.

Of course no permanent or widespread value can attach to any such
brief statements. At best, they can but suit a limited number for a
limited time. To such, for the present, it is hoped they may be of

service. Possessing no possible permanency, they, or any of like

nature, should be under constant criticism and revision. And if their

presence here serves to stimulate an interest in the subject which
shortly leads to their supercession, their formulation will not have been
in vain.
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209. Brief Enunciation of Chief Mechanical Bases.

1. Law of Motion, Accelerations occiic only m opposite pairs,

{—aGca) whose ratios are constant for given

particles.

2. Definition ofMass, The masses of particles are positive con-

stants, inversely as their mutual accelera-

tions

3. Definition ofForce. Force is the product, mass into acceleration,

(^F—ma) and has the direction of the acceleration.

4 Laiv of Gravitation. Every particle attracts every other with a

(Fcfcmni jr^) force, along their joining line, directly as

the product of their masses, and inversely

as their distance squared.

5. Law of Friction. With dry surfaces in contact, relative sliding

(
[i^N) is resisted by tangential forces, whose limit-

ing values are proportional to the normal
forces.

6. La 7v ofElasticity. Within narrow limits, the strain of a body is

{StrainocStress) proportional to the equilibrating set of

forces, or stress^ applied to it.

7. Gaseous Law. The volume of a given mass of gas is in-

(^z/= const, for / const.) versely as its pressure at constant tempera-

ture.

8. Choice of Axes, Since motion is relative, force and mechanics
are relative also. Hence, the foregoing

and any problems based upon them, should

be referred to axes which, in each case,

yield a mechanics most appropriate to

the phenomena under discussion.

210 Concluding Bemarks.—We may now with advantage glance

over the enunciations of the previous article and note certain points

concerning them In the first single statement the endeavour is made
to embody all we know, of an experimental or axiomatic nature, as to

motion generally. It contains within itself Newton^s fir^t law and the

qualitative aspect of his third law. It also asserts that proportional

aspect of all the simultaneous accelerations possible to any given pair

of mutually interacting particles, which forms the basis of the modern
definition of mass, as inertia. This definition accordingly follows

;

mass being stated to be a positive constant characteristic of any given

particle, and such that the products, mass into acceleration, for any pair

of interacting partiples have opposite signs but equal magnitudes.

This supplies the quantitative aspect of Newton’s third law, and so

completes the statement of its substance.

It is a convenience to have a name for these opposite but equal

products, and this is next supplied by the modern definition of force,

which replaces Newton’s eighth definition and second law, those two
being practically identical.

But, by this definition, force is seen to be a vector, hence the law of
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addition of vectors nAtiyally applies. We thus have, at once, the

triangle, parallelogram and polygon of forces without further proof.

It has not been considered necessary to include among these brief

enunciations any specific statement either (1) as to the mass of any
particle or body being the sum of the masses of its parts, or (11) as to

the mass of any particle being the same whether derived directly or

indirectly by comparison with some given particle. For, it is supposed
all through that the system being enunciated is a self-consistent one,

and also that it satisfies any experimental checks that can be applied to

it. These suppositions imply that the second point holds As to the

first point, It may be naturally inferred that the quantity called mass,
since primarily it expresses the sluggishness of a particle and is char-

acteristic of It, will increase to some larger quantity of the same kind

characteristic of the sluggishness of a body when conceived as built

up of particles. Also, since mass is a positive constant without refer-

ence to direction
;
and force, the product of mass and acceleration, has

the direction of the acceleration
;
we see that mass is a scalar quantity.

Hence masses, being scalars, are susceptible only of arithmetical addi-

tion. Thus, consistently with the foregoing enunciations, we obtain

the mass of a body by the simple arithmetical addition of the masses of

Its parts. And, unless this agreed with experimental checks, the enun-

ciations would be invalid as a description applicable to the physical

universe as perceived by means of our senses. Hence, though it is

conceivable that the masses of particles might not add to that of the

body, the fact that they do so add may be naturally inferred from the

enunciations without foimal statement.

It should also be noticed here that, in the laws of motion and
gravitation and in the definition of mass, only particles are mentioned.

Then, the behaviour of particles being axiomatically formulated, that of

extended bodies and systems of various constitutions is to be analyti-

cally derived.

Further, it is specifically mentioned in the fourth statement that the

gravitational accelerations between particles occur in the line joining

them. But, in accordance with the general principles adopted in these

brief enunciations, the fact that in the so-called contact of particles

the consequent opposite accelerations occur along the same line, is not

mentioned in the Law of Motion, but is left to the natural inference of

each reader.

Of the remaining enunciations, Nos. 5-7 call for little remark.

Obviously those readers omitting parts of the present course may omit
the corresponding enunciations. But the last^ on the choice of axes,

may need noting by those not concerned with some of the inter-

mediate ones. This eighth statement is purposely placed last for two
reasons : First, because it may apply to all the rest

;
Secondly, in

accordance with the principle that although such a proviso may be
needed somewhere, it should not be obtruded too early, and thus intro-

duce difficulty in the preliminary axioms, where all should be kept as

broad and simple as possible.

We may perhaps with advantage note here an application of this



198 ANALYTICAL MECHANICS [art. 211

principle of choice of axes, expressed in 8, ^o'the law of gravitation

given in 4. Thus, to reduce the proportionality to an equality, intro-

duce a constant y and write E=zymm’lr^, Then by the definition of

force in 3, we see that the accelerations of m and m' are respectively

ym'jr^ and yw/r*. In other words, the accelerations have magnitudes
inversely as the masses, which agrees with the definition of mass in 2.

We thus see that these accelerations are not reckoned for each mass
relatively to the other, but are each reckoned with respect to an origin

which lies between them and divides their distance apart inversely as

the masses. We shall see afterwards that this point is called the centre

of mass or centre of gravity of the two bodies. Obviously the re-

lative acceleration of the two masses is the sum of their separate

accelerations relative to the same point between them. Thus adding
the above expressions, we obtain for this total or mutual acceleration

the value y{m-\-m')lr^.

The units used for measuring any of these mechanical quantities

will be dealt with as occasion arises throughout the rest of the work.

Some of the topics of the present chapter are of a highly contro-

versial nature Thus, a partial discussion of them here and there

throughout the book might well prove irritating to some readers and
make the corresponding parts of the detailed treatment less acceptable.

Accordingly, to obviate this drawback, the discussion of the physical

bases of mechanics has been confined to this single chapter, from which
mathematical deductions are excluded. Hence, the remainder of the

Work, presenting the formal developments of kinetics and statics, is left

equally open to all classes of teachers and students whatever their views

or convictions on the debatable matters underlying them.

211 . Bibliography,—Considerations of space preclude any further

treatment of these and kindred topics, for which the reader is referred

to the following works, placed in alphabetical order of their authors :

—

H. Hfrtz. Princtpten der Mechamk (Leipzig, 1894.)

Sir Oliver Lodge. The Foundations of Dynamics (Proc. Phys.
Soc London, 12 pp, 289*236, 1894.)

A. E. H Love. Theoretical Mechanics iZgy.)

Ernst Mach The Science of Mechanics (Chicago, 1902.)

Sir Isaac Newton. Philosophiae Naturalis Principia Mathematica
(London, 1686 )

Karl Pearson. The Grammar of Science (London, 1900.)

H PoiNCAR^. Science and J/ypotkesis (London^

Bertrand A. W. Russell. The Principles of Mathematics (Cam-
bridge, 190^3).

Herbert Spencer First Principles. (London, 1898.)
Alexander Ziwet The Relation of Mechanics to Physics (‘ Science,

23 pp., 49-56 New York, Jan. 12, 1906.)

Examples

—

XL.

I. State how time is usually measured and by what inaccuracy the method
IS affected What other methods have been proposed with the view of
diminishing the present inaccuracy ?
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2. What do you consider should be our attitude towards mechanical and
physical axioms ?

3 Explain how the inertias of an electron vary with its speed.
4- What three mechanical quantities are often tacitly assumed to be propor-

tional to one another ? Give examples showing the distinctions between
them

5. Do you consider the mechanical creed as enunciated by Newton needs
revision ? If so, state in your own words by what you would replace it.

If not, defend Newton from his various critics.

6. Translate and comment upon *

—

L’acc^leration d’un corps est t^gale k la force qui agit sur lui divisde par sa
masse

Cette loi peut-elle ^tre verifide par Texpenence ? Pour cela, il faudrait
mesurei les trois grandeurs qui figurent dans I’enonc^

; acceleration,
force et masse

J’admets qu’on puisse mesurer Paccel^ration, parceqi'c je passe sur la diffi-

culte provenant de la mesure de temps M.iis comment mesurer la
force, oil la masse ^ Nous ne savons meme pas ce que c’est.

Qu’est-ce que la masse ? C’est, rdpond Newton, le produit du volume par la
densitd. II vaudrait mieux dire, rdpondent Thomson et Tait, que la
densit(^ est le quotient de la masse par le volume . Qu’est-ce que la

force ^ C'est, repond Lagrange, une cause qiii produit le mouvement
d’un corps ou qui tend le produire. C’est, dira Kirchhoff, produit de
la masse par I’acc^l^ration Mais alors, pourquoi ne pas dire que
la masse est le quotient de la foice par I’accJleration ^ ’

(London B Sc
,
Pass, Applied Math., 1908, iii. 7.)
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CHAPTER XII

KINETICS OF PARTICLES

212. Mass brought into Equations.—To pass from the kinematics of

,a point to the kinetics of a particle we suppose our point to be endowed
with mass, m say, and multiply the appropriate kinematical equations

throughout by that mass (m)

Thus, for the rectilinear motion of a particle with uniform accelera-

tion, we take (from article 27) the kinematical equations representing

the increase of velocity from u to v m time t under acceleration a
\
also

the increase of the square of this velocity while describing space s

These may be written

v^u^at (i),

and . . . ... (2)

Now, multiplying by m and writing F for the force concerned in

pldce of the product ma, we obtain

mv-‘nm’=Ft (3),

and \mv^ — \mu^^Fs (4).

We see that these equations involve certain products, and since

these often occur names have been adopted for them which are now
given and defined, each being accompanied by a convenient symbol

shown in brackets.

Momentum,—The product of a mass into its linear velocity is called

its linear momentum {mv= F),

Impulse.—The product of a force into its duration is called its

impulse (/'/= Q \
or, if F is the variable value of the force during the

time T, the impulse is <2=
JFdt.)

Kinetic Energy.—Half the product of a mass into its velocity squared

is called its kinetic energy

Work.—The procluct force into distance described by the accelerated

particle in the direction of the force is called work {Fs=. W; or, if

7^ is the value of the variable force over the space s^ W=
j

Fds).

Using these ideas and symbols, we may put (3) and (4) in the

forms

(5 ),
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and
. ^

T-T^=W (6),

where the zero subscripts denote initial values of the quantities in

question.

We may state the above important relations verbally thus ;

—

Change of momentum equals impulse and Change of kinetic energy equals

work. The first of these is equivalent to Newton’s second law, but
may be here regarded as derived from the single law of motion and the

definitions of mass and force of article 209. The second statement is

impoitant in connection with the conservation of energy^ that funda-

mental doctrine so well known to physicists.

From (5) we see that Q is of the same nature as P, i,e. mass into

velocity. And we have hitherto supposed P to change by change of

velocity only, the mass being constant. But it is evident that P might,

under some circumstances, change by a change of mass^ all these

increments of mass having the same velocity change^ from o to » say.

Or, both changes may occur together. We might thus write as a more
general relation

dQ—Fdt:=^mdv-{-vdm=^d{mv)=^dP,'Nh&ncQF=dPldt . (7)

That is, force is the time-rate of increase of momentum. Similarly,

from (6), we find .... . . . (8),
QX^ force IS the space-rate of increase of kinetic energy.

Some other current forms of speech used in connection with the

above quantities and relations may be noted here. The acceleration a

of a particle of mass m is said to be due to the action of the force

F:=zma. The particle, assimilated to a point, is called the point of
application of the force In the case of more extended bodies, the

point oi application becomes a surface or volume of application., according

as the force is applied by contact of gross matter over a surface or by

other means throughout a volume, as in the case of an attraction like

gravitation.

The change of momentum from P^ to P is said to be due to or

produced by the impulse which equals P—Pq,
The change of kinetic energy from to T is said to be due to or

produced by the expenditure of wotk Wy which equals T— T^,

Some writers object to these expressions as implying relations

of which we have no proof. But it is difficult to avoid these current

and convenient expressions, even though we may regard all mechanics

as purely descriptive of observedphenomena.

The relations involving impulse and work were derived from those

for uniform acceleration, and so correspond to a uniform force, but we
may now with advantage remove that restriction! Thus, if F is the

variable force for time / and space x, the speed meanwhile changing

from u to V., we may write

mdvIdt^F^mvdvIds, From these, multiplying up and integrating,

we obtain

m{V’^u)^ Fdt=:Q
(9)>
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and
j
E/s= IVa * ... (10).

Thus, on eliminating m between them, we have the general relation

W=<f±^ (II);
2

or, the work of a variable force is its impulse multiplied by the arithmetic

mean ofthe t7iitial andfinal velocities.

213 , Choice of Units of Mass, Force etc.—The above new
quantities need appropriate units for their measurement. These units

are not entirely settled by the relations between the quantities expressed

above in words or symbols \ but, certain units being chosen, the others

then naturally follow from the relations in question. Thus, corre-

sponding to the three in(3efinable quantities with which mechanics is

concerned, viz. Space, Time, and Matter, we may choose units of

length, time, and mass
;
the corresponding units of force, momentum,

and impulse, energy and work, then follow. The units of length, time,

and mass are then called fundamental units and the others derived

units. Or, a different selection of fundamental units may be made, say

length, time, and force, and then the others derived from them. We
shall use both plans, and in the above order, but it will be well first to

consider the relation between the mass and weight of a body near the

evth’s surface.

Let a particle of mass m fall freely at some place on the earth and
be found to have an acceleration g Then by our definition the force

concerned, called its weight «/, is given by

w^mg^soikidXm^wjg

.

. . . (12).

The acceleration g and the weight «; of a given particle or body are

both known to vary in different parts of the earth, as we shall see later,

but the quotient wlg=:m^ called the mass of the particle or lump, is

believed to be practically constant, as stated in the definition of mass.

(See article 209.) Now, if our units of length and time were such that

g were unity at some place, then, for that place, the mass tn and the

weight w for any body would be represented by the same number.
But this is not the case for any system of units of length and time at

present in vogue. Hence in all such systems the weight of a body is

not represented by the same number as its mass, while we retain the

definition F=^ma. Thus, while it would be a great simplicity to retain

this definition, have«a standard lump of stuff as the unit of mass, and
its weight at some standard place as the unit of force, this is in-

compatible with our present units of length and time. There are thus

three simple courses open to us in choosing units of mass and force.

I. Choose a standard body as the unit of mass, and let the unit ot

force follow from the definition F=ma. We thus have the weight in

these units of force given by w-^mg. That is, the weight of a body is

expressed by a number g times the number which expresses its mass.
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Hence the unit of forceJs i/^h of the weight of the unit mass. The
centimetre-gram-second system and the so-called British absolute

system are both of this type.

2. Choose a standard body and specify a place at which its weight

shall be the unit of force, and let the unit of mass follow from F^ma,
Thus as before w—mgox m^tvlg. Hence in these units the number
expressing the mass of a body is i/§th of the number which expresses

Its weight at the standard place, g being the acceleration of gravity

there. That is, the unit of mass is g times that of the standard whose
weight is unit force. The British engineers’ system is of this type.

3. Choose a standard body as unit mass, its weight at a specified

place as unit force, and abandon the definition F= tna^ replacing it by
Focma or F=kwa. Then k would have to be i/f, and the force would
be given by F—wajg, •

The use of any system of units requires care in passing from the

theoretical expressions to the concrete ones, namely, the care that all

the units introduced are of the same system. But the adoption of this

third choice for a system of units calls for greater care, for it involves

a change in the definition of force (from an equality to a proportionality),

and thus changes all the theoretical expressions which explicitly or

implicitly involve force. It will accordingly be no further considered

here, but attention confined mainly to the first and second methods of

choice of units, though occasionally special units may be introduced to

suit special problems.

214. Established Systems of Units —In Table vii. are given the

chief units on the three systems already referred to, while Table viii.

gives the ratios for conversion from each system to the others.

Of these systems, the C, G. S. was fixed by an International Confer-

ence at Pans in 1875, the standard of length being the metre, which is

the length at the temperature of melting ice between the ends of a

platinum rod, made by Borda and preserved in the Bureau des Archives

in Paris
;
the standard of mass being the kilogt^amme des archives, made

in platinum by Borda and preserved in the Conservatoire des Arts et

Metiers, Paris.

The British standards of length (bronze) and mass (platinum) are

the yard and pound respectively, and are in the charge of the Warden
of the Standards,

[Tables.
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Table VII. Mechanical ,Wits.

r

Systfms
OF

Units

Units in i-ach System

Length. Time Mass Force
Momentum

and
Impulse

Kinetic Energy
and Work.

International

or

C.G S
981 nearly

Centimetre Second
of

Mean
Solar

Time

Gram. Dyne
=igm. cm /sec 2

=iof a gm wt.

A gram
at a cm
per sec

or

a dyne for

a second

Erg
=^gm cm 2/sec.2

=:icm. dyne.

British

or

F.P S
^=32 '2 nearly

Foot. Second
of

Mean
Solar

Time

Pound ‘ Poundal
’

= I lb ft /sec 2

= ~ of a lb. wt

A pound
at a foot

per sec.

or

a poundal
fora

second

Foot Poundal

^ilb ft 2/sec 2

Engineers’

or

F.S S
^0=32 1913

Foot. Second
of

Mean
Solar

Time

'.Slug'

,

lbs.

Weight of a

Pound at

Sea-level in

London
I lb wt.

=^o poundals.

A slug

at a foot

per sec

or

alb wt.

fora
second

Foot Pound
Weight

=1 slug ft 2/sec, 2

Table VIII Conversion of Units.

Metric to British British to Metric,

I cm. =0*03280899 ft.

I gm. =00022046 lb.

I dyne =0*0000723432 poundal.

=00000022473 lb. wt.

I ft. = 30*48 cm.
I lb. =453*59265 gm.

I poundal = 00310644 lb. wt.

= 13,823 dynes.

I lb. wt. = 32*1912 poundals

= 444,979 dynes.

In the two British systems of units, the first m Table vii., often

referred to as the British Absolute^ takes the pound as the unit of mass,

the unit of force being called the poundal, a term suggested by the late

Professor James Thomson (see Kelvin and Tait’s Natural Philosophy^

Part 1., p. 229, 1890). In the British enginters* system the pound

weight at sea-level in London is taken as the unit force, the unit mass

being 32*1912 pounds, for which unit the term slug was suggested by

Professor A. M. Worthington (see his Dynamics ofRotation^ p. 9, footnote,
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1904). It seems desirable to note here that some writers who freely

use one or other of thhsa systems object to the terms poundal and slug

and prefer to leave the units in question without a name. In the table

F. S. 6'.,after the title engineers
^
signifies foot^ slug^ second.

Corresponding to these two British systems there are two Con-
tinental ones {M, K. S.) using the metre, kilogram, and second as the

units from which all else are derived. But the one system (called

absolute) takes the kilogram as the unit of mass, derives 10® dynes as

the unit force and 10^ ergs, called a joule^ as the unit of work. The
other system takes the weight of a kilogram as the unit of force, and
then derives 9 81 kilograms as the unit of mass.

Much controversy has arisen as to the relative advantages of some
of these systems of units. The view here taken is that, in spite of any
personal preference, it is incumbent on serious students to become
conversant with the chief systems that have attained anj considerable

vogue.

Examples

—

XLI.

1. Accepting the definitions of mass and force, transform the kinematic
equations of rectilinear motion under uniform acceleration to the corre-

sponding case of kinetics of a particle. Define carefully any new
quantities that now enter into the equations.

2. From the fundamental equations of kinetics of a particle derive two new
expressions foi a force.

3. Describe carefully what you mean by an impulse, and show to what other
quantity it may be equated. Obtain the value of an impulse as the

area of a curve, and show approximately the proportions of such curves
(i) for the blow of the racquet on a tennis ball, and (2) for the blow of

a hammer on a nail in hard wood.

4 Assuming that force is equal (or proportional) to mass into acceleration,

derive and critically discuss the systems of mechanical units in use
among the English-speaking nations.

5. ‘A shot having given size and shape, how will its penetrative power
depend (i) on its weight, and (2) on its velocity, the resistance to

penetration being supposed uniform ? Give reasons for your answer.
‘ A bullet fired with a velocity of 2000 f s penetrates to a depth of
18 inches in wood

;
what would be its velocity of emergence if fired

through a board i inch thick

(Lond B..A. AND B.Sc, Pass, Mixed Math., 1904, i. 3.)

6. ‘ Determine the tension in any position of the thread by which a body is

whirled round in a vertical circle.

‘Prove that in a bicycle track looped round in a complete vertical

circle of 30 feet diameter, the velocity at the highest point should be
due to a fall of 7 feet 6 inches, or about 1 5 miles an hour

;
and the

reaction of the ground on entering the circular track at the lowest point

will be increased to about six-fold.’

(Lond. B.A. and B Sc., Pass, Mixed Math., 1902, i. 8.)

215. Potential Energy and Transformations to and from Kinetic.

•—Consider a particle of mass m moving in a region where it will have
uniform acceleration a. Let it have at P, Fig. 76, a velocity u in the

direction of the acceleration and w at right angles thereto, its kinetic



2o6 ANALYTICAL MECHANICS [art. 2I6

energy being then +«/“). When it has moved through a

space s parallel to the direction of the acceierkion, let it be at Q,
with velocity components v and w as shown in the figure, its kinetic

energy being now T. Then we have

T— Tq= + O'*)= “ «*)f

or T— To=mas=Es= lY (i),

where i^is the force ma and fFis called the work done on the particle

by the field while it moves from
P to Q. Also, by suitably chang-

ing our equations, we should

obtain the result tnat the reversed

velocity at Q would restore the

particle to P with the reverse of

its original velocity. That is, the

kinetic energy would here change
from T to while the work W
was done by the particle against

the field, for the reversals of the

velocities have no effect on their

squares, which alone enter into

the expressions for kinetic en-

ergies. And, since the cross velocity w disappears from equation (i),

It is clear that what we have obtained applies not only to P and Q
but to any other corresponding pairs of points on their levels. But
though the particle in passing from Q to P loses kinetic energy to

the amount T*-- Z’o? it acquires an advantage of position in the field,

which enables it to gain the like amount of kinetic energy on passing

back to the level of Q. This advantage of position is called potential

energy and increases to the extent of the work done by the body
against the field. Thus, calling the potential energies of the body
and Kat the levels of P and Q respectively, we have

Y,=:Y-^JV (2).

But by (i) this becomes Yo=Y-\-T—Tq,
Hence J'-f ^0+ ^0= constant . .

. (3).

This is an example of the conservation of energy, the energy of one
kind which is lost by the body being exactly balanced by the energy of

the other kind gained by it. Also during the motion either from P to

Q or in the reverse direction, we have the transformation of energy

occurring from potential to kinetic or the reverse. These transforma-

tions and reverses occur automatically in many familiar instances, e.g.

a stone thrown into ^le air, a pendulum in motion. Here, in the rise,

kinetic energy is lost and potential energy is gained ; at the summit of

the motion the transformation ceases for an instant; in the fall the

reverse transformation from potential to kinetic energy occurs. In the

case of a pendulum there is also a reversal of the transfoimation to the

opposite kind at the lowest point where the velocity is greatest.

216 , Work in Oblique Displacements,

—

Let us now consider the

Fig, 76, Transformation of Enf.rgy
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work involved when a particle is constrained to move at an angle B

with the force F. Thfen^if the element of work dW corresponds to

the actual displacement ds, whose component is dy^ in the direction of

the force we have
dlV=:Fdy=Fcoseds=F'ds .... (4),

where F''=FcosB.
This IS illustrated by Fig. 77, in which the force /“acts parallel to PN,
along which y is measured, but the particle is constrained to move along

PQR, along which s is measured. Thus
if PQ is ds and PM is dy^ then dlV re-

presents the work from P to Q. It is

seen that the F' in (4) is the component
of the force along the path

;
hence we may

state the equation in words thus .—When a

particle is constrained to describe a speci-

fied path under a given force, the element

of work IS expressible by any of the three

following products
. (1) the total force into Fig. 77. Work in Oblique

the component displacement m direction Displacemlni.
of force

; (11) the total force into the total

displacement into the cosine of the angle between them
;

(lii) the total

displacement into the component force in direction of displacement.

The total work along any finite portion of the path, say P to R, is

given by the corresponding integrals, viz

lV=/Idy=fFcosBds=r/F'ds .... (5).

If /'’varies from point in magnitude or direction or both, /and 0 may
be expressed in terms of jy or 5 and the evaluation effected. If / is

constant in magnitude and direction and 6 varies simply owing to the

curvature of the constrained path, we may take the first expression to

the right of (5), and find

rFdy=Fy (6),
Jo

where y is the length of PN.
It IS seen that this use of the constrained path corresponds in this

respect with the motion (supposed free) considered in article 215.

217. Direct Impact.—Let a perfectly smooth particle of mass m
with velocity u strike a second similar particle of mass m' with velocity

u', both velocities being along the same line which is also the line of

centres of the particles when in contact. Then by Newton’s laws or

the definition of mass in article 209, the accelerations of the particles

are in the negative inverse ratio of their masses^ Thus from the

equation of article 209 (2) we have

mlm'=^a'JaoTma'{‘ma'=o (i),

the a’s denoting the accelerations of the particles. But since this

relation holds for any and every instant, the total changes of velocity

must be proportional to these accelerations. Hence we have

m(r—u)’\-m'(v'-^u')sso (2)
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That is, the algebraic sum of the changes of momenta is zero. Or we
may write this in the form «.

*

vtv -f m'v —mu+wV . (3),

which is equivalent to the statement :— The algebraic sum of the final

momenta equals that of the initial. This is often referred to as the

principle of the conservation ofmomentum.
The passage from equation (i) to (2) could be expressed fully in

symbols thus :

—

Equation (3) is, however, insufficient to determine the two final

velocities v and v'. We accordingly require another condition, which
is supplied by stating the ratio of the velocity of separation to that of

approach. For this ratio, called the coefficient of restitution, is found
to be approximately a constant for given bodies. Thus, denoting it by
e, we have

—v+v—e(u— u') (4).

In deriving the above equations it should be noted that all velocities

are reckoned positive when m one given direction and negative if in

the opposite direction. Care must be exercised if the conditions of

any problem are stated in terms

u u* which violate this convention.

Fig. 78 illustrates the case of

direct impact in question, the

velocities before impact being in-

Fig. 78 Direct Impact. serted above the particles and
those after impact below them,

any example being directly solvable from equations (3) and (4).

218, Oblique Impact—To pass from the case of direct impact of

smooth particles to that of oblique, it is obvious we have simply

to compound with the velocities along the line of centres that which
occurs at right angles thereto and
which is not changed by the

impact. Denoting these cross

components by w^s, and retaining

the previous notation, we have the

complete scheme as shown in

Fig. 79 -
.

In this case, therefore, the v^s

are found as for the direct impact,

and the unchanged w's being

compounded with them give Fig. 79. Oblique Impact.

the final velocities in magnitudes

and directions, though often it is just as convenient to retain the

expressions for the components simply.

Where the actual velocities are required, denoting them by capital



AUt. 219] KINETICS OP PARTICLES 2o9

letters, and calling the singles with the line of centres before and after

impact a and B respective^, we obviously have

«= C^cos a and w= C^sin a (5),

also and tan (6),

and similarly with the accented letters.

219 . Loss of Kinetic Energy at Impact—Let the kinetic energy
of the two particles before impact be T’o and after impact be Ty and for

the sake of generality let the impact be oblique. Then we are concerned
with the difference

T’o— T~ \m{u^ ^ -f w'^— — w'*)

= + (7).

In transforming this expression to determine its sign we shall need the

following relations, the first two of which are readily derived from
equations (3) and (4)

:

—

fn\t4!— —
(8 ),

=—e(u—u') (9).

Then by elimination of v' between (8) and (9) we rind

^;= I -p if) .... (10)

Then using (8), (9), and (10) in turn we transform (7) as follows :
—

2 ( ro~ r)= m(u^- z;*)+ - v'^)

=.m{u— v){u \‘V)'-m{u^ v)(u'+ v')

v)(u— u'-{-v—v')

= m{u— v)(u— u*){ i—e)

“ I +(){«- «')( I -<)•

Or, finally, 2{r,-r)=J^'^.{u-urii-,^) (ii).

The loss of kinetic energy is thus seen to be expressible by the pro-

duct of three factors, of which the first, involving the masses, is essen-

tially positive
;
the second, being a square of real quantities, is positive

or zero
;
while the third, being the defect of P from unity, is positive or

zero, for e cannot overstep unity, and indeed never quite reaches it for

any known bodies. It may be remarked also that if the second factor,

were zero, that would correspond to equality of initial veloci-

ties
;
in other words, to the absence of impact. We may accordingly

say that for all cases of impact between particles or bodies there is a

loss of kinetic energy so far as it is estimated bj; the motion of the

bodies considered as entities and moving altogether. If, however, we
take the more searching view of the matter which falls within the domain
of physics, we find there is no loss of energy. That which has dis-

appeared when we regard only the motions of the bodies as wholes,

is compensated by an equal quantity of energy of motion of the

separate molecules or atoms, etc., of the body, this form of energy

being called heat. Or, we may say briefly, the mo/ar kinetic energy

o
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which has disappeared is not lost but merely transformed into the same
quantity of molecular and afomic kmotic energ5^. 'That heat is generated
by impact is easily verified by hammering a nail on an anvil.

This loss could also have been calculated by use of equation (n)
of article 212, the value of the impulse Q being, of course, m{u--v).

220 . Impact of a Molecule —In connection with the kinetic

theory of gases, it is of interest to examine the impact of a perfectly

elastic particle or molecule of evanescent mass m with a body of

ordinary mass J/, such as the wall of a containing vessel. Let the

velocities of m before and after impact be u and v and those of M be
[/ and V, all along the line normal to the surfaces in contact at impact.

Then we have w/J/’=o and<r=i. Thus equation (3) of article 217,
on dividing out by reduces to

F=Lr (12)

And (4) of the same article then becomes

^P^CI=u-l7,
or u-\-v—2U' (13).

That is, the large mass suffers no change of us velocity by
the impact of the indefinitely small mass, while the latter's velocities

are such as to make their arithmetic mean equal to the unchanged
velocity of the large mass.

Hence if the large mass is at rest, it remains so, and the velocity of
the small mass is reversed in direction without change of magnitude, for

u^v=o (14).

Again let a mass M with initial speed F strike directly a mass m at

rest, and for the pair let e= o and their final common velocity be v.

Then we find that the ratio (loss of kinetic energy of A/')-~(gam of

kinetic energy of = Thus for equal masses this ratio is 3,

and for vanishingly small m it is 2.

Examples—XLI I.

I Defint Polentlal Energy^ and give two or more examples of motions in

which the transformation of energy occurs, also one in which it does
not.

2. State precisely what you mean by nvork^ and find an expression of the

work of an oblique displacement against a given force.

3. Masses of 5 and 12 lbs. have initial velocities in the same direction and
along the same line of 40 and 30 ft./sec. If the coefficient of restitu-

tion between them is o‘8, find their respective velocities after impact,

4. If the initial velocity of the larger mass in question 3 were reversed,

find what the final velocities would become, the other data being un-

changed.

5. If any collision occurs between two smooth spheres of equal mass and
coefficient of restitution unity, one of them being initially at rest, show
that their paths after the impact are at right angles to one another.

6 Prove that a loss of mechanical kinetic energy occurs at any impact
between real bodies,

7. ‘ Show that a redistribution of momentum takes place in the collision of

two bodies ; and calculate the change of velocity in the impact of two
inelastic bodies.
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‘ Prove that the collisipn energy in foot-tons of two ships of tonnage
and due to a restive velocity V feet/second is

1^1+ 1^/2/
(Lond. B.Sc., Pass, Mixed Math., 1903, ii. 5.)

221. Angle and Cone of Friction.—Let a body be placed on a
rough surface and be acted on by a
force F inclined B to the normal to

the surfaces in contact as in Fig. 80.

Then the normal and tangential

components are given by
N— Acos B and T^F%m By

whence
T/N=t3inB (i).

Suppose the coefficient of friction

to be fi=tan /3, then by the laws of

friction (see articles 201 and 217) we
have

:nN1^Unl3. . .(2),
where F is the frictional resistance,

which acts so as to prevent relative

motion if possible, and is as large as necessary for this under the

limitation expressed by (2).

Hence, if tan tan/?, then . . . . (3),

and there will be acceleration of the body no matter how smallF may
be. On the other hand,

if tan ^::j>tan then 7^ T (4),

and there is no acceleration of the body no matter how great the force F
may be.

The angle /3 defined by tan/?=/>i (5)

is called the angle offriction y
and the cone whose semi-veitical angle is

/3 and axis the normal to the surfaces at the point of contact is called

the cone of friction or friction cone.

Since the vertical makes the same
angle with the normal to a surface

that the surface makes with the

horizontal, it is evident that a surface

can be inclined from the horizontal

up to the angle of friction before a

body will start to slide down it under
gravity. So the gngle of friction is

sometimes called the angle of repose.

This relation also furnishes a ready

means of finding the values of

and fA for a given pair of surfaces.

222. Motion on Rough Incline.

—Consider a body placed on a

rough surface inclined at an angle a with the horizontal, the coefficient of

Fig. 81. Motion on Rough
Incline.
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friction being /i=tan^, where /3<a. Then it is obvious that the body
will have, down the plane, an acceleration whbse amount will determine
the motion for any given initial conditions. Let us therefore, by reference

to Fig. 81, find this acceleration, which will be denoted by the mass
being m

The weight lV=mg maiy be resolved into components normal and
tangential to the plane, thus giving

iV=z«^cosa (6),

and Z'=:w^sina. ... ... . . (7),

Then the maximum tangential force due to friction, which is all called

into play when there is relative motion, is given by

T"—fxN—jxmg cos a. (8).

Thus the resultant moving force on the body is Z’—Z*', which, by
definition of force, equals mass into acceleration.

Hence

or

T— T
' =ir(sina-/xcosa),

a=—^ sin (a

—

cos p ^

(9).

223 . Atwood’s Machine.—This machine consists essentially of

two equal masses connected by a thread which passes over a pulley

freely rotating on a horizontal axis, one of the masses starting with an
overweight which is afterwards removed at a chosen position by an
adjustable ring, the motion being finally checked by an adjustable

stage. It IS used to illustrate uniform acceleration and to estimate

the value of the acceleration near the earth’s surface. We have here

to determine the relation between g and the acceleration a when the

overweight is in use, and to find also the tension of the thread. Let
the total masses at the overweight side be and at the other side

and the tension of the thread be T. Then, neglecting the masses of the

thread and pulley, also the stiffness of the thread and the friction of the

axle, we may proceed as follows —The larger mass will descend with

acceleration under the resultant force of its weight minus the tension of

the thread, while the smaller mass will ascend with the same accelera-

tion due to the excess of the tension over its weight. And by definition

each force is the product of the acceleration and the mass concerned.
Hence

— T=Ikria

and . .

So, by addition, we eliminate T and obtain

or

(0 .

(*)•

(3)-

Then, putting this value of a in (i) or (2), we find for the tension of the

thread

(4).

Here, if the ATs are in grams, ^ is about 981 cm./sec.* and Tv&
expressed in dynes.
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If the masses are •expressed in pounds, g is about 32*2 ft./sec.*

and T is given in poundals. Whereas if the masses are in slugs

of 32*1912 pounds each, g is again about 32 ft./sec.“ and T is given

in pounds weight at sea-level in London.
In equation (3) the a is given in the same ^—

v

units as those in which g is expressed. f
^

^

224. Friction allowed for in Atwood’s V J
Machine.—While still neglecting the masses
of the thread and pulley, let us now make an j
allowance for the stiffness of the thread and ‘

the friction of the pulley axle in its bearings.

Suppose these to be balanced by the addition . .

on the descending side of a mass m and at la

the subtraction from the ascending side of
^

the same mass, so that the total mass moved
is as before. Let now the tensions of the “n^l
thread on the descending and ascending sides x I

be T’l and T’, respectively, then we have the
|

/M/tti

arrangement as shown m Fig. 82. "*2 ^ '

Then, considering in turn the descend-

ing and ascending masses and the resistances L
at the pulley, we have the three following

equations •— ^

—
. . (5), Fig. 82.

'T / lur /A\ Atwood's Machine
. . (6), with Frici ion.

T,-T,= 2mg . . . (7).

Hence, on addition of the three equations, we have

{M,-M,)g={Af,+M,)aA

or 1
• • • • (8).

as before in (3) of article 223. But the tensions are now different from
each other and from their former value. Thus from (5) and (8) we have

Similarly, we find that

Comparing these tensions with that when friction was supposed
negligible we see that, since the acceleration is the same, we ought to

have

T, T , T, T
Mt-m~Mt

and these checks are satisfied by the values in (4), (9), and (10).

226. Motion of Connected Particles on Rough Inclines.—Consider
now the case of two particles or bodies connected by a thread and
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each resting on a rough incline as

Fig 83 Connected Particles on
Inclines.

of friction being fii and /x„ and the

considering each mass in turn, we ha

iwn in Fig 83. We shall suppose
the masses of thread and pulley

and the effect of friction of pulley
axle negligible.

Also let us at first suppose
that the masses, inclinations,

and roughnesses are such that

motion with acceleration a occurs

to the right, descending the

incline and dragging up
the incline a,, the coefficients

tension m the thread T. Then

il/i^(sin aj— /Aj cos ai)— 7^= . . .

and T—Af^{^\na.^-\‘yi.^Q.Qsa^— M,ia . . .

whence, by addition and transformation, we have

<2__J/i(sin aj— /Ai COSai)--Jl/a(sin aj+ZA, COSttj)

7
And, by substitution of this in (12) or (13), we find

^=^^|^^(sina,+ sina,—/i,cosa,+ ;i,cosa,) . .

(12)

.

(13)

.

( 14)-'

(IS).

/. One M'^ss descending vertically drags the other on a Horizontal
Plane,—The case just dealt with is very general, and by insertion of suit-

able values for the angles applies to various special cases. Thus for the

present case we have only to write a, =90° and a2=o in equations (14)
and (15), and we find

a _ — Afjju

j

7 + (16),

and r= M,M,g
(i +/**) (17),

results which are easily obtained by direct consideration of this problem.

We can, of course, pass to the case of a smooth horizontal plane by
writing /a3=o in (16) and (17)

//. Both Masses hang vertically,—We now write ai= aa=9o“, and
find on substitution

and

a=r

2M^M^

(18)

,

(19)

.

which, by their agreement with (3) and (4), serve as an additional check.

1 If on working this for any given numerical case the value comes negative, this must
not be taken as the correct value for reversed acceleration. For a reversed acceleration

involves reversed frictional forces, which would change the value of a since the gravity

forces are not reversed The equations would need rewriting on the supposition that the

acceleration is reversed, and if the value is then positive, it 19 correct,
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Examples—XLIIL
1. Explain the phrases angle offriction and cone offriction^ and illustrate

by a sketch.

2. Discuss the sliding of a body down a rough incline when by a thread and
pulley it pulls another body up a second incline also rough. Check
your result by reducing the second plane to a horizontal one.

3. ‘ Describe the use of Atwood’s machine for the experimental verification

of the Laws of Motion.’
(Lond. B Sc., Pass, Mixed Math., 1902, ii., ist part of 6.)

4. Show how to allow for friction in Atwood’s machine.

226 . Pendulum in Accelerated Chamber.—A simple pendulum of
length I hangs from the roof of a chamber which has accelerations

a vertically upwards and b horizontally, let it be required to find the
circumstances of the motion in the plane of a
and and the tension T of the thread

A brief consideration will serve to show that

the zero position will be displaced and the value

of the effective and therefore also of the

period T, altered. But perhaps a detailed ex-

amination is desirable. The case is repre-

sented in Fig. 84, in which S denotes the point

of suspension, P the bob of mass w, SL and SM
vertical and horizontal lines which move parallel

to themselves The pendulum is shown dis-

placed from the vertical by the angle and is

supposed to have angular velocity and accelera-

tion 6 and ^ respectively.

It will be convenient to write expressions

for the component radial and transverse ac-

celerations and equate their values to the

quotients (resultant force/mass) for the corre-

sponding directions. Thus from equations (5)
and (6) of article 74 we have for radial and
transverse accelerations about a fixed point the

general expressions

and7= r0-i-2r0.

In the present case of r=/= constant, these would become
and/=/^

if S were at rest. Thus, taking into account the accelerations a and b,

we have for the total radial acceleration in the direction S to P and the

corresponding force divided by mass the expressions

— cos 0-1-^ sin = •

tn
^

or 7y//z=(^-}-a)cos ^sin • • • (i).

We have similarly for the transverse acceleration, reckoned in the

direction from SL to P, and the corresponding force divided by mass
— w.rsin^

a sin cos ,m
or (g-\- a) B’^b cos (2).

Fig. 84. Penduium
IN Acceleraied

Chamber.
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227 . The similarity of form of these equations suggests the

possibility of a simplification, and obviously ifi (2) on putting d=o the

remainder of the equation defines the displaced zero line which takes

the place in the moving chamber of the vertical in the chamber when
at rest. And on examination of equations (i) and (2) we find they are

susceptible of the form

77^=/cos^+/^* (3),

and /sin +/</)= o . . . ^ (4),

where /= (5)1

<j6=^4-a (6),

and tan (7).

Thus, as the new variable angle exceeds the former one 0 by a,

we see from (4) that an angle must be measured from the vertical in

the negative direction and equal numerically to a to represent the zero

line. This is shown by SN in Fig. 84, in which SL and SM are pro-

portional to g-^-a and b respectively.

If we now confine ourselves to small oscillations about this zero

line, for which sin <^= <^ nearly, equation (4) is replaced by

( 8)

Hence the motion is simple harmonic of period

r'-2Tj/lg' (9),

and is fully represented by

4>=<l>oCos(Ji'/lt+B) (10).

In this the and 8 are arbitrary constants to be determined by
the initial conditions. Thus, if the pendulum start from rest with

amplitude /?, we have for /=o, and ^=0. Hence therefore

and S=o.
Hence (lo) becomes

<#.=^cos( t) (ii).

the velocity being given by

-P Ji'll sin . . . .(12)

228. Results and Applications.—Thus, the initial conditions being
known, equations such as (ii) and (12) substituted in (3) give the

tension at any instant, e.g. for /=o, <f>=P, and 7’=/w/cos 0 .

Hence, to sum up, when a pendulum makes small oscillations in an
accelerated chamber, they are performed

(1) about a displaced zero defined by (6) and (7)

;

(ii) in a disturbedperiod r given by (9)

;

(iii) as though gravity had the disturbed value in (5); and
(iv) the tension of the thread follows from this disturbed/, as shown

in (ii), (12), and (13).

We have accordingly confirmed by strict analysis the view which
might have been conjectured at the outset, and may be stated thus :

—

To find the behaviour of a pendulum in an accelerated chamber
compound the acceleration due to gravity with the reversed acceleration

pf the point of suspension
;
this gives in direction and magnitude the
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disturbed or effective gravity. Then the oscillations occur about the

direction of this effective'gravity as zero position, the period and tension

being expressed in terms of this new gravity just as they are for an
ordinary pendulum with the actual gravity.

Obviously this examination applies to a pendulum inside the carriage

of a mountain railway when starting or stopping, also to a carriage or

cage slipping under gravity down a steep incline and whether or not it

is pulling another up. Of course, uniform velocity of the carriage along

a straight line has no influence on the pendulum.
In the case of a train, with acceleration on a horizontal straight

track, we have only to put «= o and let Fig. 84 be the longitudinal

section of the carriage.

For the case of a lift, with vertical acceleration a, we have simply to

put ^=0. We may note also that the zero line is not now displaced..

Thus, the presence of the vertical acceleration a alone has no power to

displace the zero line, although it can alter the displacement produced
by the horizontal acceleration. See equation (7).

229. Pendulum in Carriage round a Curve : Elevation of Exterior

Bail.—For a tram moving at uniform speed v along horizontal rails

curved to a radius A*, we must take Fig 84 to be a cross section of the

carriage or an end view inside. Then, putting a-=-o and b=v^lEy we
find by (7)

tana=z;*/A^ . . ... (13).

And, since this is the angle of the effective gravity to the vertical, it

should be the angle of elevation of the road crosswise, with the hori-

zontal. Or. in other words, the exterior rail should be elevated a as
seen from the interior one, in order that the train may proceed with
half load on each rail as if going straight along a level track. This
result could have been seen from the first, but serves here as a useful

check on the methods of the pendulum problem.

Examples—XLIV.

1. *A railway carnage is moving with a constant acceleration of a feet per
second per second along a straight road, and a particle is suspended by a
fine thread from the roof of the carriage. The acceleration ceases at a
certain point, while the rectilinear motion continues

;
then the carriage

moves with a velocity v f./s. on a curved part of the line where the

radius of curvature is p feet.

‘ Trace the motion of the pendulum through these changes.’

(Lond. B.Sc., Pass, Mixed Math., 1904, ii. 8.)

2. * Prove that a man, weighing w lb
,
moving about in the cage of a lift

equilibrated by a counterpoise of IV lb., will ef^perience an apparent
relative field of gravity

2 Wgf{2 IV+wy
(Lond. B Sc

,
P vss, Mixed Math., 1902, ii., 2nd part of 6

)

3. ‘The gauge of a railway being 4 feet 8 inches, calculate the elevation (in

inches) of the outer above the inner rail, so that there shall be no flange

pressure when trams travel at a speed of 30 miles per hour, at a curved
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there will be a flange pressure against the outer rail equal to ii IVjigif
where weight of tram

; and if with a 'speed of 20 m./h., a flange
pressure against the inner rail equal to 1 1

’

(Lond. B Sc., Pass, Mixed Math., 1904, ii. 5.)

230. Motion of Tliree Connected Masses.—Let us now consider

the behaviour of the masses in an Atwood’s machine (see article 223)
when any point of the ascending thread suddenly picks up a mass m
previously stationary. This could be accomplished by a loop, hook,

or cross bar on the thread, but the picking-up arrangement, of what-

ever form, will be supposed of negligible mass. Thus, retaining the

previous notation and neglecting friction, we have the mass J/i de-

scending and the other mass ascending at equal speeds, u say,

when the mass tn is suddenly caught up at a point on the ascending
portion of the thread. This is analogous to an impact between the

masses M^ and m with speeds u and zero respectively. But, instead

of an impulsive pressure between the bodies while in contact and
approaching, we have now an impulsive tension on the connecting

thread which the bodies are tending to separate. Since we shall

suppose the thread practically inextensible, their velocities after the

jerk will be equal, v say.

Hence we may equate the impulsive tension to each change of

momentum which occurs Thus, with an obvious notation

i
Fdt^mv—Mi{u -

—

v) (0 >

(2).so that ,

—

But as the velocity of m and A/j decreases from u to Z/, the thread

between m and slackens, since the latter mass has suffered no
change of its velocity, which is u. Let us suppose that the conditions

are such that the thread becomes tight again after the lapse of time t
Then the masses m and will each have ascended through the same
space, s say, since m became attached. Expressing these values m the

form for each body, we have the relation

(3)-

This would serve to determine /, and therefore also the speeds

of the masses and m and U% of the mass when the thread

again became tight. There would then be a second jerk, this time

involving the whole thread, but with different impulsive tensions above
and below m. Immediately after this jerk the same speed would be
common to all the three masses.

Denoting it by F, we have

. . . (4).

From this instant the acceleration would be given by

We have supposed all through that these phenomena can occur

before m reaches the pulley,
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231 . Chain falling on Table. — A uniform chain or cord is

supposed to be suspended by its upper end over a horizontal massive

table with which its lower end is in contact. The chain is then let go,

and It is required to determine the pressure on the table at any instant.

We suppose the table to have such a large mass as to be practically

unmoved by the impact of the chain. Thus, by the definition of

force as the product of mass into acceleration {pr^ rate of change of

momentum), the table at any instant acts upon the arriving chain with

the force needed to destroy its momentum. It also supports the

portion of chain which has previously arrived. Let the length of this

part be the mass of the chain per unit length be <r, and the velocity

of the part above the table be v. Then the mass of chain arriving in

time S/ is so the momentum of it is And this is destroyed

in time S/. Hence force required to stop the arriving chain at thtf

instant is

F=(rv^=^(r2gS ... (i),

remembering that z) is due to the free fall through the height s. But
the weight of the chain already on the table is

W=(TgS ... (2).

Thus the total pressure is

P-F-\-W=z2,<TgS=:^W (3).

232. Chain uncoiling from Table.—Let a length ic of a chain hang
vertically at one side of a pulley and a length c hang vertically on the

other side, beyond which the remainder of the chain lies coiled on a

table. It is required to determine the motion of the chain and the

tension where it leaves the table ; x is supposed equal to or greater than

c, both being measured to the top of the pulley, which is of negligible

mass and free to turn on a horizontal axis.

Let the chain have mass <r per unit length and the tension at the

table be T. Then, equating weight less tension to mass into accelera-

tion, we have

{x—c)o-g—T={x-\-c)(Ti} . ... (4).

But in time 5/ a length v^t of mass avtt will be removed from the table

and jerked to a speed v. And the momentum acquired equals the

impulse Ttt Hence we have

(5).

Putting this in (4), and remembering that t^vdvfdx^ we have on
rearranging

{x’\-c)vY^^-v'—g{x^cY (6).

Multiplying by the integrating factor 2{x-{-c) gives

2 (a; -|- + 2 (at

+

c)v*= 2g{x*— f*),

.... (7).or
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Thus, on multiplying by dx and integrating, have

where C is the constant of integration to be determined by the initial

condition. Thus, if x is only infinitesimally greater than c at the start,

we have then v=Oy and find from (8) that

(9 ).

Hence in this case of starting from rest, with x=Cy (8) becomes

{x-\‘c)W=^g{x-cy{x-{-2c) . . (10),

giving z? for any other value of x. Then (10) in (5) gives the corre-

sponding value of the tension

233 , Fall of Growing Raindrop.—Neglecting the resistance of the

air, let it be required to determine the motion of a raindrop which, by
condensation of stationary vapour upon it, has a radius increasing

uniformly with the time; i.e. rate of increase of volume proportional to

surface.

At time /, let the radius be ^/and its speed vertically downward
be V, Then writing the density p and equating the rate of increase of

momentum to its weight, we have

=g-^^p{a+tty (i),

or d[{a-\-btyv

Whence, on integrating, we obtain

{a -fbtyv= ^Ua*bi^ 6a^bU^+ ^abU^+bU%

.... (2),

the constant of integration being zero for ^>=0 when the radius was a.

234. Slip of Snow on a Slope.—Consider the case of a uniform
layer of snow on a slope inclined a to the horizontal, the adhesion
being just sufficient to hold it while at rest.

Next, suppose the upper line of snow next the ridge (of roof or

mountain-side) to be moved downwards, the friction between it and
the slope being negligible. Then the snow will move down from the top

and start other portions till the whole mass is sliding down. Let us

find the circumstances of this motion. Consider a portion of the snow
of length b parallel to the ridge, and suppose a breadth x of it down
the slope to have started and to have velocity v.

Then, neglecting friction, the equation of motion may be written

-j^{^(jbocv)-=-iTbxg€\n a (3).

where <r is the mass of snow per unit area. If a be written for

^sin a, this becomes
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uu
,

-
*

at

R I-

dx ^vdv__.d{v^)
^ dt dx dt dx ^ dx

So, introducing (5) in (4) and multiplying by 2X^ we obtain

x^dv^
, 2 ,-^-\- 2xv^^ 2ax\

or d(x^v^)=z2ax*dx

Whence, by integration, we obtain

(4)

.(5)

.

(6)

v'= 2-jx=^gs\na)x (7).

The constant of integration is zero, since v and x vanish together!

We thus see that, in this imaginary ideal case, the acceleration is one-third
that of a compact body sliding freely down the same slope.

The substance of articles 230-234 is derived from the elegant treat-

ment of these topics by Dr. Besant {Dynamics, London, 1885).

235 . Note on Vibrations.—The chief vibrations of a particle with
which we are concerned have been dealt with already in Chapter iv.

(see articles 29-33, 45-48) and Chapter vii. (see articles 109-111).
The conditions under which some of them are possible may be inferred
from the later treatment of elasticity in Chapter xxi.

In the case of forced vibrations (articles 46-48) we may approxi-
mately realise the phenomena in question by attaching a small bob of
mass m to Si very large one of mass both the pendulums being of
about the same length and period.^ Then, if the large bob be set in
oscillation, the consequent obliquity of the suspension of the smaller
one below will supply the impressed force which gives to that small
bob its acceleration varying as a sine function of the time, in addition
to its own acceleration proportional and opposite to its own displace-
ment. But, m this actual case, we must note that with masses of a
finite ratio the small mass m will, by its motion, react upon the larger
mass M. It is therefore only as the ratio M/m approaches infinity

that we approach the ideal case of article 46, in which the impressed
acceleration is unaffected by the forced vibrations of the particle.

Examples—XLV.

1. A ring weight is let fall so as to strike and lodge.on the small ascending
weight of an Atwood’s machine. Discuss the motion which ensues m
the case where the small weight plus the ring weight are together
heavier than the large weight of the machine.

2. Show that the acceleration of an ideally simple avalanche is of the order
one-third that of an ordinary compact solid on the same slope.

3. Find the pressure exerted at any instant by a chain falling on a table.
4. Determine the velocity of a raindrop which picks up stationary moisture

so that its radius grows proportionally to the time.
1 Or better by suspending pendulums from a cord stretched so as to be nearly

honzontaL ^



2±2 ANALYTICAL MECHANICS [art. 236

CHAPTER XIII

PLANE KINETICS OF RIGID BODIES

236. Accelerated Rotation of a Rigid Body about a Fixed Axis.—Let

us consider the rotation of a rigid body about a fixed axis under the

action of forces. Then because the body is supposed rigid all the

motions are parallel to a given plane, which is taken as that of the

diagram in Fig. 85, the fixed axis being perpendicular to it at O. Con-
sider first a particle of mass at a

point whose projection is Pi, distant

perpendicularly from the axis and
having a tangential acceleration <Zi,

which is of course in, or parallel to,

the plane of the diagram and perpen-
dicular to OPj. Then the tangential

force on this particle is given by
. .

. (i),

Fig. 85. Rotation of Rigid Body, and is in the direction of the accel

eration

Similarly, for another particle at Pa, we may write
= (2),

and so forth for all the particles in the body under examination. But
it is obvious that equations of this kind cannot be added arithmetically,

for the corresponding pairs of a’s and F’s are in various directions,

though all parallel to the plane of the diagram. A little alteration,

however, enables us to effect this simple addition. We note ^rst that,

though the linear accelerations denoted by the a’s may all have
different magnitudes and directions, the angular acceleration about O
of all the particles is the same in magnitude and direction, and may be
denoted by az=ailri’=ajr^y etc.

Thus a may be made a common factor on the right sides of the

equations. Secondly^ let us pass from the forces F^^ etc., to their

moments about O, which are represented by F^r^^ F^r^^ etc. Then, since

each of these moments is a product of two perpendicular vectors, each
may be represented by a vector perpendicular to the plane of its com-
ponents. But the components are in the plane of the diagram, so the

resultant is perpendicular to that plane. Further, the direction of this

resultant or moment vector is related to the direction of the force about
O, as the advance of a right-handed screw is related to its rotation.

Thus the products F^r^^ F^r^^ etc., may be added algebraically, for they

are all representable by vectors along the same line, viz. the perpen-

dicular to the plane of Fig. 85, and out towards the reader if the

moment is counter-clockwise.

Lastly, when the equations are thus transformed, we have on the

right side, as coefficients of the angular acceleration a, terms of the
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form etc. But it is known by the theory of vectors that
the product of collindai' vectors is a scalar quantity, hence all these
terms may be simply added.

We accordingly find, from (i) and (2),

(3)

Whence, on addition

2:(/>')=a2/«r^ (4).

Now the forces denoted by the on each of the particles of the

body have been hitherto treated as the resultant tangential forces on
these particles. So each F may be made up of one force Ft due to

external bodies, and another force due to the interaction of the

particles of the body itself. We should accordingly have

F^Ft-^rFi . .

But, since these internal forces of mutual interaction occur in pairs

whose members are applied along the same line, opposite in direction

but equal in magnitude, it is obvious that in the summation their effect

will disappear, t,e,

'l{Fyr)— o

Hence the summation in the left side of (4) may be taken as

applying to the external forces just as though the others did not exist. 1

237. Moment of Inertia and Torque.—Equation (4) contains,

under the signs of summation, two new quantities of great importance

which need definition and symbols to represent them. On the left side

we have which is the sum of the moments of all the forces about

the axis through O. We call this briefly the total or resultant torque

about O and denote it by G. On the right side we have which

is called the moment of inertia of the body about the axis through O,
and may be denoted by I Thus (4) may be rewritten in the form

(5).

We may further write from (5) and (4) as analytical definitions of

moment of inertia

/=(9/a= 2(wr*) (6).

The first of these forms (6) may be regarded as the dynamical definition,

like (5). Whereas the second expresses / in terms of the masses m of

the particles and their perpendicular distances r from the axis, and may
be called the geometrical definition. It, of course, forms the basis for

evaluations of the moment of inertia of any given body, while the first

indicates the dynamical significance of the quantitY itself.

The meaning of moment of inertia will become clearer when we
introduce it in the equations of uniformly accelerated rotation. Note
first how the dynamical equations (3) to (6) of article 212 were derived

1 There are also radial forces mru^ on each particle of mass tn at radius rand angular

speed w, but their resultant, if any, is met by the reaction at the axle. They make
no contribution to the angular acceleration, since the moment of each about the axis

IS zero.



224 ANALYTICAL MECHANICS [aRI*. 237^2

from (i) and (3) of article 27, by the introduction of mass. Next, refer

to equations (i) and (3) of article 92 and ihuitiply throughout by /,
writing G for la. We then obtain

—
. . (7),

and J/a>^ - J/a>;=/a^= GO (8).

Equation (7) presents two new products which require names. The
first, /w, IS the simple value here assumed by the quantity called moment
ofmomentum or angular momentumy and which is fully expressed by

'2m{yx— xy)=H say.

The second, Gty is called impulsive torque or impulsive couple, the
former being the more general and inclusive term : we may denote it

by/.

I
The products occurring in (8), though made up of new factors, are

easily seen to be kinetic energy T and work W. We may accordingly
rewrite (7) and (8) in the forms

(7^),

and (Sa).

The kinematical and dynamical relations for uniformly accelerated

translations and rotations about a single fixed axis may now be sum-
marised as given in Table ix. This shows very clearly that the
moment of inertia of a body about a given axis plays the same part m
rotation about that axis when fixed as the mass plays in the simple
translations of a particle.

Table IX. Translations and Rotations.

Typb of
Relations. Translations only.

ROTAFlONb ABOUl flXED
Axis.

Kinematical
v-v^^aty

^2/2 — as.

0) — Q>0= ^ty

^0)^ - ^0)0=0^.

Dynamical

mv- mvQ= mat= Fty\
oxP-p^^Q. ;

\mv'^ - = mas= Fsy \
i

or T- To= W. J

/o) - /o>o = /a/= Gty\

W-4/a)» = /a^=(;d,\
^oxT-Tq^W. /

Eadius of Gyration.—It is often convenient to express the moment
of inertia as the prc^duct of the total mass M of the body and the

square of a length k called the radius of gyration. We accordingly

have the relations

" /=W I
(9)-

237a. Eotation about fixed Axis: General Treatment.—I^t us

now consider the rotation of a rigid body about a fixed axis, the point

of view being more general. Let the axis of rotation be that of OZ
perpendicular to the plane of xy depicted in Fig. 85 a.
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In the rigid body talc^a particle of mass m at P, whose co-ordinates
are {x^ z), and let the projection of

OP in the xy plane have length r in-

clined ^ to OX, as shown. Then,
as the body rotates, r will remain con-
stant for the given particle, while

X, and jy will change. We shall de-

note the angular velocity 0 hy <0 and
the angular acceleration 0 by a.

Then, since the angular mo-
mentum ^ about any axis is the sum
of the moments about it of all the

linear momenta, and the latter are

expressed by the algebraic sums of their rectangular components, we
have for the angular momentum about OZ

LT—
'

2m{yx— xy) . .

But, on reference to the figure, we see that

x=rcos 0,

Fig. 85A. Gkneral Rotation
ABOUT Fixed Axis

(i)

Hence by (2), (i) becomes
'lfn{iiiX^+ a>y^)

= {oZniix^ -\-y^)y

or LI= lii)

Thus, on differentiating (3), we have

II=zIo)^Ja

But, on differentiating (i), we find

d

y=rsmO \

x= — r sin 0 6 =:= — wy, j/=rcos 6 0=wx

J

^ '2m{yx— xy)= — xy)

(2)

.

(3)

.

(4)

(5)

.

Hence, on writing for the products, mass into acceleration, the
symbols for the corresponding force components, X and V due to

external bodies and X' and V' due to mutual interactions, we find

from (s)
£-=--my+Y')x-(X+X')y)

=2:( Kr-A»+2( y'x-xy),
or /f='S(Vx-Xy)=G . . . . (6),

since the summation for the internal forces vanishes. Thus, (4) and

(6) give

G=/a (7)1

in agreement with (5) of article 237 ,

We shall see later that, if rotations are occurring about various

axes, (5) and (6) still hold, but not (7), for JL is then no longer

reducible to /w

238. Parallel Axes Theorem.—As a preliminary to the evaluation

1 AlUrnaiive Proof %n Po^r Co-ordinates. H—'Z{mrbr) — {^mt^)^— I{)S Also since
the radial acceleration, has no moment about O, we have for the impressed
torque, G~'Z{mr^i)=:.{"l,nif^)C>—Ia.

P
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of the moments of inertia of typical figu^e^, several theorems are

needed, and will now be given.

Consider the moments of inertia and AT of a body about two
parallel axes, the first being that of z

and the second passing through a
point A on the axis of x. Let Fig. 86
represent the xy plane, C being the

origin of co-ordinates. Suppose the

body of total massM to have a particle

of mass m at B(^), the sides of the

triangle A, B, C being denoted by
the corresponding small letters a, c

as usual.

Then, beginning with the geometri-

cal definition of moment of inertia, and
using the well-known trigonometrical

Fig 86 Parallel Axes relation, we have
Theorem = — ladcosC)

= -h ~ zb'^ma cos (7,

or, K^KQ-\-Mb^—-2b'^mx (i).

Hence, if the axes are so chosen that

'lmx-=zo (2),

equation (i) becomes

(3)

If, in addition, we have also the axis of z passes through
the point defined by

^mx=‘^my='2mz=.o .... .
. (4),

which point is termed the Centre of Mass of the body, and possesses
various important properties, as we shall see later.

In this case equation (3) embodies the theorem to be established,

which may be worded as follows :

—

Theorem .—The moment of inertia of any body about any axis is

the sum of that about a parallel axis through its centre of mass plus
the product of the mass of the body and the square of the perpendicular
distance between the axes.

Hence, in evaluating the moments
of inertia of typical bodies, it often suf-

fices to take the axis through the centre

of mass and with the required orienta-

tion. The value for any parallel axis

then follows from this theorem.
c

239. Lamina Theorem.— Let the
body be in the form of a thin plane
lamina and take the axes of xy in this

plane as shown in Fig. 87. Fig. 87. Lamina Theorem.
Let the moments of inertia about the

perpendicular axes x and y in the plane of the lamina be / and J
respectively and K denote that about the axis of z through the same
origin but perpendicular to the plane of the lamina. Then it is re-

quired to show that I-\-/=K.
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Take a point ^(xy) ^is^ant r from O, and let a particle of mass m
be situated there. Then we have

'Imr*= 4-:^*)

or (5),

as required.

We see at once from this that if different axes OX' and OY' are taken

in the plane and through O, though the moments of inertia about them
may change, their sum remains constant. For

(6 ).

240. Rectangular Axes Theorem for any Body.—Suppose we
have now a body with any dis-

tribution of matter in solid

space, the moments of inertia

about the axes of jc, j/,and z being

y y, and K. Let any radius

vector of length r be drawn from
the origin to the point P, where
there is a particle of mass m.
Then it is required to show that

Let the co-ordinates of P be
and z as shown in Fig. 88.

Then we have by definition and the geometry of the figure

Hence, by addition, we obtain the result

Fig. 88. Rectangular Axes Theorem.

as sought.
/+/+Ar= 2^m{x^-}ry^ +2’)= z'Zmr' (7).

Examples—XLV I.

1. For the rotation of a rigid body about a fixed axis obtain an expression
analogous to F—ma for the kinetics of a particle. Explain carefully

what quantities now replace F and in.

2. Define moment of inertia, torque, angular momentum, and impulsive
torque

;
and write equations exhibiting relations between these quan-

tities and others involving kinetic energy of rotation and the corre-

sponding work.
3. Show that of all parallel axes in a body that about which the moment of

inertia is a minimum passes through the centre of^mass. Also find a
general relation between all the moments of inertia about these axes,

4. Any number of particles of equal mass are arranged equidistantly on the
circumference of a circle and rigidly connected to the centre by bars of
negligible mass. Show that about a central axis perpendicular to the
plane of the circle the moment of inertia is only half that for a parallel

axis through a particle.

5. Show that for a square lamina of uniform thickness and density the
moment of inertia about any central axis in the plane of the lamina is

the same. Prove the corresponding relation for a regular octagonal or
duodecagonal lamina.
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6 Consider the rotation of a uniform filame^ ^bout perpendicular axes

through the centre and through an end^ and thence show that the

moment of inertia for the latter case is one-third mass into square

of length.

Fig. 89 Moment of Inertia about
AN Oblique Axis

241. Theorem for Oblique Axis—Let us now determine the rela-

tion between the moment of in-

ertia of a body about any axis

through the origin, the moments
of inertia about the co-ordinate

axes, and other necessary constants

being known. Let I denote the

moment of inertia about the axis

OO', whose direction cosines are

A, /A, and v. Let a particle of

mass m be situated at the point P,

whose co-ordinates are x, y, and
and join OP, as shown in Fig. 89.

Let fall the perpendicular PN
upon OO', also draw PM parallel to the axis of z meeting the xy
plane in M, and ML parallel to the axis of y meeting the axis of

X in L.

We may note some relations that will be required as we proceed.

Thus, we have at once by the geometry of the figure

OP"=^"-f/+2* . ... (8).

Also, by regarding ON as the projection upon 00 ' of either OP or its

components OL, LM, and MP, we see that

ON=A:if4-/i9^-f (9).

Finally, A“+/x“H-f“=: i (10).

Then, by definition, we have
/=2:/»NP“ =2^0P’-ON“)
='2m{x'-^y^-\-z^— (Xx’^fxy-\-vzy}
= -}-y* A’ +/(**+ v")- (A^+ /xy+ vz^ },

or /= A* -f -f ^m{x^ 4*^*)i'*

•—2'2myzfjiv— 2'2mzxv\^2Zmxykft, .
. (ii).

In the three summations of the first line of (ii) we recognise the

moments of inertia of the body about the co-ordinate axes, which we
may denote by A, B, and C respectively. The second line of (ii)

contains three other summations, 2myZf etc., in which the products of

co-ordinates occur instead of their squares. These are called products

of inertia^ and will be denoted by and F respectively. Thus
(ii) may be written briefly

I=Ak*-\- Bfi*-\‘Cv^-~2l)i^v—2EvX—2FXiJ, . . (12).^

1 Momtntal Ellipsoid In any rigid body let a radius vector OQ of direction cosines

\ix» move in any way about the given point O, and in each position be of such length
that the moment of inertia of the body about OQ may be proportional to the inverse
square of its length, or say /^A/ATVOQ* Then, since x^\ OQ, etc., we get from (la)
as the locus of Q, + Dyx-ii Ezx—a Fxy (12a) This is

called the momtntal ellipsoid at O For a lamina, the section of the ellipsoid in the
plane of the lamina is called the momental ellipse.
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The foregoing folio the treatment of Routh, who calls this the
theorem of the six constants.

When three rectangular lines meeting in a given point of a body are

such that, if taken as co-ordinate axes, we have

'^myz— '^mzx
=
'^mxy = 0 (13),

then these are said to be the principal axes at the given point. Also,

the moments of inertia about the principal axes at any point are called

the principal moments of inertia at that point.

The constants m (12) are reduced from six to three if the co-

ordinate axes are taken so as to be the principal axes at the origin.

In this case (12) becomes

(14).

In some simple cases we can determine the position of these axes

by considerations of symmetry. Thus, if a bodyjs symmetrical about

the plane of yz^ then for every particle of mass m at (^, z) there is

an equal mass at (
— a:, z). Hence the summations 'Zmzx and '^mxy

would vanish. If, in addition, the body were symmetrical about the

zx plane, we should have a particle at {xy yy z) balanced by one at

(Xy — z)y so that '^^myz would vanish also. Hence the conditions of

(13) are fulfilled, and (14) becomes valid for the case in point.

242. Typical Moments of Inertia Evaluated. —The moment of

inertia of a continu&us body, often hitherto represented by is

really an integral, and must usually be treated as such and evaluated

accordingly. For when the distance from the axis varies continuously

the small particle m at any point must then be replaced by the product
of the density of the material, and the infinitesimal space occupied
by the portion of it under consideration. Then the space integral

must be taken between such limits as will include the body under
treatment

In different cases different kinds of space and density occur. Thus,
for a wire or filament, we are concerned with length and linear density.

For a thin sheet or shell we have surface and surface density. And
for any ordinary solid extended in the three dimensions we have
volume and volume density. Some cases of moment of inertia require

rather complicated working, while some are so simple that they can be
written down at once. We shall begin with such simple ones, and
using the theorems as required proceed to the more difficult examples.
Students, without knowledge of the integral calculus, may evaluate

most moments of inertia by taking on fai th the formula (except for «=o)

where a and b are the limits of r, and ^ is a small increase of which

IS the distance from the axis

Circular Wire and Cylindrical Shell.—Let the mass be M and the

radius Oy the moment of inertia about the geometrical axis being /.

Then obviously since the r in is everywhere the same, we
have

J=Ma' (i).
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243 , Filament about Perpendicular Az^s.;—Take now the case of

a straight filament OA of mass M, and length a about a perpendicular

axis through one end O. Then the linear

density is M/a, and we may take as our

element PQ of length dx situated at x
from the origin where the filament meets

the axis OY about which the moment of

inertia is to be taken, as shown in Fig. 90.

Then the mass of our element is Mdxja^
and this replaces the m in the r*

being replaced by x^. Further, the limits

of integration are clearly o and a. Thus

P||Q
r—J.L

dx A X

Fig. 90. Moment of In-
ERiiA OF Filament.

we have for the moment of inertia

r Mr M a* I 3/=— / x^dx-=.— .—= -Ma^
<23 3

(2).

It is obvious that this result applies equally to a rectangular lamina

of mass AT about one edge as axis, like a door of width a and negligible

thickness turning on its hinges. For, the lamina may be regarded as

made up of a large number of filaments whose masses add to give that

of the lamina, the moments of inertia similarly adding to the expression

in (2).

Again, equation (2) expresses the moment of inertia of a filament

of length 2a about a perpendicular axis through its provided

the fota/ mass is M, It should be noted that in this case the linear

density is Mjia^ just /fea^the previous value

Suppose now we take a filament of length a-\‘b about a perpendicular

axis through the point leaving a and b on either side, the total mass
being still M, We then have for the moment of inertia

a-hbj,a^ ^ a-^b\ )
=

• (3 ).

Obviously the cases covered by (2) and (3), where the axis passes

through the filament instead of at one end, apply equally to a rectangu-

lar lamina about an axis in its plane parallel to one edge instead of

coincident with an edge.

244. Lamina and Parallelepiped.—Consider now a rectangular

lamina of mass with edges 2a and 2b parallel to the axes of x and^
respectively, the origin being the centre of the figure. Then, if the

moments of inertia about the axes of x^ y, and z are /, and K
respectively, we haVe by (2) of last article and the lamina theorem (see

equation (5), article 239)

I^\Mb\J^\Ma\K^\M{a^^b-^) (4).

But it is obvious that the last of these results, giving AT, would
apply equally if we passed from the single lamina to a parallelepiped of

any thickness, 2c say, and of total mass M. Thus, by symmetry, we
have for the parallelepiped
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and
(5 )-

245 . Circular Disc about Axis and Diameter.—Consider a circular

disc or lamina of mass radius surface density <r, and let it be
required to find its moments of inertia / about a diameter and A" about
the axis perpendicular to its plane. If

we take a second diameter perpendicu-
lar to the first, it is obvious from sym-
metry that the moment of inertiayabout
this IS equal to /. Hence the lamina
theorem applied to the disc yields

il^K (6).

It IS Simpler now to determine K
directly by integration and deduce I,

thus reversing the procedure followed

for the rectangular lamina

For our element we take a ring of

radius r and radial width /a, as shown
in Fig. 91

The area of this element is 2Trrdr,

Its mass or times this, and its moment
of inertia times the previous product. Hence we have

dIC={ 2Trrdr)ar^= 2X(rrVr.

The limits of integration are o and thus we obtain

A’'= 27ro-

=

(7).
Ja 4

Whence by (6) we see that

(8).

It is obvious that (7) will apply also to a cylinder of any length

rotating about its geometrical axis. For a cylindrical tube of radii a

and b outside and inside and density p, we have from (7)

Fio. 91. Moment of Inertia
OF Disc.

245a. Elliptic Lamina—Consider now a very thin lamina of

mass M in the form of an ellipse with semi-axes a and b along the axes

of X and y respectively, and let the corresponding moments of inertia

be I and /, that about the axis of z being K, Then, since this elliptical

lamina differs from a circular one of radius b only in the extension of

material parallel to the axis of which makes no difference to the

moment of inertia about this axis, we have from (8)

I^\Mb^ (9 ).

Similarly (10).

Hence, by the lamina theorem,

(ii),

which is seen to agree with (7) if b==a.
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246 . Spherical Shells and Solid Sphere.—Consider a very thin

spherical shell of radius a and total mass and let /, y, and N
denote its moments of inertia about three rectangular axes meeting at

its centre. Then by the three axes theorem, equation (7) m article

240, we have

. ... (12),

since every r=ia But, by symmetry, /,y, and IC are all equal, so that

each is one-third their sum. Thus we have

(13).

giving the moment of inertia of the shell about any diameter.
We may now easily pass to the moment of inertia about its diameter

of a solid homogeneous sphere of radius a and density p by using a

shell of radius r and radial thickness Ir as our element. The area of

this shell is 47rr*, its volume dr times this, and its mass p times the

product Hence by (1 3) we have

d/=-^{47rr^drp)r* = ^7rpr*dr ( 14 )-

Thus, taking the integral between the limits o and we have

8 r 8 2/4 3\2

or (15),

where Mis the mass of the solid sphere.

For a shell of finite thickness we have obviously only to integrate

the same expression from the internal radius, b say, to the external

radius a. Thus we have

/=~7rp/ r dr= TTp—— (16);
3 7* 3 5

or, introducing the mass M of the shell, which is ^7rp(a'—

<

5 ®), this

3

becomes

247 . Bight Prism about Perpendicular Axis.—Consider the moment
of inertia of any right prism of homogeneous material about any axis

perpendicular to its geometrical axis. Take the axis of z along the

axis of rotation and the axis of x parallel to the geometrical axis of the

prism, the plane of xy being that of the diagram Fig. 92, in which
ABCD shows the prtsm, GG' its geometrical axis.

Suppose a particle of mass m of the body to be at the point P of

co-ordinates (^, 7, z)^ then for the moment of inertia about the axis of

z we have

(18 ),or
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where i^and repres^nj respectively the moments of inertia about the

axis of z of the bodies produced by condensing the prism first to the

filament FF' along the axis of and second to the shce SS' in the yz
plane. Thus, if for the prism

itself were substituted these

two ideal figures, the moment
of inertia would be unaltered,

although the mass would be
doubled.

Usually the K is required

for the case of O at the centre

of mass
,
the corresponding ex-

pressions for F and S are then

simpler than for an asymmetri-
cal case.

Thus, for the moment of inertia of a right c.TCular cylinder of mass
length 2ff, and radius c about a central axis perpendicular to its

geometrical axis, we find from (2), (8), and (18)

K=—Ma'-\-—Mc' (19)-
3 4

Also, for a rectangular prism of length 2a and width zh about a

central axis perpendicular to these directions, we find, from the prin-

ciple of this article, the result already given in equation (5), viz.

A'= (*o)-

Fig 92. Moment of Inertia of Prism.
^

Examples—XLVII.

1. Find the moments of inertia about its three edges of a brick of size 9
inches by 4^ inches by 3 inches, the mass being 9 lbs.

2. Show by direct integration that the moment of inertia of a uniform
cylinder about its axis is half mass into radius squared. Thence show
that for a disc about a diameter the moment of inertia is one quarter

mass into radius squared

3. Find about a diameter and about a tangent the moments of inertia of a
spherical shell and of a solid sphere, the densities being uniform in each
case.

4. Obtain a general expression for the moments of inertia of any prism about
a central axis perpendicular to the geometrical axis.

5 Find the moment of inertia of a right circular cone of uniform density
about an axis through the vertex parallel to the bise.

6. Treat the same cone as in No. 5 about a diameter of its base.

248. Triangular Lamina about Axis parallel to Base.—Let the

triangular lamina be represented by ABC in Fig. 93, its sides being

by and Cy its mass Af, and its surface density <7.

As seen in the figure, the corner C is taken as the origin of co-
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ordinates, the axis of x being along the side
^

Let us first find the

moment of inertia / about the axis of x. Take as the element the strip

PQ of ordinate y and width dy. Then, if the perpendicular EA of the

Fig 93. Moments of Inertia of Triangle.

triangle is denoted by the length of the strip PQ is «(/—^')/A
Thus we have

{p-y)y^dy^
pis 4J

p

0

or (21).

Take now a parallel axis through the centre of mass G, which is

easily shown to be one-third up the median DA. Then, calling the

corresponding moment of inertia /o, we have from the parallel axes

theorem

O'

So If,=^-^Mp* (22).

Further, take a parallel axis through A, and call this moment of

inertia Then we have again by the theorem

(*3)-or
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249 . Triangular ^L^mina about Ooplanar Axes perpendicular to

Base.— Still referring to Fig. 93, let us denote CE by y and CF by q.

Then, the moment of inertia about the axis of y being called y, we
have from (21)

/-:(?)'•+ K?)“-
_i $^(y+a)(r +

6 2 y-ffl
*

or (24).

Transferring now to a parallel axis through G, whose abscissa is

we find for the moment of inertia

Passing now to the parallel axis through A, and calling the moment
of inertiay, we find

_ I
47’+4ya+<J

~ \ t8 9

whence /’=^{<»’+ 3«r+ 3r*)

f=^(l3^+l3y+f)
where ^ is written for «H-y, t\e for EB on Fig. 93.

250 . Triangular Lamina about Axes perpendicular to its Plane.

—With the usual notation, let K denote the moment of inertia of the

lamina about the axis of z perpendicular to its plane, Kq and K'
standing for the moments about parallel axes through the centre of

mass G and through the vertex A respectively. Then, by the lamina

theorem, we have M
^.=/.+/.=^(/>*+a’+ay+/)

M
= +/+

f

+/’+ a*+ aoy+7’),

or K,=j^{a'+b'+^) (*7)-

To obtain AT' from this result and the parallel axes theorem, let us

denote by tn the median AD. Then we may easily see that

= a* (28).
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Thus , .

Whence by (28) M^ (29)-

We may obtain the same result by using the relation K’-=r -\‘J\
Also by either of these methods, or by symmetry of notation merely,

we find

+ (3°)

. 251. Direct Methods for Triangle about an Axis perpendicular to

its Plane.—By this method it will be convenient to take the axis

through the vertex A of the triangle

and take this point for the origin of

co-ordinates, though the moment of

inertia will still be called K' to agree

with the previous notation

Thus, referring to Fig 94, we take

the strip PQ parallel to the axis of x as

our element. Its ordinate being y\ its

length is obviously ayjp. Its moment
of inertia about an axis perpendicular

to the plane of the diagram and pass-

ing through its middle point R is

accordingly given by
A X
Fig 94. Direct Method

FOR Triangle.

I /aydy(r\ /^vV

3 \ 7~A^/
But, for its moment of inertia about the parallel axis through A,

we must add the product mass of the element into the square of AR
Now AR is evidently given by fny/p, where m as before denotes the

median AD. Hence

, /aydy!T\ftIayy IrnyV]

Then, integrating between the limits o and

or

24

which agrees with (29).

• (31),
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We may also with advantage solve this problem by use of a double
integral. Thus taking as our element an infinitesimal rectangle of

edges dx and dy situated at {Xy _y), its moment of inertia about the axis

ot z IS times its mass. Also the limits of x are given by the

equations x-=-yyjp and x=^Pylp of the lines AC and AB, where

y=EC and /?=EB= y-f a We therefore find

rp fPuip

K'— (rj I (x^-^y^)dxdy
Jo jyyip

./o L 3 -Jyyip

_ <ra/.^*+/?y-)-y*+ 3;>"

2 6

_ w2^*+2^y+2y‘+6/’

= J{3(/+ /)+3(/‘+/3“)-(^*-2/?y+y’)).

Hence, as before m (31), we have

A:'=^(3^’+3^^-a“) (32).

•

252. Triangle about Central Perpendicular Axis by Dimensional

Method —We may now
illustrate the use of the B
method of dimensions or /Vv
dynamical similarity in / \ N.

calculating moments of in- / \q
ertia. Referring to Fig. - / \ N. ^
95, let ABC be the tri-

angular lamina of mass /
M, its moment of inertia / \
about an axis through its

^
centre of mass G and per- A E C
pendicul^

Fig. 95. Moments of Inertia of Triangle
being A*. lake the by Dimensional Mki hod.
middle points DEF of

the sides and join them to each other and to A, B, and C. Then we
have four triangles all similar, each of half the linear dimensions of

the original triangle, and therefore of one quarter the area and^ mass

Hence, if we write k for the radius of gyration of the triangle

ABC, we have K,=Mk'‘ (33)-
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Whereas the moments of inertia of the small triangles about axes
perpendicular to their planes and passing through their centres of
mass G, P, Q, and R, will be expressed by

^yI/g)'=A'o/i6 (34).

Hence, using the theorem of parallel axes, we can build up the
moment of inertia JCo of the whole triangle from those of its com-
ponent triangles each of one-fourth the mass.

We thus have

or3A^o=i»f(GP»+GQ^-fGR^) . . ... (35).

^
We can now with advantage transform this expression by noting

some of the geometrical properties of the figure.

Thus AL=JAD=LA
pl=|al=jau,
LG=JLD=JAD,

GP=PL+LG=UD=GD=:- say.

3

Hence GP*=GD»= = (36).
36 36

And obviously similar expressions may be written for GQ, GR, etc., by
interchanging the letters.

Whence GP*+GQ’+GR‘=

1

=GD*+GE* 4-GF* J

Substituting (37) in (35) we have

.fir,=-(GD’+GE‘+GF*) (38),
3

.

which shows that the moment of inertia in question is equivalent to

that of particles each of one-third the mass of the lamina and placed at

the middle points of the sides.

Again, by (37) in (35) we find

(39)

in agreement with (27) of article 250.

253. Routh’s Rule.—The following very useful rule is given by the

late E. J. Routh m his Rigid Dynamics^ and is a valuable help in recall-

ing many of the results established.

Moment of inertia about an axis of symmetry

= (massxsum of squares of perpendicular semi-axes) -^(3, 4, or 5).

The divisor is to be 3, 4, or 5, according as the body is a rectangular

or elliptical lamina, or an ellipsoidal solid.

The chief typical cases of moments of inertia already dealt with are

summarised in Table x. and the included Figs. 96-100. All the

axes, about which the moments of inertia are taken, pass through the

centres of mass of the bodies dealt with.
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Table X. Typical Moments of Inertia.

239

Bodies and Axes.
Moments of Ineriia.

4
about OX.

/o
about OY.

^0
about OZ.

Rectangular Lfimina m xy plane.

L
3

^2

•

X

Fig. 96.

LI
elepiped

Y

At

•

y
n ^ •^ 7 X

Fig. 97.

Elliptical Laniina in xy plane.

1

f-
K % '^(a« + 3«)X

Fic;. 98.

Bill

Fi

DSOld.

Y

^ X

99.

y(f‘ + a*)

Triangular Lainina in xy plane.

Y

is"

i

•

M
jg(ij2+^y + y2)X

7' ^ "

Fig. ioo.
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254. Graphical Method for Moments of Jnertia of Laminae.—In
problems as to the bending of beams of various cross sections we
require what is usually called the moment of inertia of those sections.

That is, we need to know the moment of inertia of a lamina of uniform
surface density and in the shape of the section in question.

In some cases the graphical method which follows is very useful for

this purpose, as it reduces the calculation to mechanical drawing and
arithmetic, though the proof of the method requires more than this.

Let us first consider a certain possible relation between two plane
figures and the method of deriving one from the other. In Fig. loi
the original figure is an oval, of which we take an element PQ parallel

to the axis of x and of width Let us then mark off on PQ a smaller

element P'Q', whose length is y\b of PQ,
where b is here the extreme width of the

figures from OX. It is evident that P'Q'

can be found graphically by drawing the

parallel lines P/, Q^ and then the converg-

ing lines ;^P'0
,
q^O. Drawing a line

through all such points as P'O', we obtain

the first derived figure. By dealing with

P'Q' as we have just dealt with PQ, it is

obvious that we may obtain points P"Q", such that P"Q" is yjb

of P'Q', and therefore is y^jb^ of PQ. Drawing a line through all

such points as P"Q", we have the second derived figure. Both these

figures have valuable properties with respect to the axis OX, in

relation to which they were drawn. Thus, let the areas of the

original and first and second derived figures be respectively A^ A\ and
A\ and the corresponding masses of some lamina occupying those

positions be J/, M\ and M'\ then we have

MjA —M'IA'=M"IA"=0- say . .... (40),

where <r is the surface density of the material forming any one of these

laminae.

Also, if the lengths of the strips PQ, P'Q', and P"Q" at ordinate y
are called x, x\ x!' respectively, we have their rule of derivation

x'lx—ylb=x'jx, or

xy'^^bx'y—b^x' .... (41).

Let us now obtain equivalent expressions for /, the moment of

inertia of the lamina about the axis OX, the radius of gyration being

denoted by k. Then, by the definitions and use of (40) and (41), we
obtain the following, in which is written for the ordinate of the

centre of mass of the lamina, occupying the first derived figure :

—

Fig. lor. Related
Figures.

/= (rj*xy^dyzz:MH"—crA

rb
^

=zb(rj xydy—blYTy—bfrAfi

=ib'iT fx"dy^b^M”= b^(TA"
Jo

. (42)-
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Thus I=^d^M"=:d^a-A" (43),

and NzzzEA'jA . .... (44),

which shows the utility of this graphical method when the figures are

somewhat irregular The areas required may be estimated by count-
ing the squares they occupy on squared paper or determined by a

planimeter.

In Fig. loi the axis OX touches one side of the original figure and
the constant b is taken so as to just reach the other side, but these con-
ditions are not necessary. The axis OX may be taken anywhere about
which the moment of inertia is

required, and the distance b may
have any convenient value without
impairing the validity of the

equations, provided only that the

integrals are taken between the
proper limits. Hence if the figure

extended only between the ordin-

ates e and/ where /^>/ say, e and

/ would need substituting for o
and b in the limits of integrations

in (42), all else m (42) to (44)
remaining the same. Fig. 102. First and Second Derived

The shapes of the first and Figures.

second derived figures are shown
by single and double shading in Fig. 102, the original figure being a
rectangle of height b and length a.

The line limiting the first figure is given by x' —ajjby while the

equation of the parabolic curve for the second is given by

x"=xy/b= ay^lEf or y^=b^x"fa.

It is seen that the point O is here taken at one side, which is quite

legitimate.

We may find occasion to apply this method later. For fuller details,

with method of moving the pole O and many illustrations, the reader is

referred to more technical works, such as Professor Arthur Morley’s
Strength of Materials.

In connection with the torsional pendulum, dealt with a little

further on in this chapter, we shall see how the moment of inertia of

any body whatever may be experimentally determined.

Examples—XLVIII.

1. Obtain expressions for the moments of inertia of \ triangular lamina
about axes (1) parallel to a side and (11) perpendicular to a side.

2. Find, by any method, the moments of inertia of a uniform triangular
lamina about axes perpendicular to its plane.

3. Give Routh’s rule for the moments of inertia of symmetrical figures, and
show in tabular form the typical bodies and their moments of inertia

about their chief axes.

4. Explain how the moment of inertia of an irregular lamina or surface
about an axis in its plane may be obtained by a graphical method.

Q
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255 . Well Boiler and Bucket.—The desce.it of a bucket down a
well under gravity affords a simple example of the uniformly accelerated
rotation of a body of revolution, namely, the roller. Let the bucket
have mass m, the roller mass Af, radius r (to the centre of the rope),

and radius of gyration k. Suppose at first that the mass of the rope is

negligible, also the resistances due to its stiffness or the friction of the
axle in its bearings. Then the equations of linear and angular motion
may be written

mg--T=ma (i),

Tr^Mk^a . .
. ( 2 ),

where T is the tension of the rope and a and a the linear and angular
accelerations occuiring in bucket and roller respectively. Dividing (2)
by r, and noting that a=a/r, we find

T=zMk^ay
(3 ).

Then, adding (i) and {3), we obtain

mg={m+Mk^lr^)af

or «=--r^L/j (4)-vi-YMk jr
Substituting this value of a in (3), we find

Mk^mg
mr^+Mk^ ....

( 5 ).

256. Motion modified by Friction of Axle.—Let us now introduce
the coefficient of friction /i of the axle in the bearings, the radius being p.

Then the reaction of the bearings on the axle, if taken to be vertical,

is Mg-^ Ty the frictional resistance p times this, and the torque due to
friction p times the product. In reality the axle on turning would roll

up in the bearings a little before slipping, and the above expressions
would need modification for strictness. This aspect may be dealt with
rigorously later ; the approximation is sufficient for the present case,
where the friction only introduces a slight modification in the motion.

Hence, to our present approximation, we may write the equations
of motion thus :

—

mg— T^ma^ov T=m(g—a) . . . .

and Tr—(Mg-^T)pp—Mk'o.^Mk^ajr^

or
r(r-pp)

Then, equating the right sides of (6) and (7), we find

mr^— m)rpp

And by (8) in (6) we have

mr'+ —mrpp

mr^ -f-Mk^— mrpp

(6 ),

( 7

)

.

(8

)

.

(9).

It is easily seen that, if the friction is negligible, we recover the
previous values of a and T in (4) and (5) by writing p/A=:o in (8)
and (9).
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257 . Atwood’s MAohine allowing for Inertia of Pulley.—In
articles 223-224 Atwood’s machine was considered without and with

friction. But, in each case, the mass of the pulley was supposed
negligible. We now proceed to allow for this, friction being supposed
absent. Let us write for the larger and smaller suspended masses
and ii/a respectively, for that of the pulley M, its radius of gyration

being k and the radius to the centre of the thread r. Further, let the

tensions of the thread supporting the two masses be T’, and Then,
for the equations of motion, we may write as follows —

(i),

(2),

T,)r=^MNa==Mk^alr,
or T^-T^^Mk^alr^ (3).

Hence, by addition of (i), (2), and (3), we eliminate the T^s and
find •

{M,- M,)g=^{M,+ J/a+ Mk^lr,)a,

Then, by (4) in (i) and (2) successively, we obtain

2M,-VMljr^

and T,=M,g

(4)

(s),

(
6).

Here again it is seen that these expressions reduce to the simpler

ones of article 223, if the inertia of the pulley is ignored by writing

Mkyr^= o in (4), (5), and (6).

Examples—XLIX.

1. Determine the accelerations and tension when a mass of 10 lbs. hangs by
a cord from a solid cylindrical roller of i foot diameter and 30 lbs mass.
(Take ^^=32*2 ft /sec 2)

2. In the previous problem, show how to allow for the friction of the axle,

assume values for the radius of the axle and its coefficient of friction,

and find the new accelerations and tension.

3. Suppose the roller of the previous questions to be replaced by a roller

and fly-wheel, and the apparatus to be used for finding g ;
investigate

the required relations, and indicate the procedure.

4. In an Atwood’s machine the pulley is a single disc^of mass 100 grams
and runs on ball bearings, the moving masses being 510 and 490 grams
Find the linear acceleration and the error in the determination of g if

the pulley’s mass is ignored.

258 . Compound Pendulum.—Having considered, sufficiently for

our purpose, uniformly accelerated motion about a fixed axis, we now
pass to examples of variable accelerations, namely, those cases which
occur under gravity or elastic conditions.



244 ANALYTICAL MECHANICS [art. 258

We take first the compound or physical p^mdulum, which is a bar

or other rigid body suspended on a fixed horizontal axis at the end, or

elsewhere, and capable of oscillating freely about this axis. For
dynamical considerations it is characterised

by three important constants : its mass M, the

distance h from its axis S to its centre of

mass G, and the radius of gyration k about a

parallel axis through G (see Fig. 103, which
shows the vertical plane of oscillation).

To find the total torque about the axis S

when SG is inclined at Q with the vertical,

consider a particle m which is then situated at

Q distant horizontally QN=.a: from the vertical

SY. Then the torque due to this particle is

--mgx.
Thus the total torque is given by

^gx'2m= —Mgh sin B,

Or, if only small oscillations are considered,

and for them we write sin 6=0, then we have
the approximation

G=:---Mghe . . . (i).

But, as seen before, torque=moment of

inertia into angular acceleration.

Hence, using the parallel axes theorem for

the moment of inertia about S, we find

(2).

Thus, equating the right sides of (i) and (2), we have

(3).

Further, on writing H= k^lh,oxk^-=-hH . .... (4),

equation (3) may be put in the form

Fig. 103. Compound
Pendulum.

(5 ).

Hence, by article 29, we see that the motion is simple harmonic of

period given by

r= 27r/».= 27ry/
^

-'t

A

(6).

By comparison of (3), (4), and (6) with article 53 on the simple

pendulum we see that

(7),

where I is the length of the equivalent simple pendulum, i.e. the one of

equal period with the compound one under discussion.

Hence, if we lay off K from G to O along SG produced, then

SO=/.
In other words, O is such a point that, if all the material of the

pendulum were collected there and yet connected by massless rigid

bonds to the axis S, we should have an ideal simple pendulum that
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would oscillate in the sapie time as our actual compound pendulum.
This point O defined by

SGxGO= .^* (8),

(SGO being straight) is called the centre of oscillation.

Thus, though the simple pendulum is an ideal one which can never
be realised, we have found how to specify its equivalent length in terms
of the constants of any rigid body which may be experimented with.

259. The Centres of Oscillation and Suspension are Convertible.

—Let us now suppose the pendulum suspended about a parallel axis

through O, its period being denoted by t'. Then by (6) and (4) we
have

We thus see that the periods are equal abouf parallel axes through

a given point of suspension S and through the corresponding point of

oscillation O. It is, however, easily seen (as pointed out by Professor

Gray in his Dynamics and Properties of Matter
y pp. 147- 149) that the

parallel axes for the given period t are not confined to the points S and
O. On the contrary, they may move parallel to themselves to any
positions distant h and h! respectively from G. For, from (4), (6), and

(9), we see that precisely the same expressions hold for r in whatever
directions h and h' are measured m the plane of Fig. 103. But, of

course, it is only when h and H are taken in opposite directions from G
that SO represents their sum and is the length of the equivalent simple

pendulum.
Thus it IS correct to state that if the period ofa compound pendulum

about an axis through S is r, and SO, being SG produced, is the length

of the equivalent simple pendulum, then the period of the compound
pendulum about a parallel axis through O is t also.

But It is not correct to state that any two points on a line through

G, about parallel axes through which the periods are equal, are distant

apart by the length of the equivalent simple pendulum. For this to

hold, the points S and O must be on the straight line through G and
on opposite sides of G. For evidently a point O' maybe found between

S and G and distant K from G, about a parallel axis through which the

period will be r, but SO' will be //— instead of h'\-H
\
and it is the

latter and not the former which is equal to /, the length of the equivalent

simple pendulum (see Fig 104 in article 260).

We may also state this in an analytical form
;

thus from (7),

putting X for //, we have •

x^ —xl-\-k^-=o (10),

whence x-=. — (ii),
2

showing that h has in general hvo values for any given / or t.

Since for oscillations x must be real, we note that the limiting value

of / is the minimum
l=2k . .
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And for this value of / we have
X=lj2=k (13).

This, therefore, corresponds to the minimum period, which by (13)

or (12) is

r=27r >/ 2klg ( 14 )*

260. Variation of Period with Axis.—To study the variation of

the period t with distance h of the axis, it is convenient to write y and
X for these quantities and plot the curve defined by them as co-ordinates.

Thus, from equation (6) of article 258, we derive

= (is),

in' which y is the period and x is the distance GS from the centre of

mass to the axis of suspension.

Differentiating (15) with respect to we find

dy_
ix X slgxix'

This shows that as x increases from o to dyjdx is negative,

or y is decreasing; for x—k^
dy/dx—Oy ory is stationary

;
as

Y X increases beyond ky d) jdx is

1 positive, and therefore y in-

V creases indefinitely with x.

X
|,

.. Thus the stationary value of y~ 7m ^
for (see GK in Fig. 104) is

a minimum as shown before in

O II L— (12) and (13), the corresponding

i

i

j
G O' K S X value of y being that given

r
\ \ in (14).

T-i
Equation (15) shows that

x=o, j=oo, as we should
' expect, for there is no torque

to produce motion when the

pendulum is disturbed. In
Fig. 104 Variatiox of Period of fact, the meaning of disturbed

Compound Pendulum. position disappears when S
coincides with G.

We see also from equation (16) that for x=o the value of dy/dx is

±00. Thus the curve asymptotes to the axis OY.
If we write x negative in (15), y becomes imaginary, which may be

interpreted that oscillations are no longer performed with the pendulum
the same way up as at first. The pendulum topples over, a new x,

again positive, may be taken in the inverted position and the periods
found as before. It is convenient, however, in the diagram to show
an inverted curve for this portion, as indicated by the broken line in

Fig. 104. In this figure SO = /=S'0 ', the length of the equivalent simple

pendulum, while GK= GK'=/^ is the distance of the axis from the

centre of mass to give minimum period of oscillation. The figure is

drawn on the assumption that the pendulum is a uniform bar of length

SS' and of negligible thickness. Thus

G0=G0'=/4'=/5/3=J of GS, and GK=GK'=/l=/^/V3.
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And the ratio of periods with axis at K and at S is v 2 73/2=0-93
nearly. ' •

261 . Rigid Pendulum by Energy.—We may now take the motion
of a compound or rigid pendulum as an
example of potential and kinetic energy
and the transformation from one kind to

another. Thus, consider the pendulum to

have zero potential energy when the centre

of mass G is vertically below the axis of

suspension S, and take from G as origin

the axis of x along SG produced, the axis

of y being perpendicularly to the right.

(See Fig. 105.) Let there be a particle of

mass m at P, whose co-ordinates are {x^ y).

Then in the standard position this particle

is at a distance /i-\-x below S. But when
the pendulum is displaced through an
angle 6 as shown in the figure, the par-

ticle is below S by the smaller distance

(^-i-x) cos 0—y sin 0. Thus, the potential

energy of the pendulum in the displaced

position is given by

:x:)(i — cos 0)-f>'sm 6
]

=^y^(i — cos 6)lm-\‘g{i — cos 6)lmx-\-

^sin 62my.
But the mass of the pendulum, and 2wa:=o=2w>', since

G is the centre of mass. Hence the above becomes

V=^Mgh{i—cosB) .... .
• (17)

Again, since the pendulum is rigid, the angular velocity of every point

in It is the same, 6 say. Hence, writing r for SP, the linear velocity

of the mass m at P is rB and its kinetic energy Thus, we
have for the kinetic energy of the pendulum

T=^m{r4y= ise^'2mr*.
Or, writing as before k for the radius of gyration of the pendulum
about a parallel axis through G distant h from S, this becomes... ... (18).

But the sum of 7* and Vis constant, as the pendulum is supposed to

move under gravity without any other supply or withdrawal of energy.

Hence, from (17) and (18) we obtain

cos ^)=const ... . . (19).

Thus, on differentiating with respect to the time,*and dividing out by
we have

{K+ k^)B+ghsinB=o . . . . . (20).

And, on writing sin^=^ nearly for small oscillations, this reduces to

the approximate equation (3) of article 258.

The inquiry as to initial conditions and oscillations in finite arcs

given in articles 30 and 54-56 for rectilinear oscillations and for the

Fig. 105. Pendulum by
Energy.
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Mmple pendulum, etc., apply equally to the compound one of equiva-

lent length and so need not be repektfed here.

262 . Torsional Pendulum.—Imagine a body suspended from a

fixed point by a wire or other elastic arrangement which introduces a

torque proportional and opposite to any angular displacement 6 of the

body about a vertical axis. Then, if the body is symmetrical about its

vertical axis of suspension, and is displaced and let go, it will obviously

oscillate. For the body has the same relation to its vertical axis as

the compound pendulum with small amplitudes had to its horizontal

axis. Thus, if the body has moment of inertia I about the vertical

axis, and the restoring couple is E6 for a displacement the equation

of motion is

iB-frEB^o (i).

Hence the solution may be written

0=^^,COS (i^TTZ/r+e) (2),

the period being given by

T=27r tJljE .... (3).

Or, for a given suspension of elasticity independent of the mass hung
on it, as is the case for a single wire, we may write

(4),

where ^ is a constant.

263 . Moment of Inertia Table.—By using as a torsional pendulum
a cylindrical disc and stalk

and mounting upon it other

bodies of known and unknown
moments of inertia, the latter

can be found in terms of the

former by timing the periods

in each state. Thus, by refer-

ence to Fig. 106, we see the

pendulum in three states : the

bare table, the table and a

body K of known (or easily

calculable) moment of inertia,

and finally with a body X of

unknown moment of inertia.

Let the moments of inertia of

the whole suspended masses
in the three cases be

and and the respective periods t,, t„ and t, as shown.
Then, from (4), we have for the three cases

= rrj, /a= ctI, and /,=
— moment of inertia of X

/s-

Fig. 106. Moment of Inertia Table.

Whence
-A rl-rl that of K . . • .

thus giving the required ratio in terms of the periods observed.

A,

(s)*

(
6).
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Examples—L.

1. A circular hoop of radius h of uniform wire hangs on a knife edge. Find
the periods of its oscillations (1) in its own plane and (li) perpendicular

to that plane. Thence show that the addition of weights at the bottom
point of the hoop is without effect on one period but increases the

other.

2. Explain what you mean by the centre of oscillation of a pendulum, and
find Its position

(I) for a thin uniform rod suspended at one end, and
(II) for a uniform disc oscillating about a tangent.

3. Establish the theorem of the convertibility of the centres of suspension

and oscillation.

4. Investigate the variation of the period of a pendulum with the position
^

of its axis, and illustrate your answer by curves for some actual

pendulum.
5. Obtain by any method the period of small* oscillations of a rigid

pendulum.
6. Find the penod of oscillation of a unifilar torsional pendulum, the

torque per radian being assumed. Thence show how the moment of

inertia of any irregular body can be determined.

7. ‘Find the smallest time of oscillation of a uniform bar of length 2a about
an axis fixed perpendicularly to the bar at any point in its length.

‘ Find the same for a uniform plate in the form of an equilateral triangle,

the axis to be fixed perpendicularly to the plane of the plate.
‘ For what position of the axis is the time greatest ?’

(Lond. B.Sc., Pass, Applied Math
, 1906, ni. 5.)

8. ‘ If at equal intervals, a, there aie fixed n equal particles on a straight

rigid wire AB^ whose mass is negligible (there being no particle at A\
and a pendulum is made by suspending the system from prove that

it will oscillate in the same time as a simple pendulum of length

(2«+i)<2/3. Is this true if the wire is replaced by a flexible thread

(Give reasons.)’ (Lond. B Sc
,
Pass, Applied Math., 1907, iii. 4

)

9. ‘ Show that the time of oscillation of a compound pendulum is 2'n^k‘^lgh

where h is the distance of the centre of gravity from the axis of suspen-

sion and k is the radius of gyration of the pendulum about that axis.

* A heavy particle is attached to a straight compound pendulum at a
distance from the axis of suspension, and the length of the simple
equivalent pendulum is then ; it is then attached to a point distant

from the axis, and the length of the simple equivalent pendulum is

now /g. Show that if it be entirely removed, the length of the simple

equivalent pendulum will be

(4-^)-^2^2+Vi
(Lond. B.Sc

,
Pass, Applied Math., 1909, iii. 3.)

10. ‘Explain the phrase simple equivalent penduluh as applied to the
motion of a heavy rigid body about a fixed horizontal axis. Find the

length of the simple equivalent pendulum when a uniform circular disc

moves about a fixed horizontal axis in its plane, in terms of the radius

of the disc and the distance of the axis from the centre of the disc.’

(Lond. B.Sc, Pass, Applied Math

,

1910, iii. 2.)
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264. General Plane Motion of a Kigid Body.—Let us now consider

any rigid body, its general motions of translation, rotation, or both
combined all parallel to a given plane, the momentum and energy
possessed by it, the impulses, forces, and torques acting upon it, and
the work done on it by those forces.

Let the motions and forces be all parallel to the xy plane. At time
/ let the centre of mass G of the body be at and let there be

a particle of mass m of the body at

. I
P, whose CO ordinates are x^ jk, z with

respect to the fixed axes XOY,
and z with respect to the axes

X'GY', which remain always parallel

to the fixed ones but move with

G. Further, let r be the length of

the projection of GP upon the xy
plane, and let this projection make
the angle 0 with GX' Then, on
reference to Fig. 107, and remem-
bering that for a given particle r

Fig. 107. Plane Motions of
Rigid Body

is invariable, but that a and b vary

with time, we can find the follow-

ing preliminary relations, in which
u and V are written for the component velocities of G and w for ^ —

. . (i),
'

2ma=^o=^'2mb .... (2),

a= rcos ^=rsin . . {3)»

d=^--rsmO.O~ — ii>b/b-=rcosB, 6~{aa . . (4),

x— u—is)b,y—V'\-*»ici (5),

= — .
. (

6),

Not only in these differentiations but throughout the subsequent
work it must be remembered that, since the body is supposed rigid^ r
does not vary with time for a given m at P, but only varies from point

to point, i.e, with m in the summation over the body. Further, while

all the x's^ y\ and their derivatives may vary with time, x^y^ «, v, w,

and w do not vary with the particle under consideration.

Position of Centre of Mass,—Multiplying (i) by m and summing
over the body, we have

'Imx= oeZm -j- 'Ima.

Remembering that the last term is zero, and using M for 2;;/, the mass
of the body,

we have
,

Mx=^mx\
and similarly My='Zmy j

265 . Linear Momentum and Acceleration represented by those

of Total Mass at Centre of Mass.—Multiplying (5) hym and summing
we find for the linear momentum of the body parallel to x

= u'Sm— iaXmb= Mu.
Let us suppose that the particle m acquired its velocity db under
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the action of an impulse during the short time /i, then this impulse
may be represented as t*he product of a certain force into the time

Further, this force may possibly consist of two parts, one X being

referable to the action of some external body on the particle in question,

and another X' being referable to the interaction between particles in

the rigid body itself. Thus the sum of the impulses may be repre*

sented by
l(Xi- Xy,=:^Xf, -f

But the last term here vanishes in the summation over the whole body,
since for every interaction between a pair of particles the members of

the pair exert equal and opposite impulses upon each other.

Thus we see that when a rigid body is moving in any way
parallel to a fixed plane, the total linear momentum in a given

direction is equal to that of the total mass concentrated at its centre*

of mass, and that the sum of the impulses in a given direction

experienced by all the particles reduces to the oum of the impulses due
to external bodies. We may accordingly write

^Xf,:=Mu 3ind'2 Y/,=^Mv . . . (8),

the body being supposed to start from rest.

We may make these more general by supposing the velocities u and
V to receive the small increment du and dv in the time dl We then
have

^Xdt^Mdu^Xidl.Ydt^Mdv (9).

On dividing out by <//, these became

'lX=^Mh^nd^Y=^Mi) (10),

giving the forces and accelerations concerned. It is instructive, how-
ever, to make a separate examination for the acceleration. Thus from

(6) we have
= iiSm— Glnib—

;

or, since the summations involving b and a vanish,

'lmx^Mu.\ IK
Similarly 'Imy—Mi) j

' ' • • • \ /•

Then, dealing with forces as with impulses, the internal reactions

disappear in the summation over the body, and we have the expressions

of (10) as previously found.

266. Angular Momentum of Rigid Body.—Let us now consider the

moment of the momentum of a particle about OZ, or its angular

momentum about OZ, the third rectangular axis through O. This is the

moment about O of the linear momentum of th^ particle. But as we
have seen in article 25^7, the moment of a vector about a given point

is equal to the algebraic sum of the moments of its components about

that point. Hence, referring again to Fig. 107, we have for the

moment ofy about O the product ’hyx^ and for the moment of x about

O the product —xy, the positive direction of rotation being counter-

clockwise. Thus, for the angular momentum of the whole rigid body

about OZ, we may write
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'

2m{yx— xy)= '

2m{(» -j- o>a)(:v

+

a)—
= '2im{vx— wy)

+

<aSim{a'

+

+ -f (iix^^ma— (w— (ay)^mh

— {vx— uy)2m+niZmr^

,

or 2;»(j);icr— = — W7)+ A'oO) (^2),

where is the moment of inertia of the body about an axis

GZ' through the centre of mass and parallel to OZ. Hence, we see

that the angular momentum of a rigid body about a given axis equals

that of the whole mass at the centre of mass plus that of the body
about a parallel axis through the centre of mass. (See also article 238.)

If we now turn to the impulses under which these momenta may be

supposed to have been produced from rest in time /i, we have, in the

former notation, for their torque with respect to OZ
l.{Yt,x--Xt^y)='2{Yx--Xy)t,-\-^{Ya--Xb)t, .... (13).

Thus, the moments of the impulses or the impulsive torques split up
in the same way as th6 momentum. Further, on comparing (12) and

(13) and recalling the fundamental relation, impulse equals change of

momentum, we see that these equations agree term to term. We may
accordingly write

'^{Vx-Xy)ti='2m{yx—xy) (14),

'^Yx—Xy)ti=M{vx—uf) (15),

and 2{ya-Xi)t,= X,<« (16).

It should be further noted that (15) splits into two equivalent terms

on each side, giving

2Xt^= Mu2ind^Ylz:zMv . ... (17).

Thus, equating the left sides of (12) and (13), we may say that a
given angular momentum about OZ is acquired under a certain

impulsive torque about OZ. Or, using (16) and (17), we may say that

the velocity of the centre of mass is due to the linear impulse and the

angular momentum about it due to the corresponding impulsive torque.

267 . Growth of Angular Momentum.—We may now notice that

the rate of increase of the angular momentum of a rigid body also falls

into two terms, as is the case with the momentum itself. Thus, we
may take the differential with respect to time of the angular momentum
just found, or we may take the moment about OZ of the product (mass

into acceleration) of any particle, and then sum for the whole body.

Let us adopt this full method first and use the other as a check on the

result. As before with momentum, we may replace the moment of an
acceleration by those of its components. Hence we may write as

follows :

—

Rate of Increase of Angular Momentum of Body about OZ=
— xy)— (^ — to^b){x-\-a)— o,'a){y+b)]

=^m{vx— iiy) -Y (ii2m{a^ -j-

^{v-\'d)x-\- (oyyEma— (w— wy -f io^x)'Emb,

or
'

2m(J}x—xy)=:M(vx—uy)-^Ko^ (18).

And this answers the check of differentiating the equation (12) with

respect to time.
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Turning now to the^forces under whose action these accelerations

occur, we see that their moment about OZ may be expressed and split

up as follov/s :

—

i:(Vx-X_y)= '

2(Yx-Xj})+2(ya-Xl>). . . (19).

And here again, not only are the left sides of (18) and (19) equal,

but also the terms on the right are equal, each to each. Thus, on
splitting the equations involving x and y, we have

2X=:Mu,'2 Y=:Mv (20),

2{Ya^X3
)
= Ko^ . . . (21).

We have usually hitherto treated the total mass M as invariable.

But in certain problems particles become adherent on a rigid body or

leave it, so it is desirable also to provide for a variable M. Thus, differ-

entiating (17) and (16) with respect to t on this understanding, we^

have
d{Mu)= Mdu+ udM, 2Ydt^ d{M^)=Mdv -fvdM (22),

and
'

2{Ya---Xd)dt=:d{K,i^)==K,dui-\^isydK, (23).

Hence, when forces are absent, we have

constant, constant (24).

And when torques are absent

Aroa>= constant (25).

Equations (24) and (25) are the symbolical expressions of the very

important principles called the

Consei vations of Linear and Angular Momenta.

268 . Kinetic Energy of Plane Motion of a Rigid Body.—Con-
sider now the kinetic energy T of any rigid body whose centre of mass
G has the velocity components u and the body also rotating about
GZ', parallel to OZ, with angular velocity w (see Fig. 107). Then, with

the previous notation, and the relations of article 264, we have

2 7^= 4-j*)= 2w{(w— -f (z; -f )**

}

= («’ *f -f- -fF)

-f 2V^a^md\~ 2U(ii\2mb\

Or, since the last two terms in square brackets vanish, we may write

(26).

Thus, the kinetic energy also splits into two terms, one of translation

expressing the energy of the whole mass as if it were a particle moving
with G, the centre of mass, and the other expressing the energy of

rotation of the actual rigid body about an axis through its centre

of mass and parallel to the original axis.
^

Turn now to the work W which is expended in generating the

above kinetic energy in the rigid body. Each element of the work may
be expressed as the product of the force into the displacement, in that

direction, of the particle. But, if these displacements occur in the

small time A we may express these small changes of x^ j, and 0 by
and = Thus, using the relations of article 264,

we find
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iv=^xx,+
=i{A'(«-i-a)+ y(7>^i)]fi

=^uL'2X-YvL^y+ioL'2( ya-Xb),

Thus w^x,'2x^s\^y-ye,'2{ya-xb) .... (27)

This accordingly shows that the work divides into two parts, viz. (i)

that of the resultant force into the linear displacement of the centre

of mass, and (ii) that of the resultant torque about a parallel axis

through the centre of mass into the angular displacement of the body.

On comparison of (26) and (27) we may see that they are not only

equivalent in the aggregate but also term by term, each to each.

269. Independence of Translation of Centre of Mass and Rotation
about it.—Thus the foregoing articles 264-268 have established the

•complete independence of the translation of the centre of mass of a

rigid body moving in a given plane, and its rotation about an axis

through the centre of rdass and perpendicular to that plane. In other

words, (i) The Linear Acceleration of the Centre of Mass of a
Rigid Body is determined by the external forces as though the whole

mass were concentrated at that point and the forces were applied there

parallel to their actual directions.

Or and y (28).

(ii) The Angular Acceleration of a Rigid Body about any axis through

the Centre of Mass is determined by the moments of the external

forces about that axis, the whole body retaining its actual mass and
shape, and the forces being restricted to their actual lines of action.

Or K,u^=^ya--Xb) . . . . (29).

Hence the translation of the Centre of Mass is independent of any
rotation about it, and the rotation about it is independent of any
translation it may experience.

The statements just made have direct reference to the subject of

article 267, but the relations established in articles 265-268 are all

interdependent. They accordingly represent different aspects of that

property of the centre of mass whose most memorable feature is here

emphasised.

It is perhaps desirable to warn the student that though it is often

best to use the property of independence, still this is by no means
invariably the case, the method of estimating moments of inertia and
forces about some other axis not through the centre of mass being some-
times shorter.

A certain class of problem in which the principle is easily appli-

cable is that of evaluating the reactions at the axle of a rotating rigid

body, taken say as the origin of co-ordinates. For, taking moments
about the origin, we find the angular acceleration and therefore the

linear transversal acceleration of the centre of mass. Then, by the

principle of energy, and knowing from the independence of translation

and rotation that the loss of potential energy is simply that of the whole
mass as if at its centre of mass, we may find the angular velocity.

And this gives the radial linear acceleration of the centre of mass.



AfeT, 270] PLAME KINETICS OE RIGID BODIES ^5$

Finally, knowing all {accelerations of the centre of mass, and again
using the independence theorem, we find the total force components,
and thence obtain the reactions sought. (See Examples—li., Nos. ii,

12, and 13.)

270 . Centre of Percussion.—Let a rigid body have a fixed axis and
let it receive a blow or impulse such that there is no impulsive pressure

on the axis, then the point where the

direction of the blow meets the plane

through the axis and the centre of

mass is called the centre of percussion

of the body with respect to that axis.

Thus, referring to Fig. 108, let the

fixed axis be that of z through S and
perpendicular to the plane of the dia-

gram. Let the blow be along QP, of

magnitude and produce no impul-

sive pressure on the axis. Then the

centre of percussion is the point P where
QP meets the yz plane through S and
the centre of mass G.

To determine the position of P,

let SG=/^, GP=/, let the mass of the

body be M and k its radius of gyration

about GZ' parallel to SZ.

Then, writing w for the angular velocity immediately after the blow,

and applying (17) and (16) of article 266, we have
Xt^= MhiA and Xt-^p

—

since there are to be no impulses at the axis.

Whence p—k^jh ox k^~hp (i)

But this result gives for p the same value as /^'=:GO for the centre of

oscillation (equation (4) and Fig. 103 of article 258). Hence P and O
coincide for the given S It should be noted that some writers call

any point along QP (Fig. loS) a centre of percussion. Also, as we
saw in article 259, the period of the pendulum is constant for the axis

through O or any parallel axis distant H from G. Thus it is only the

one point P on QP where it meets SG produced, and the one point O
on the circle of radius h! round G, that coincide.

If a body at rest and quite free receives a blow, the axis about which
it begins to turn is called the axis of spontaneous rotation. We may
easily see that it corresponds with the fixed axis in the case just

considered. Thus again referring to Fig. 108, we imagine the blow Xt^

struck as before and introduce the condition that S does not move.

After the blow let the linear velocity of G be w along GX' and the

angular velocity be a>. Then
Xti=Afu and Xtip^Mk^w^

and the velocity of S along SX is

Fig 108 Centre of
PERCUSbION.
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But this is to be zero, hence

k’^^hp (2),

as before m (i)

271 . Fall of Trap Door from Vertical Position.—It is instructive to

consider also cases where the impulsive pressures at the axis do not

vanish. A simple example of this is presented by the fall of a trap

door from the vertical to the horizontal position, considering the door

to be a uniform lamina turning freely about a horizontal hinge at one
edge and stopped suddenly by an
impulse along the edge parallel

to the line of the hinges. Thus,

referring to Fig. 109, let the motion
be in the plane of jc, the

hinges being at S, the centre of

mass falling from rest at G' in the

quadrant to G, the edge B' striking

the frame at B. Let the trap door
acquire in its fall an angular vel-

ocity &> and be arrested by two
impulses D and E acting vertically

at B and S. Then, calling the
Fig. 109. Fall of Trap Door. Qf ^

width ^=SG, the square of its

radius of gyration about a parallel axis through G is

thus see that its potential energy when upright is Mgh (see equation

(7), article 264) reckoned from S
j
and that its kinetic energy when down,

just before striking the blow, is Hence, equating the

loss of potential to the gain of kinetic energy, we have

2gh= {H -f =

4

^*w73,

or <0= -Jigl2h (3).

Considering the stopping of the door by the blows D and we
have from (17) and (16) of article 266

E-\-E—M<oh .•••••••••• (4)1
and Z>h-Eh=M/k\

or D-£=Mj,a (S).

Thus, by addition and subtraction of (4) and (5) and using (3), we
find

(6),

E-^M-Jishl2 (7).

These two blows are evidently equivalent to a single one D-\-E
applied at P, where

(8),

as might be expected.



ARTS. 272-272^] PLANE KINETICS OF RIGID BODIES 257

272 , Fall of Trigj^Door from Horizontal Position.—Referring

again to Fig. 109, let us now suppose the support at B to be suddenly
removed when the door is at rest in the horizontal plane. We may
then inquire what is the force exerted by the hinges, and what is the

angular acceleration, each immediately after removal of the support.

Let this initial force at the hinges S have components X and F,

and let the initial angular acceleration be y.

Then, by (28) and (29) of article 269, we have

X=o, Y-Mg=M{hy) (9),

and y{-A)=(MA'li)y (lo),

since Xq= I From these we find

r==Mg/4 a.ndy—-ig/4k . . . . . (ii).

The initial linear acceleration of the centre of mass is accordingly

-afA (12)-

We might also treat this problem by tak^^ig moments about S,

yielding

which with (10) determines Y and y as before.

Before the removal of the support at B, it is obvious from symmetry
that the support at each edge was Mgji. It is thus noteworthy that

the removal of one support has the immediate effect of changing the

force exerted by the other from a half to a quarter of the weight of

the door.

272a. Sudden Fixation of a Point in a Rotating Body.—The fore-

going example of the trap door illustrate the type of problem in which
some point or line is suddenly fixed or suddenly freed, the motion being

under gravity. If the motions occur in a horizontal plane we may have

a point given which is to be suddenly fixed, the subsequent velocity

and the impulse to be found. Or, we may have a relation between
velocities before and after given, and from that be required to deter-

mine what point is fixed.

It is clear that the impulse acts through the point which becomes
fixed, so has no moment about any axis through that point. This
principle is very useful in attacking such cases.

Thus let a uniform thin rod of mass M and length 2h be rotating

about its centre in a horizontal plane with angular velocity Wq, when by
the sudden fixing of a point P in it the angular velocity is reduced to

half. Find the position of P and the impulse Q exerted there when P
is fixed.

At the instant in question let the rod lie along the axis of y
with centre at the origin and P at (o, y) and Ibe rotating counter-

clockwise. Then, equating angular momenta about P before and after

the fixation, we have whence y=
^=(0*577 .. .)^ Accordingly the centre of the rod starts off with

velocity a>^=<Do^/2 parallel to the axis of x.

Thus the impulse is given by As a check, we may
note that the moment about O of this impulse reduces Wo to <t),/2.

R
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273. Ballistic Pendulum.—^This device invented for the determina-

tion of the velocity of projectiles, though now superseded by other

contrivances, still presents a mechanical interest. It is shown diagram-

matically in Fig. no. Imagine a rigid pendulum of mass M free to

turn about a horizontal axis at S, and when at rest

to receive, at B situated d below S, a bullet of mass
m and horizontal velocity u. The bullet may be
received on a metal plate and be shattered, or in

a chamber of sand or other soft material in which it

is embedded. In either case the pendulum receives

an impulse during a negligibly short time, so may
be considered as starting from its vertical position

with an angular velocity w and finally attaining a
displacement Let k be the radius of gyration of

the pendulum about S, and let h be the distance

from S to G, the centre of mass. It is required to

determine the speed of the bullet, its mass m
being negligible in comparison with J/, that of the

pendulum which is made large to avoid undue swings.

Then, since we may regard the pendulum at rest and the projectile

approaching it as forming a system subjected to no external forces

having a moment about the axis at S, the angular momentum or

moment of momentum about this axis cannot be changed by the

impact. (See equation (25) of article 267.)

But the moment of momentum before impact is that of the bullet

only, and that after impact is, to our approximation, that of the pendulum
only. Hence we have

mub=^Mk'^<si . . . (i).

To find the relation between m and we note that the pendulum
starts with a certain kinetic energy, and as it swings this is gradually

changed into potential energy. Hence we may equate the gain of

potential energy to the loss of kinetic, thus obtaining

Mibli^cos
or 2^/^(2 sin*0/2)=^'*<«>*,

^ =i5'cD , (2 ).

Then (i)-t-(2) gives

(3),

the quantity in brackets being a constant for the pendulum, the second
factor expressing the variables for the projectile under examination

Sometimes the ^gle 0 is estimated by allowing the pendulum to

pull out a cord or tape. Thus, if a length c is pulled out at radius r on
swinging through the angle B, we have

(4).

Then (3) becomes
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showing that u varies Hence if the tape were graduated uniformly

the values of u could be found on multiplying by a constant and
dividing by the mass of the bullet. Or, for a given the tape could

be graduated to read values of u directly for the pendulum m question.

By allowing the pendulum to swing we could observe the period,

given by

T—2TrFIJgh
Thus, introducing this value to eliminate k\ {5) becomes

/rMgh\c

\ 2Trbr )m

(6).

(7)>

in which JIgb is the torque exerted about S by the pendulum in a

horizontal position, and so is easily ascertainable.

For fuller details as to construction and use of ballistic pendulums,
the student may consult Routh’s K/gid Dynamics^ i. pp. 98-101, 1897 ;

and Sir G. Greenhill’s Notes on Dynamics^ pp. ipo-191, 1908.

Examples

—

LI.

1. Establish the independence of rotation of a rigid body and the transla-

tion of Its centie of mass as regards linear momenta and kinetic energy.

2. Show that the angular momentum of a rigid body, about an axis perpen-
dicular to the plane of its motions of rotation and translation, may be
divided into two parts, one being that of the body as though condensed
to a particle at its former centre of mass G, and the other being that of
rotation of the actual body about a parallel axis thiough G as though it

were stationary.

3. uniform bar AB, 6 feet long, mass 20 lbs, hangs vertically from a
smooth horizontal axis fixed at .<4 ;

it is struck normally at a point 5 feet

below A hy Si blow which would give a mass of 2 lbs. a velocity of

30 feet per second
;

find the impulse received by the axis, and the

angle through which the bar will rise.’

(Lond. B.Sc, Pass, Applied Math
, 1906, iii. 6.)

4. ‘A system of particles is moving in one plane. Show how to compound
their momenta, and reduce the result to its simplest form.

‘Three equal particles are attached to the corners of an equilateral

triangular area ABC^ whose mass is negligible, and the system is

rotating about A, A is released, and the middle point of AB is

suddenly fixed. Prove that the angular velocity is unaltered.’

(Lond. B.Sc., Pass, Applied Maih., 1905, iii. 6.)

5.
‘ If a rigid body is revolving with angular velocity a> about a fixed axis,

find

—

(a) Its kinetic energy
;

(d) Its moment of momentum about the axis.

‘A uniform rigid bar, AB^ is rotating in a smooth horizontal plane about
Its centre with angular velocity <» ;

if suddenly atpoint P m the bar is

fixed, find the position of P for which the new angular velocity will be

W’ (Lond. B.Sc, Pass, Applied Math, 1907, ni. 2.)

6. ‘ Obtain a formula for the kinetic energy of a rigid body in terms of the

motion of Its centre of mass and its motion relative to the centre of

mass.
‘ At a point P of a. uniform circular hoop there is attached a particle of

mass equal to that of the hoop. The hoop rolls, in a vertical plane, on a
perfectly rough horizontal table. Prove that if the system starts from
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rest when P is at the highest point, the angular velocity <» when the

radius to P makes an angle 6 with the downward vertical will be
given by

i+cosfl
,

a 2-cos^
(Lond. B.Sc., Pass, Applied Math., 1908, iii. 4.)

7. ‘ A disc of massM and radius a is moving in its plane, the velocity of its

centre being u and the spin about its centre w. One of the points of

the disc distant ^1/2 from the centre m a direction at right angles to the

direction of motion of the centre is suddenly fixed. Show that the loss

of energy is

~ ± «a>p.
’

(Lond. B.Sc
,
Pass, Applied Math., 1908, iii. 6.)

8.
‘ Obtain an expression for the kinetic eneigy of a lamina moving in its

own plane about a fixed point
‘ A uniform rod of weight free to turn about a fixed smooth pivot at

one end, is held hoft-izontally and released. Prove that when, in the

subsequent motion, the rod makes an angle & with the vertical, the

pressure on the pivot is

Jff^V(i+ 99 Cos2^)»

(Lond. B Sc., Pass, Applied Math., 1909, iii. 5.)

9. ‘ In connection with the uniplanar motion of a rigid body, explain what is

meant by the principle of the independence of the motions of transla-

tion and rotation.
* A lamina moves in its own plane, being subject to a single force constant
in magnitude and direction which always acts at the same point of the

lamina. Find the motion.^

(Lond. B.Sc., Pass, Applied Math
, 1910, nr 5.)

10. Explain the construction and action of a ballistic pendulum, and obtain

a formula involving the quantities concerned.
1 1. Obtain the following expressions for the reactions on the axle of a rigid

body swinging from rest at the inclination of its centre line a above the

horizontal, to B above the horizontal :

—

Wh
Ar=—^(-2 sin a cos d -I- 3 sin ^ cos B\

2sinasin^-f-3sin2^- i),

where W is the weight of the body, h the distance of centre of mass
from axis, and I the length of the equivalent simple pendulum

12. If, in question ii, the body starts from rest in the vertically upright

position, show that, for any shaped body whatever, the maximum
horizontal force exerted towards the side to which the body swings
occurs at and that the maximum horizontal force exerted in

the opposite direction is for - 34®.

13. For the case of question 12, plot curves for X and F, the angles B being
the other co-ordinhtc.

274. Pure Kolling down an Incline by Energy.—We now pass to

the consideration of motions which are special examples of combined
translation and rotation. Let us take first the rolling, without slipping^

of a solid of revolution down an incline. Then, the solid and incline

being specified, the accelerations are required. It is instructive to

treat this problem several ways, each possessing its own advantages. We
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commence by applying the conservation of energy, equating the

potential energy lost by the body in a descent to the kinetic energy
gained. Let the body on the incline start from rest in the position

shown in Fig. in, where it makes contact at C.

Let the body have mass and moment of inertia about its

geometrical axis K^^bMr^jc^ where b and
c are mere numbers depending on the Y
form of the body and r is the radius of N\ X
the rolling part. Then its moment of

inertia about a parallel axis through C /
is K={b-{-c)Mr^lc. Let the plane make
an angle a with the horizontal, and let x ^

represent distances upward on the slope, ^
u linear speed, and a acceleration. Also ^

•

let <D and 7 be the angular velocity and ^
acceleration in the plane of xy. , down Incline.

Then, if the body rolls till the point of

contact C has moved a distance x down the plane, it will have
lost potential energy of the amount Mgx sin a. But, if its angular

velocity in the meantime changes from zero to w, its kinetic energy

will be increased by JAw*. For the axis through C perpendicular

to the plane of the diagram is the instantaneous axis of rotation.

Thus equating we find

Mgx sin a= I tt

But, if the motion is pure rolling, we have in addition the geometrical

relation

(a=z--ulr (2).

Thus (2) in (i) gives

2gx sin a= (b-{-c)u^lCy

» • (3>

And this shows that the motion involves uniform accelerations,

given by
^gsin a , .-«= (4).

If we had considered the kinetic energy made up of the two terms,

and then applied (2), we should have obtained (3), and
have illustrated the use of (26) in article 268.

275. Rolling down Incline by Direct Moments.—We now atta^:k

the same problem of pure rolling by taking the moments of the

external forces about the instantaneous axis of rotation, i e. the axis of

z through C and perpendicular to the diagram (Fig. iii). Thus,
equating resultant torque to the product of moment of inertia and
angular acceleration, we find

Mg{rsm(i)—^-^Mr^y (5 ).
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We have also the geometrical condition for no slipping

y=-alr. . .

Hence (6) in (5) yields

. b-\-c
^sin a= —a.

Thus the accelerations are given by

b-\‘C
= yr.

(
6).

(7 ).

In cases where the distance between the instantaneous centre and
the centre of mass is changing another term is needed in the above
analysis. It is then simpler to use the method of article 276, which is

invariably safe.

276 * Rolling by Properties of Centre of Mass.—We again consider

the problem of the pure rolling of a body down an incline, applying

this time the properties of the centre of mass summarised in article 269.

Still referring to hig. 1 1 1, we take successively the forces parallel to^ and
X and the moments about the perpendicular axis through G, equating

each to the appropriate product, of inertia and acceleration factors. Thus
'

2 Y— N—MgQ,o^a—o (8),

2^=r-il4>-sina=J/'a . . . . (9),

2(Vx‘-Xy)= Tr=(jMr’y . (lo),

where x' and y are here used for the co-ordinates of the points of

application of the forces.

We have also the condition expressing no slipping

y=-alr . . . (II).

Then ( 1 1) in (10) gives

-r=—Afa
c

. • . (12).

and this added to (9) yields the accelerations

rFsin a—
. . . . ,

b-\-c
* • • • (13)-

Again (13) in (12) determines the frictional force

7=-74—^^sina ...
D-YC

. •
• (u)-

Thus, though this method may be longer, it affords a closer insight

into the phenomena, and gives the values of A^and the normal and
tangential reactions at the incline on the rolling body.

277 . Condition 'for Pure Rolling on Incline.—When the rolling

body is also just on the point of sliding on the incline the full frictional

resistance is called into play, so that we have where ^ is the

coefficient of friction.

Hence, by (8), we have
T=lJ(>MgCOSa (15).

Thus, equating the right sides of (14) and (15), we have the condition
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for the limit between pure rolling and rolling combined with sliding,

namely, •

b .

fACOsa=^q-^sin a.

or

Hence, for pure rolling,

_/A _ b

{3ina'~'b+C

tan a^b-^'C

(16).

(17).

The values of the linear acceleration and this limiting relation are

given for a few typical figures in Table xi., also the constants in the

expression bMr'/c for their moments of inertia.

Table XI. Pure Rolling down Inclines.

Figure Roi ling

Constants in
Moment of Inertia.

Limit for
PuftB Roli ING

Acceleration
Ratio

b c
tan a b^rc

mKj^sxn a)

_ e

~b-JfC^

Cylindrical Shell . . . 1 X 1/2 1/2
Solid Cylinder .... I 2 1/3 2/3
Spherical Shell ... 2 3 VS 3/5
Solid Sphere . • • 2 5 ^l7 5/7

278 . Combined Bolling and Sliding down Incline.—When the

condition expressed in the inequality (17) is violated sliding occurs.

Hence the geometrical relation expressed in equation (ii) of article

276 no longer holds. But since the full frictional resistance is called

into play we may replace it by
(18),

where /x is the coefficient of friction. We have thus for the solution of

the present problem this equation and (8), (9), and (10) of article 276.

By substituting in (10) the value of J'from (i8) and (8), we find

qi£COsa
^ br

(19)-

Then the value of T put in (9) gives

^1=: —^(sina— ftcosa) (20).

If at time / from rest the linear and angular velocities are u and w,

we have
—^/(sina— /xcosa)^. .... (21),

and
‘

. (22).

Also the speed of sliding of the body over the plane at the part of

contact is

(23)-
/ • b-^'C .

(or= —^/(sin a cos a)
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It may be noted that a body in pure rolling motion has a smaller

linear acceleration than if sliding without fncfldn. Here, where there

is sliding combined with rolling, the linear acceleration is precisely

that of a body sliding simply down the rough incline. We may
naturally inquire whence comes the energy of rotation. The answer

is easily found in the saving of work against friction which that rota-

tion effects. For the kinetic energy of rotation after time i is

= • (^4)

And the work against friction saved by the rotation is resistance into

space, or

. . . (25).

Or, to test the matter a second way, the potential Mg^— \aC) sin a

lost in descending for a time / may be equated to the sum of the

kinetic energy gained, and the work done against

friction, which is — The result is an identity, the value

of each side being sinacosa).

279. Prictional Oouple for Axle in Bearings.—We may now fitly

consider the value of the torque or couple required to overcome the

friction of a cylindrical axle in somewhat loose cylindrical bearings.

A little reflection will show that the

contact between axle and bearing

will not be at the lowest points of

each when the axle is turning, for

the axle will at first roll up on the

inside of the bearings without slip-

ping, and only when a certain steep-

ness of slope is reached by the point

of contact will slipping begin. Let
this occur when the angle with the

horizontal is and to maintain the

axle in uniform rotation let the

torque or couple G be required,

consisting of two equal unlike para-

llel forces of value F and each ap-

plied at a perpendicular distance

p from the axis. Then it is required to determine B and G in terms of

the massM oi the axle and its loads, r its radius, and /i(=tan the

coefficient of friction between the axle and its bearings.

Let Fig. 1 12 represent the position and distribution of forces when
slipping has just commenced and the rotation is uniform. Then,
resolving parallel to the axes of y and and taking torques about the

axis through the centre G perpendicular to the plane of the diagram.

Fig. 1 1 2. Frictional Couple
FOR Axle.

we have
JV=Mjg-cos B (iL
T— fxN~Mg sin ^ (2),

G^iFp^Tr^liMgrzo^B (3).
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Thus (2)-r-(i) gives
^ ^

tan ^=/x=tan or ....... (4),

as might have been anticipated.

Putting this value in (3) we find for the torque

G=Mgrim^ (s),

which is slightly less than if the contact had been at the lowest points

of axle and bearing.

280. Sphere with Initial Rotation on Rough Level Plane.

—

Considering now a solid sphere, we will imagine it to have an initial

rotation about a horizontal axis but no translation, and to be then
gently placed on a rough level plane

and immediately let go. It is required

to determine the subsequent motion.

Let the motion be in the xy plane

as represented in Fig. 113, the sphere

having mass radius r, and initial

angular velocity Wo, the coefficient of

friction between it and the plane being

fi and the reactions between them being

N and T. Then, since the only forces

and torques available are finite, finite

changes of linear and angular velocities

can occur only in finite times. But at

the start there is at the point of con-

tact a slip of the sphere over the plane

at the velocity And this can
only be removed in a finite time t say,

during which the full friction must be
called into play. We accordingly have the following equations of

motion during this stage of the phenomena. (See article 269.)

(i),

N-Mg=o . (2),

T=Mb (3),

(4).

where b is the horizontal linear acceleration of the centre of mass G
and 7 is the angular acceleration of the sphere about an axis through

G and perpendicular to the plane of the diagram. These equations

give

b=H ! . . . . (s),

and y=—^ngl2r (6).

But if at time / the linear and angular velocities are v and <d, and slip

ceases then, we have
z;— u>r=o (7).

Hence, substituting from (5) and (6), and remembering that the initial

values of v and w were o and Wo, we obtain

Fig. 1 13. Sphere with
Initial Rotation.
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(8).

(9),

The space passed over in time'l

t is given by j

2(»y

49f^g

(jo)-

(JJ).

It is noteworthy that v and cu are independent of /Jt, but that / and
s diminish with increasing fi.

We have now to inquire what occurs after the instant when the slip

ceases. While the slip speed was negative the frictional force T was posi-

tive, the linear acceleratton d was positive, and the angular acceleration y
was negative. Suppose first that when the slip ceases T still retains
any positive value Then obviously the accelerations retain their former
signs and the speed of slip of the form given in (7) becomes positive.

But considerations of friction show that this involves a negative T
contrary to the hypothesis, which is therefore untenable. Imagine

secondly that when
the slip ceases the

frictional force T
suddenly assumes
some negative value.

That would reverse

the accelerations,

making the linear

acceleration nega-
tive and the angular
acceleration posi-

tive. In other words,
it would put us back

O ^ TIME to the state ofthings

Fig. 114. Speeds of Sphere with Initial obtaining a little be-

Rotation. fore the slip ceased.

But we have already
seen that the state of things in question involved a negative slip and
a positive T, again contrary to hypothesis. Hence T must be zero,
both accelerations henceforth zero (in the absence of rolling friction
and air resistance), and the velocities expressed by (9) and (10) are thus
retained.

The phenomena of this problem can be illustrated graphically by a
speed-time diagram as in Fig. 114. The fact that the force T must
vanish after the time / may also be seen from this diagram. For the
difference of the ordinates of the two speed graphs expresses the slip
speed. And beyond the point where this slip vanishes at time /, if the
accelerations remain as before the graphs cross, the slip speed changes
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sign ;
hence the frictional force would have to be reversed and the

accelerations reversed instead of remaining as before.

281 . Cylinder with Initial Eotation.—It is easily seen that if the

body were a solid cylinder instead of a sphere the moment of inertia is

and we should have

(5^)*

y=-2figlr (6tf),

(S«)»

v=(^orl3 (9«)»

«^=Wo/3

and s=(iilr*IiSfig .

282 . Alternative Treatment of Initial Rotation and Proof by
Energy.—If we wish simply to find the ratio of the angular rotation

<0 to that (Oo when the body is initially placed on the rough level plane,

we may note the following instructive method rHaving seen that the

body will finally roll without slipping, we observe that the three forces

available, Mgy and T, all act through C, the point or line of contact,

and therefore have no moment about it. Hence the angular momentum
about this axis remains constant. To express the initial value of this

angular momentum we use the theorem established in article 266, which
shows that it is the sum of the moment of momentum about the given

axis of the whole body as if at the centre of mass, and the angular

momentum of the actual body about a parallel axis through the centre

of mass. So in this problem the sum reduces to the second term only.

The angular momentum when rolling has commenced is obviously the

angular velocity multiplied by the moment of inertia about the tangent

of contact with the plane. Hence, taking any body whatever of

moment of inertia bMr^\c about a parallel axis through the centre

of mass, b and c being pure numbers, we have

or (12),

which confirms (10) and (lot?), for the right side of (12) becomes 2/7
for a sphere and 1/3 for a solid cylinder.

We may also check this result by consideration of energy. Thus
the kinetic energy at the start should equal the sum of that left when
pure rolling has commenced and the work expended on friction. But
the kinetic energy for our generalised body is, at the start, bMr'inlhCy

and when rolling it is {b-\-c)Mr*fa'l2C, Also for the work done in

slipping we have the product, frictional force into distance slipped.

But the distance slipped is half imiidX speed of sli^ into the time

of slip given in (8) and (8a).

We accordingly find the following expressions which furnish the

desired check :

—

Final kinetic energy -f work done
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' 2C{b-\-Cy''
“

' 2{d-{-c)

0)5= Initial kinetic energy (13)*

^83. Motion on a Steep Plane with Initial Rotation.—Let us

now suppose a body with initial rotation about a horizontal axis to

be gently placed on a plane whose steepness and roughness are such

that the body if without initial motion would descend by combined
rolling and slipping as in article 278. Or, in symbols, we have the

condition (17) of article 277 violated. The problem presents two cases.

Case L Initial Slip is down the Incline ,—On referring to article 278
it will be seen that this initial rotation leaves the forces just as they

were. Hence the accelerations remain as they were, and the motion

presents simply this difference, that all through, the angular velocity

now exceeds that in Article 278 by its initial value, Wq say. Thus the

body fails to ascend the plane, although the slip is down and frictional

force up, the linear acceleration being from the outset downwards.
Case II Initial Slip is up the Incline—Here the frictional force is

initially downwards, and the linear acceleration during the first stage

is down and numerically greater than in article 278. But obviously

the moment of this force about the centre of the body is such as to

retard the angular velocity.

Hence a point must be reached when the speed of the slip vanishes

,

it then changes sign, the frictional force reverses, and the accelerations

become as in article 278. The whole motion might be represented by
a graph as was done for a different case in Fig. 114. This is left as an
exercise to the student,

284. Motion up and down a Bough Plane slightly inclined.

—

We
now suppose the condition (17)
of article 277 for pure rolling in

free descent to be fulfilled and
place our body with initial angular

velocity so as to endeavour to

roll up the plane at first. Just

as on the level plane it will here,

after an initial slip, reach the pure

rolling stage ; it may then ascend
with diminishing speed, pause,

and return, the accelerations for

pure rolling being obviously

those of articles 274-276. It is

accordingly the initial stage that

requires consideration. This dif-

fers from the pure rolling, not in

a reversal of the frictional force

but in its being increased if neces-

sary to its /ull limiting value instead of having the perhaps smaller

Fig. 1 1 5. Motion up or down
Rough Plane.
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value of the same sign, jv,bich satisfies the geometrical condition of pure
rolling.

But, during the initial stage of slip, the body might fail to ascend
the plane but simply descend with a smaller acceleration; or, even
remain without motion of its centre of mass, till the slip had ceased
This will appear more clearly from the analysis.

Let us take axes and forces as shown in Fig. 115. Then calling

the linear and angular accelerations and yi, and distinguishing by
subscripts I the values of accelerations or forces which apply to this

first stage, we have the following equations for a general body :

—

N=-Mg cos a

Tx~Mg sin a=Mbx (14).

Whence bx =g(/J> cos tt— sin a).

. (15 ).

Thus, by the condition for pure rolling, (17) of article 277, may be
either positive, or negative of value just reaching that found for a in

articles 274-276. We also have from (14)

Hence, whether bx is positive or negative, yi is negative, showing the
initial upward rotation will be destroyed.

If at time tx the linear and angular velocities are v and w, the speed
of slip is then v—ior. So on substitution of their values from (15) and
(16) we have

Speed of slip cos a— sin a) — ^

(b’\-c \= I —^ /* cos a— sin d (17)-

Hence the slip vanishes at the time

/=
/b-hc \H II cos a— sin a I

bWf,r
(18).

And, by the condition for pure rolling, the term in square brackets

cannot be negative. Thus, the slip must vanish, and after this the

accelerations must be as in articles 274-276.

285 . Rolling Oscillations.—Let us now consider the pure rolling
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of a cylinder in a cylinder, a sphere in a i?phere, or other body of

revolution inside a circular surface so that the motion is parallel to a
given vertical plane. Then it is obvi-

ous that oscillations are possible about

the lowest position as centre.

Referring to Fig. 116, let the body
have angular displacement 0

,
its mo-

ment of inertia about the central axis

perpendicular to the plane of the dia-

gram being bMr^jc^ and the radius

SC of the surface on which it rolls

being R.
Then since B is the inclination to

the horizontal of the slope on which the

body is now situated, it follows from
articles 274-276 that the linear ac-

celeration of its centre of mass G is

approximately given by —cgB\{J)-\-c) if we
restrict ourselves to small arcs for which

sin B^B nearly. Thus, since the linear acceleration may be expressed

by {R--r)d^ we have for the equation of motion

{Ii-r)6=-j~ge ntax\y (r).

Whence, the motion is simply harmonic of period, given by

T= 2ir J{b+c)(Ji-r)i^ (2).

Thus, for a cylinder in a cylinder this becomes

= (3).

And for a sphere in a sphere we have

Jy(Ji-r)lsg (4)

Assuming g and observing t, {R—r) may be determined by these

relations. Of course, the condition for pure rolling must be fulfilled,

but for small oscillations this is practically always the case.

Examples—LII.

1. Obtain an expression for the linear acceleration of a body of revolution

rolling down an incline, and show what condition must be fulfilled in

order that sliding shall be absent.

2. Discuss the conditions and motion occurring when both sliding and
rolling of a body on an incline are possible.

3 Investigate the behaviour of a solid wheel and axles rolling down a pair

of parallel inclir/ed bars on which the axles rest. What advantage in

the determination ofg would this form of experiment possess over the
rolling of a sphere on an inclined plane ?

4. A sphere rolls down a V groove ofuniform width and shape in an inclined

plane. Determine the linear and angular accelerations.

5. ‘Obtain the expression for the kinetic energy of a rigid body whose
motion is parallel to one plane, in terms of its angular velocity and the
velocity of its centre of mass.

•A thin spherical shell of negligible mass, quite smooth internally, is filled

Fig. 1 16. Rolling
Oscillations.
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with water, and allowed to roll down a length / of a rough plane
inclined to the horizon at the angle t ; find the time taken.

‘ If the water freezes and becomes rigidly attached to the shell, what
will the time be ?

’

(Lond. B.Sc., Pass, Applied Math., 1906, iii. 4.)

6. ‘ Find the moment of inertia of a uniform solid sphere about a diameter.
* A sphere of radius r, rotating with angular velocity o) about a horizontal

diameter, is gently placed on a honzontal table with which its coefficient

of friction is /i Show that there will be slipping at the point of

contact for a time 2o)r/7/i.^, and that then the sphere will roll with
angular velocity 2a)/7.’

(Lond. B.Sc., Pass, Applied Math., 1907, iii. 10.)

7. ‘ Explain what is meant by the principle of energy, and show how it can
be used to obtain the motion of any system having only one degree
of freedom.

‘ Two rough solid cylindrical rollers of radius a and mass M are placed
with their axes parallel and horizontal upon a fixed plane inclined at

an angle i to the horizontal. A log of mas** 7.M is laid across the
rollers. If there be no slipping between either the log or plane and the
rollers, find the acceleration with which the log moves.’

(Lond. B.Sa, Pass, Applied Math., 1909, iii. i.)



272 ANALYTICAL MECHANICS [ARTS. 286-287

CHAPTER XIV

SOLID RIGID KINETICS

286. Motions of a Rigid Body with One Point fixed.—In dealing

with the kinetics of a rigid body we shall follow the order used in

Chapter viii. on the kinematics of the subject, taking first the motions
when one point is fixed and afterwards those when no point is fixed.

And, for the kinetics of the case when one point is fixed, there are two
methods of attack open to us which are characterised by the use of

fixed axes and by moving axes respectively.

Thus,yfrj/, we may find the angular momenta (of the form
'

2mrv)
about each of the three fixed axes at right angles with origin at the

fixed point of the body, and then equate the rates of change of these

momenta to the corresponding torques about these fixed axes.

Or, second^ we may refer the motions to moving rectangular axes

with origin at the fixed point, use expressions like those for angular

accelerations (see equation (i), article 123), but, for the angular

velocities on the right sides thereof, substitute angular momenta
\
the

left sides then become the corresponding torques about these moving
axes. But in this second plan we have to note that the angular

momentum about any axis is not necessarily the product of moment of

inertia and angular velocity about that axis. It is given fundamentally

and always by an expression of the form 'Lmrv^ where w is a particle

of the body at a perpendicular distance rfrom the axis about which
the momentum is taken and v its component of velocity perpendicular

both to ^ and to the axis. And this expression only reduces in specially

simple cases to the product of moment of inertia and angular velocity,

as we shall see presently.

As to choice between these methods, the first is often unnecessarily

long, though for a simple case it is very instructive, and by those

wanting only one or two simple examples may be preferable. The
second method is more generally useful, and is often very expeditious

when the necessary preliminaries have been discussed and the required

expressions deduced.

We shall accordingly give here a single concrete example of the

first method and then pass on to the details of the second.

287. Maintenance of Rectangular Precession of Top.—As an

example, then, of the fixed axes method of treatment let us consider the

case of a body of revolution rotating with uniform angular speed a>

about its geometrical axis OA, which is horizontal, while this axis is
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itself turning with unvfgrm angular velocity 12 about OZ, which is

vertical. We here make no use of the theory of moving axes nor
do we assume that angular momentum is a vector, though incidentally

that fact IS illustrated.

Take, as shown in Fig. 117, OXYZ as fixed axes, OABC as moving
axes, OC being coincident with OZ and vertical, the other four axes
being horizontal ; and consider the top when as illustrated the axis

OA makes the angle
<t>

with OX. Then we may write

= (i).

Fig. 1 17. Gyroscopb.

Let us now take in the top a particle of mass m situated at D of

co-ordinates z with respect to the fixed axes OXYZ, and co-ordinates

b, c with respect to the moving axes OABC. Further, let the radius

FD have length r and be inclined 0 to the horizontal radius FE.
Then we may write

+ . (2),

and using it we obtain

/i5=rcos 0, c—rs\n 0 \
i= ^b)C 3ind c=tob J

We may further find relations between the two sets of co-ordinates.

Thus, making EJ parallel to YO, we have

OJ= OFcos</>— EFsin (f>
and JE=OF sin<^)-fEF cos <#>,

or ^=^zcos<^--^sin<;f>, >'=a!Sin</)+^cos <f>,
z=^=ED (4).

Then, differentiating (4), remembering a is constant, and using (3),

we obtain •

x={^Qa-f-(oc) sin <^--f2^cos <IA

j/s=(12(2— wi*) cos<^--12^sin [- (5).

Z= (JDb j

Let the moments of inertia of the top about OA and OC be / and
K respectively, and note that on account of the symmetry about OA
all the products of inertia are zero. We thus have

/='2m{b*-j-c^)y K='^m{a*’{-b*), 2mbc=:'2mca=2fnab=o . (6).
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Now let the angular momenta about the fxed axes OX, OY, and
OZ be and K respectively.

Then, remembering that the moment of momentum of a particle is

the algebraic sum of the moments of its component momenta, and
using (4) and (5), we obtain

=2w(<ofl3 sin 4- cos (ft—Qca cos cos -h sin <^).

Hence, omitting the products which are zero by (6), we have

jP=a>COS^2w(^*-4-r^)= /a)COS<^ (7).

Similarly

Q=:^m(xz—zx)
=:2/»(— sin</»4-wr* sin <f>—9.bc cos — cos </)-f sin </>),

or 0=(osin<#>^w(^^4-^^)=/wsin ... . (8),

and P~'2.m(yx—xy)

— (^^co^s</)*— w^-cos*^— fJ^sin<^)(rtcos<^—-i^sinc^) \— — fi«sin <^4-(t)rsin</)— cos <^)(a sin cos </>),/

or P:=^Qi2m{a^ -\-P)=K^ . . ... (9).

288 . Then, in accordance with the principle of the method, on
differentiating P, and P we obtain the corresponding torques Z,

and 7Y about the fixed axes OX, OY, and OZ respectively.

We thus have
L=P=i— Io)U sin

<f>f
M=Q=I^^ cos

(l>j
JY=:P=o .

. (
to ).

If we now choose the instant when the axes AOB coincide with

XOY, then <^=o and equation (10) reduces to

Z=o, M=Iittil=:G say, iY=o (ii).

That is, if we have a positive angular momentum Zcu about OX, a

positive torque 6^=/a»i2 about OY will maintain an already established

positive precession 12 about OZ. But it is only for the instant when the

axis of the top OA coincides with OX that the torque G is about an
axis which coincides with OY. This can be seen more clearly if we
go back to equation (10) and compound the values of Z and there

expressed. For, as shown in Fig. 117, laying off OL and OM to

represent Z and Mto scale as vectors, it is clear that their resultant is

OG of magnitude
6J=/o>i2 (12),

and that its axis is coincident with OB at angle with OY, ue. at right

angles to OA. Consequently the torque axis, being OB, rotates about

OC with angular velocity 12 just as OA does.^

289. And, in the case shown m the figure, if the top’s spindle is

supported at the origin O only, and the torque G is due to gravity, we
easily see that

G=:g^a=:Af^3 (13),

1 Thus if a rigid solid of revolution has an angular momentum /w about its geometri-
cal axis which is also turning at the steady rate o radians per second about a perpen-
dicular axis

;
then the body is under the action of a torque whose magnitude is /«0,

whose axis is always at right angles to the other two axes, and whose sense is such that
the angular momentum is turning towards coincidence with the torque.
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if Mq is the mass of the* top and d is the co-ordinate of its centre of
mass

; and that the torque axis automatically remains at right angles to

the axis of the top. Hence the rate of precession which, if started

by other means, can be maintained by this torque due to gravity, is

from (11), (12), and (13) given by
il=:G/Ia>=MQgdlIin (14)-

Thus, if the top consists mainly of a disc of mass 72 lbs., i foot

diameter, with d=S inches, and spins at 6000 revolutions per minute,
we have /=9 lbs. ft.“ and o)=2oo tt; whence 12= 0*273 radian per

second, or one revolution in about 22 J seconds.

Referring again to (12), we see that corresponding to a quicker
precession we have a larger G; hence if the precession be hurned
beyond the value in (14), while only the gravity torque is available, the ,

axis OA will rise from the horizontal. Conversely, if the precession be
slowed or prevented, the torque remaining constant, the axis OA will

fall. The foregoing is perhaps the simplest way to account for these

possible rises or falls. Another instructive way of regarding the matter

is to treat the hurrying or retarding of the precession as a (positive

or negative) torque about OC which corresponds to a precession

about OB. Both views are useful, and the phenomena in question
have important practical applications, as we shall see later.

Examples—LI II

I What chief methods are open to us in the discussion and treatment of
the motions of a rigid body with one point fixed ^ Indicate what you
consider to be the relative advantages of the various methods.

2. Find the torques necessary to maintain a steady precession about one axis

of a constant angular momentum about a perpendicular axis.

3. Give a numerical instance of question 2, in which the torque is supplied

by gravity, using either c gs. units or British.

4. Enumerate several familiar illustrations of the above-mentioned preces-
sional phenomena, accounting in each case for the sign of the precession
which occurs.

290. General Expressions for Angular Momenta.—The length of

the foregoing example of the first method of treatment, simple as the

problem was, well illustrates the necessity for generally using the second
method involving moving axes. We now take a step towards the

second method by obtaining expressions for the angular momenta
^1, and about each of three rectangular axes OXYZ which we
will at first suppose fixed in space, the simultaneous components of

angular velocity about them being denoted by (Uy, and
Then we shall find that the angular momentum •about any one axis

depends, in the general case, upon all the three components of

angular velocity, and is not necessarily the simple product of

moment of inertia into angular velocity about the axis in question

The fundamental expression for the angular momentum about the

axis of z say is '^m(yx—xy\ And, although when there is rotation

about OZ only this reduces to where C is the moment of

inertia about the z axis, this is by no means the case when there

are simultaneous rotations about the other axes. For in the general

case these other rotations modify the motions of many of the particles
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in the body, and some of these changes of »v<elocity have moments
about the axis of s, and therefore modify the angular momentum
about it.

Fi& 1 18. Angular Momenta.

Thus, consider the point P of co-ordinates z in Fig. 1 18. Then
from equation (i) of article 132, the origin being now at rest, we find

V (l).

J

Putting these values in the expressions for angular momenta, we
have

hx-=I^mi^zy—yz)
= — ^y^y
— ta^m(y^ 4" — <>i-^fnxy— ta^mzx.

/t^= '

2m(xz zx)

= ^m(<i)yZ^— lo^yz— oixyx+
= — (Ox^mxy 4- — i^^myz,

ht— 'Zmiyx-xy)
= — ii}xzx—(ayzy’{-(iizy')

= — Qi^mzx~ (i>y'2myz -P (Oz'2m(x^ +>'*)•

If we now write for the moments and products of inertia of the

body about these axes at the instant in question A, By C and JD, Ey Fy

we then have

A=I2m(y^ C=2w(^*4-y)
D=ISmyZy E=ZmzXy F=^wxy

Hence, on substituting these abbreviations, in the above expressions

for the angular momenta, they become

hi=+A(ax—F{Oy--EiOz I

At^’—Fo)z-\-B(Oy--I)(ttzy (3).

^EOJX— B>(Oy-\- CfOg j

These expressions are easily remembered by noting that the A, By
and C appear in order as positive coefficients m a diagonal, the Z>, Ey
and F occurring twice each as negative coefficients in order returning

round from C to A,
The above formulae (3) are quite general, and give the instantaneous



ART. 291] SOLID RIGID KINETICS 277

angular momenta wh^^er the axes are fixed or not. For, if the axes
of reference are moving, the motion of the body in an element of time
is constructed by using the components of motion as if the axes were
instantaneously fixed. And the above axes may be any whatever.
Hence, if they are chosen to coincide for the instant with any given set

of moving axes, the above formulae give the instantaneous angular
momenta about them.

We may note here a few typical cases and the values to which the

general expressions for angular momenta then reduce.

Thus, if the products of inertia vanish, the axes in question are called

principal axes for the given origin, and we have

h\— h% (4).

the subscripts i, 2, and 3 being now used for the w’s, since we have*

seen the results apply to moving as well as fixed axes.

If the body is a plane lamina perpendtculaf to the third axis^ then

two of the products of inertia vanish and one moment is the sum of

the other two, we thus have

D=E=Oj / V

For a body of revolution about the third axis^ all the products of

inertia vanish and two moments are equal. Thus we have

Z)z=zE=E=o, A =B
^ \

hi==A(o^9 hi= A<a^, hi=iCo)ff '

For a homogeneous sphere or a spherical shell or a sphere built up
of concentric shells each of which is homogeneous with origin at centre,

we have
I)=F.^F=o,A=£=C \
hi= Aiti^j h2=:AiD^y /

••••••• V//-

291. Angular Momentum is a Vector directed along its Axis.

—

From the fundamental expressions for angular momenta, it may be seen

that they are vectors directed along the axes about which the momenta
are taken. Thus, for the value of hi the fundamental expression is

'^mizy^yz). So that, apart from mass and time, we have the directed

quantities y and z which define the yz plane characterised by its normal,

the axis of which is therefore the direction of the vector the

angular momentum about the axis of x. The same treatment of the

like expressions for the other angular momenta, or for the general

expression 'Imro, shows that the angular momentum about any axis is

a vector directed along that axis. •

If, however, we now turn from these fundamental expressions in

terms of velocities v and arms r to the general expressions in equation

(3) of article. 290, a doubt may be felt by some as to whether each

term on the right side of any equation is a vector along the axis of the

corresponding angular momentum. Indeed, at first sight, it might be
imagined that each angular momentum was expressed as made up
of three parts directed along the three rectangular axes. But this is
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not the case. Each term on the right in any o^e equation has the same

direction, namely, that of the axis indicated by the subscript to the A on

the left side. To establish this we may conveniently apply the method

of examining the dimensions of the factors that constitute the terms

on the right, but we must retain the idea of the directiQn of each one

and not represent each length by L simply. Thus making this dimen-

sional or directional inspection of the terms for and indicating masses,

direction, and time by XYZ^ and we find

The dimensions of A^x are M{ E’*-|-^)^*^:,or

2,

The dimensions of are

Y
The dimensions of Eo)z are {MZX)^^ '

i

We thus see that each term in this general expression for is

a vector directed along the axis of the normal to the plane defined by

yZ Similarly is expressed by three terms each of which is directed

along the axis of y, and consists of three terms each directed along

the axis of ;s. It therefore appears by this method that angular

momentum about any axis is a vector directed along that axis.

_y\ ^
zt)

MYZ\
T

MYZ
T

MYZ
(
8 ).

292. Axes of Eesultant Velocity and Momentum.—Thus, since

angular momentum is a vector, if we have given the angular velocities

of a body about each of the three axes, also the moments and products

of inertia for these axes, we may find the three angular momenta, and

can then determine both the resultant angular velocity and the resultant

angular momentum, using vector addition in each case. At first sight

it may seem startling to find that the directions or axes of these two

resultants are not necessarily coincident. A numerical example of this

IS illustrated in Fig 119, which

shows angular velocities and mo-
menta about the three axes OXYZ
of the ellipsoid of semi-axes 3, 2,

and I, with centre at the origin

and geometrical axes along the

axes of co-ordinates. Thus its

equation is

I*

Its products of inertia are all

zero on account of symmetry, and
its moments of inertia are A=iJ,
B= 2j, and C= 3j if the mass
is \ Thus, if the component

angular velocities are 60, 48, and 40, the corresponding component

Fig 1 19. Resuitant Axguiar
Velocity and Momentum.
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angular momenta are 7^, 120, and 130. Then, the resultant angular

velocity 12, represented’ oy 012 on the figure, has magnitude

12= ^60= 4-48*4-40*= 86-6 . . .

and direction cosines 6o/86’6, 4SlS6’6, and 40/86*6.

Whereas the resultant angular momentum, represented by OH in the

figure, has magnitude

x/75*+ 120*4- 130*= 192-1 • .

.

and direction cosines 75/192*1, 120/192*1, and 130/192*1.

Thus the angle between the directions of the two resultants is

given by

cos
86 6 X 192

^ ^

Whence the angle H012= 2i° 35' 30" nearly, as may be seen also

by taking the logarithmic cosine.

293. Analogous Relations between Mechanical Quantities.

—

Looking again at Fig. 119, we easily see that, if any component angular

velocity receives an increase, the point 12, which defines the resultant

angular velocity, moves a corresponding distance and parallel to the

axis of acceleration Also, if any component angular momentum
receives an increase, the point H, defining the resultant angular

momentum, moves a corresponding distance and parallel to the axis

about which the increase occurred. Also the rate of increase of

angular momentum about any axis may be equated to the torque

about that axis, which is therefore equal to the velocity of the point

H in the diagram. (See Notes on Dynamics^ by Sir G. Greenhill,

p. 195, 1908.) Thus we may construct for angular velocities and
angular momenta loci analogous to the hodograph ol a point moving in

any way.

We may also collect in a compact form the analogous relations as

to linear velocities and momenta. These are shown together in a
form easily remembered in Table xii., and are capable of numerous
applications.

[Table,
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equation (3) of article 2qo) or denote them by y%i, and we obtain

expressions for the torques about the set of moving rectangular axes OA,
OB, and OC. These are

L^hx—
M=h^—hi6x-\-hx0i - (i).

and N=fit^hx0i^h^6x]
Substituting the general values for the /4’s, we have for the torque

about the moving axis OA
d '

L= (*>1
—

—

Eoi^)

— (— + —
— A'wj—

^

Similar equations give the values of M sand N The values of A,
and as well as those of the angular velocities, are subject to

variation, as the moving axes may move with respect to the body as well

as with respect to space. They are accordingly.all kept under the sign

of differentiation and must be held as subject to it. The method of

article 291 applied to equations (i) or (2) of the present article would
show each term on the right of any one equation to have the same
direction. Thus, every term for L is of the dimensions MYZT~*.

Equation (2) is so long as to suggest the necessity for simplification.

This can be effected in various ways, which we shall note in order

Thus, first, if the axes are at rest, the 6's all disappear, and (2) reduces

to L^hx

;

see equation (3) of article 290.

295 , Moving Axes fixed in the Body.—Let us next suppose the

axes to be moving with respect to space but fixed tn the body. Then
we have

= (Ua= ^3, and 0),=^, . . . . . (3).

Also, if at the instant of consideration the moving axes OABC
coincide with the fixed axes OXYZ, we have

= = and 0),==(j)z . . . . (4),

where the subscripts i, 2, 3 refer to the angular velocities about the

moving axes and the subscripts x^ y, z refer to those about the fixed

axes. We have now to prove that the rates of increase of the above
angular velocities are also equal each to each, as far as the first order

of small quantities. Thus (following Routh) let OR, OR' be the

resultant axes of rotation of the body at the instants t and t-^dty i.e.

when (i) the moving and fixed axes coincide and (2) at the time dt

later. Let a rotation 0.di about OR bring the body into the position

in which OC is in coincidence with OZ at the time t. And let a
further rotation 0!dt about OR' bring the body into some adjacent

position at the time t-\-dt, while in the same iitterval dt, OC moves
into the position OC'. Then, according to the definition of a differ-

ential coefficient, we have

dt
=the limit of

Q'cos R'C'~ficos RC
dt

dt
=the limit of

12 ' cos R7 •— 12 cos RZ
.and
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But the angles RC and RZ are equal by hypothesis because at time

RO and OC coincide with RO and OZ. Further, since OC is fixed

in the body, it makes a constant angle with OR' as the body turns

round OR'. Hence, the angles R'C' and R'Z are also equal. There-
fore the above two differential coefficients are equal. We can accord-

ingly write

= <!>«) = and d>,= d);j . . . . . (5)

for moving axesfixed in the body at the instant of their coincidence with

thefixed axes. The great advantage of using moving axes fixed in the

body lies in the obvious fact that the moments and products of inertia

which appear in the equations are then constant quantities.

296. Euler’s Dynamical Equations.—We now introduce a third

simplification, namely, that the moving axes OABC fixed in the body
are also the principal axes for the fixed point O. Then we have the

products of inertia all ^ero, or

D=E=^F=o .
. (6).

Accordingly, the angular momenta reduce to

Thus (3), (4), (5), and (7) in (i) yield for the torques about these

moving principal axes fixed in the body

L-=:Aiii—{£— CWgiOal

(8 ).

N= Cw,— {A—
1

These are the well-known Dynamical Equations of Euler. But in-

stead of using them it is often found preferable to take a set of moving
axes of which only one is fixed m the body^ one fixed in sface^ the other

moving with respect both to space and the body.

Examples—LV,

1. Obtain an expression for the torque about one of a set of moving axes

for any specified angular velocities of a given body. From what draw-
back does this treatment suffei t

2. If the set of rectangular moving axes are chosen so as to befixed in the

body, establish the relations and state the simplifications which then

follow.

3. Assuming the results of questions i and 2, establish Euler’s equations.

4. Apply Euler’s equations to prove that the maintenance of the steady
precession £2 about a veitical axis of the angular momentum Ata about
a horizontal axis requires the torque AcoQ about a perpendicular

horizontal axis

297. Steady Precession of Top.—Let us now apply the method of

moving axes and the torques about them to the case of the steady pre-

cession of a body of revolution, with one point fixed. Let the moving
rectangular axes OABC have OC inclined at an angle 0 with the

vertical, OA inclined 0 with the horizontal, and OB horizontal. Let

the fixed point of the top be at the origin of co-ordinates, the axis of

the top coinciding with OC, about which its angular velocity is w and
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its moment of inertia C.^ Then the other two moments of inertia are

alike, and the products of inertia all vanish since the body is one of

revolution about OC. We
may thus write, in the usual

notation for moments and
products.of inertia,

A=:B,D=:E= F=:0 (l).

Further, let the axis OC
move at constant angular

velocity 12 round the vertical

fixed axis OZ say. Then,
by the kinematics of the

case, worked in article 124,

equations (2) to (4), we
have for the angular veloci-

ties o>i, U)a, (O3 of the top

about OA, OB, and OC
and for the angular velo-

cities 61, ^3, '0^ of the axes about their instantaneous positions

Fig. 119A Steady Conical Peecession
OF Top.

aji= —12 sin <t)2= o, cu3= a» (2),

(9i= -12 sin 6>, ^3=0, <93 =12 cos 6) . .
. (3),

a)i= d)2= a)8= o . .... (4).

Thus, by substitution of these values in the general expressions for

the angular momenta and equation (3) of article 290, we
obtain

/ii= — A^sin O'

hi —

a

^3=zCtu
(5).

And then, using the expressions given in equation (i) of article 294
for the torques about the axes OA, OB, and OC, we find

Z= o

M= Cwl2 sin .412* sin 0 cos 0

IV=o
These results should be compared with equations (5), (6), and (7) of

article 124, which gave the corresponding angular accelerations

We easily see that, if the torque Mis due to the weight IV of the

top, its centre of mass being at a distance h from O,

M=W/i sin 0 (7).

Hence by combining (6) and (7)

lV/i=Coin-An^cosO ........
(
8 ).

Accordingly this is the condition for the maintenance of the existing

motion by a torque due to gravity. This may be compared to

equation (14) of article 288, to which it is equivalent on putting 0=7r/2

and (7=/.
We may further note from (6) and (8) that since these are quadratics

in 12, there are in geneial two rates of precession, either of which, if
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established, could be maintained by a given tQx/iue. We see from (8)
that these are given by

C(i>± J 4^ IVk cosO , V

“ 2Acose •
. . * (9)-

The two roots are, however, coincident when the quantity under the
radical sign vanishes. And, for a smaller value of o), the rate of
spinning, it is obvious that the rate of precession is imaginary. Hence
we have as the minimum speed of spinning for the maintenance by
gravity of the steady precession

=^ JA WA cos 0 (10).

298 . Conical Precession without Torque.—On reference to equa-
ls (6) or (8) of article 297, we see that if

Ca>-nr cos ^=0 (n)>

the torque usually required to maintain the precession vanishes.

Hence, the motion being once established, it continues without any
impressed torque.

Sir G. Greenhill has shown that a loaded bicycle wheel is very useful

for demonstrating various gyroscopic phenomena {Notes on Dynamics^

p. 197, 1908).
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One mounted as shp^n in Fig. 120 is in use at Nottingham. It

shows very well this conical precession without torque, just referred to.

For, when balanced carefully by sliding the balance weight along the

tube at the side remote from the wheel, the wheel spun smartly by
hand, and then the far end of the tube moved with the right direction

and speed as found by a few trials, the motion is maintained in a circle

when the tube is let go.

Many other gyroscopic properties can also be demonstrated with

this apparatus more effectively than with the smaller gyroscopes sold

as toys. For details of the various experiments the reader is referred

to such works as Worthington’s Dynamics of Rotation^ or Crabtree’s

Spinning Tops and Gyroscopic Motion.

299. General Expressions for Kinetic Energy of Rotations.

—

Consider any body which has simultaneous angular velocities

and o>2 about the axes of jc, jm, and js, the origin of co-ordinates being at

rest. Then, from equation (i) of article 132, w5 have for the velocities

of a point whose co-ordinates are Jtr, and z the following expres-

sions :

—

X= <ayZ — *1

y— i^zX-^iiixZ
^

(i).

Thus, if we imagine there is a particle of mass m at the point in

question, the kinetic energy is given by

=r ^'EmKcjjyZ— (oyY -f — w^zy -f- }

= 4-2’)+ +>'*)

— ijiyin^myz— iiiziaj^mzx—mx^^-^rnxy.

Or, with the usual notation for the moments and products of inertia,

this becomes
T’zr — . . (2).

Comparing this with equation (3) of article 290, which gives the

general expressions for the angular momenta //j, ^a, we see that

, dT . dT .. dT
d^-u d^z

Further, we have

(3),

the differentiations being partial.

2r=:/^iCUa.+/^a(Oy-fv^,o>2 (4).

When the axes in question are principal axes, the products of inertia

are all zero, and we have the simplified expressions

(5 ).

These rectangular axes of rotation may be either fixed or the

instantaneous positions of moving axes.

As a check upon the above relations we may reduce to a simple

case. Thus, let the kinetic energy T of rotation about a single axis

be produced by the expenditure of work W in the form of a steady

torque G exerted through an angle accordingly giving a final
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angular velocity w (or at) and angular momei^tjim H about this axis.

Then, the moment of inertia in question being /, we have

fF=:6^(9=J6’/(0= J^(U=:i/0>* (6),

since 0= Jw/ and Zr=/o>, the initial values and being each zero.

Examples—LVI

1. Show that the maintenance of a steady precession Q about OZ of the

plane ZOC while an angular momentum Cm exists about OC requires

about an axis OB, perpendicular to the plane ZOC, the torque

CmQ sin 6-A^ sin B cos d,

where A is the moment of inertia of the body about the axes OA or OB
perpendicular to OC and ^=ZOC

2. From the result of question i prove that, if the torque is due to gravity, OZ
being vertical, different values of B will require different values of Q,

Also find the minimum speed of spin for the maintenance of the preces-

sion by gravity.

3. Account for the fact that, if a body be thrown into the air spinning, its

axis of spin is often seen to describe a cone about a line of fixed

direction moving with the body. Do you know of any apparatus which
illustrates the same phenomena ?

4. Obtain geneial expressions for the kinetic energy of rotation of a body,
and check this by considering some simple case.

300. Starting Precession.—We are new in a position to attack a
simple example of the un-

steady motion ofa gyroscope
in which the precession and
inclination are each variable.

We take the case of a body
of revolution initially rotat-

ing at the speed Wq about
its geometrical axis OC,
which is then inclined at

the angle 0^ with the vertical

OZ, the body being sup-

ported at the origin only

and having no other motion
than that specified, but free

to acquire any other mo-
tions. This initial state of

things is indicated ^n Fig. 121
, in which OXYZ are the fixed rect-

angular axes, OABC the moving rectangular axes, ^ being the angle

between the planes ZOX and ZOC.
Let the weight of the top be W, its centre of mass be distant h

from the fixed point of support O. Then, neglecting all frictional

resistances, the sole torque acting upon the top is that due to gravity,

and is about the horizontal axis OB, which is perpendicular to the

plane ZOC. This gravity torque has accordingly no component torque

Fio. 121. Starting Precession.
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about either of the ax^i^ OC or OZ. Hence, the angular momentum
about OC IS constant, or in symbols,

clI)=o and 0) =(»)(> . ... .... (i),

Further, the angular momentum about OZ is constant, or

and constant (2).

But, to solve the problem, we need the values at any time / of the

three angular velocities <0 about OC, ^ about OB, and ^ about OZ.
We accordingly need a M/Vaf equation. This could be obtained by
equating the torque about OB to the corresponding rate of change of

angular momentum. It is, however, somewhat simpler to use the

principle of conservation of energy. Thus, finding general expressions

for the kinetic and potential energies, we may equate their sum to

that of their initial values. This gives the third equation required,

which we may now write as

. . . .^ (3).

We have next to substitute the actual valu& in (2) and (3). Let
C be the moment of inertia of the top about OC, B=A that about
either OB or OA. And, since the body is a solid of revolution about
OC, its three products of inertia, Z>, and is all vanish. It is seen

from the figure that the angular velocity yjr about OZ has a component
’—yj/'slnO about OA. We accordingly obtain for the angular momenta
about OA, OB, and OC the values

A,=A{-isin 0), h,=B6=Ad, and ^,= C<u.

Further, the angular momentum h about OZ receives no component
from OB, which is perpendicular to it, but only from those about OA
and OC.

Thus, for the angular momentum about OZ, we have

hz=hx{^ sin 0)^ht cos 0

=y4‘^sin“^-|-Ca)Cos 0.

And, since by (2) this is constant, we may write

Ayjr sin^O+Co) cos 6= Cu) cos 60 ... .... (4)

as the equation of conservation of angular momentum about OZ.
We have still to form the expressions for the energy and substitute

in (3). Thus, from article 299, we have

T=:iA{-f sm ey+ + i C"’-

Also the potential energy, reckoned from the level of O, is obviously

IVh cos e.

Thus, substituting in (3), and cancelling C(i>* from each side, we have

A{'f^ sin'd-\-6^)-\-2 W/tcosS^2 IVAcosO^ .... (5).

Equations (4) and 5 determine the whole subsequent motion of the

top. From (4) we obtain the rate of precession in terms of 0
, viz.

; Cw(cos ^0— cos 6) ...

A sin*0 ^

Thus, at the start when ^=^o» we have for the initial value of the

precession

fo—o (7).
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But (6) shows that for any larger value of d than the precession

has a finite value Thus, though the top does not immediately precess,

it cannot fall without doing so. If now we differentiate (6), we find

for the precessional acceleration

y_ ”2 cos ^0 cos 0+ cos*^)

-A^ •
• •

Thus since at the start ^=0, the initial value of ^ is zero also.

Hence the first motion must be an increase of 0 simply, that is, a
falling of the axis OC from the vertical in the initial position of the

plane ZOC. But, immediately ^ has a finite value, if has a finite value

also, and accordingly grows; that is, the plane ZOC acquires a
velocity about the vertical OZ. For, if 6 is finite while 0 is still

practically equal to (8) reduces to

\f= CitiOjA sin ^0 • • • .... (9).

301 . Nutations or Oscillations in the Azimuthal Plane.—We have
just seen that the starting of the precession is inseparable from a change
in the value of 6

,
that is, a fall or rise of the inclined axis OC of the

top. We may next naturally ask whether this motion, which is

expressed by and which lies in the azimuthal plane ZOC, is initially

a rise or a fall, whether it has any limits, and what is its general

character.

To answer these questions we begin by eliminating ^ between
equations (5) and (6) of article 300. Thus substituting from (6) in (5),

we find

C*to’‘(cos ^0
— cos Oy sm^6— 2A W/i{cos Oo— cos 0) sin*^.

The stationary values of if any occur, will be obtained from this

by putting in it ^=0. We thus find

(cos 00— cos d){2A fF/%sin®0— C%^(cos 0o— cos 0)}=o.

Hence, the stationary values of 0 are given by

0=00 (10),

and the roots of

sin’*0-- 2A(cos 00— cos 0)=o . . . .
• (ii}»

where 2A.= C^(uY2.<4 IVk. Equation (ii) may be written

cos*0-- 2 A cos 04- 2 A cos 00— 1=0 (12),

giving for cos 0 the values

cos 0=Ad: s/i — 2AC0S 00+A* (13).

Since cos 0o is less than unity, it follows that the quantity under the

radical sign is greater than (i — A)*. Thus, if the radical has the value

d:(i — A-l->^), taking the upper sign would give for cos 0 the value

14-/&; and this value, though real, gives no real cosine. We are

therefore limited to the negative sign of the radical, and calling the

corresponding value of the angle 0,, we have

cos 0 i
= A— ^/i — 2ACOS 0o+A*= 2A— I— ^ say . . . (14).

Thus, ,as the azimuthal plane ZOC rotates about OZ with the

variable velocity the axis OC of the top also oscillates in the

azimuthal plane between the positions defined by the values 0o and 0i
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of the angle ZOC, J^i^ing the initial value when OC was at rest,

the other limiting value reached at some later instant. This oscillation

of the axis in the azimuthal plane is called nutation.

It is obvious that the inclination is below ^o» for the additional

kinetic energy of the proces-

sional motion yj/f which we saw
was associated with the change
in B, could only be obtained at

the expense of potential energy.

Thus Bq and B^ are the mini-

mum and maximum values of

B assumed by the axis OC.
These limits are indicated by
Co and Cl in Fig. 122. The
path described on the surface

of a sphere by a point C on the

axle is also shown by Co, D,
E, F.

It is thus seen that the curve

has a cusp for each time the

upper limit is reached, as at C©
and E. This motion may be easily observed if a gyroscope be spun

slowly, placed m an inclined position with its point in the cup, and
then suddenly let go. If, instead of letting go simply, the top be
given a forward or backward impulse, the curve described will be a

wavy curve or a looped one respectively, instead of the cusped one
just dealt with.

This experiment for showing nutation is much more striking if

shown with the bicycle wheel apparatus represented in Fig. 120,

article 298.

302 . Frecessional Velocities at Limiting Inclinations.—Let us

now obtain the values of for the highest and lowest positions of the

axis OC, that is, for the limiting values of viz. B^ and B^. Re-
write here equations (4) and (5) of article 300 in the form

Aylrsin^6=C<i)(cosBQ— cosB) . . .
. (15),

and Ayjr^ sin*B-\-AB^= 2lVk(cos B^— cosB) .... (16).

Then (15) multiplied by yjr gives

Ayjr^ sin*B=:Co)yjr(cosB^’-- cos B) (17).

Hence, for the limiting inclinations, when ^=0, the left sides of

(16) and (17) are equal. Thus, on equating theii^right sides, we have

(cos ^0— cos^)(C<i>i^— 2 /fy5)=o . . .(18).

Accordingly, €it/ter (i) 6=Boy in which case we have from (15)

fo==o (19),

or (2)
Ci»ir^ 2 Wh^O,

that is, = (20).

T



290 ANALYTICAL MECHANICS [arts. 303-304

The subscripts to the here correspond to those of the ^’s, to which
positions they refer.

Equation (19) agrees with what was previously found in (7) of

article 300, the result in (20) being new.

It may be noted here that this maximum rate of precession at

the limit of inclination exceeds the steady rate of precession which,

if established, the given torque is able to maintain. Thus if 6 ^ is 7r/2,

we reduce to the case of rectangular precession, in which, as shown in

equations (14) of article 288 and (8) of 297, we have

(21),

so that the steady is in this case only half the maximum value of

On the other hand, the minimum value of ^ is zero.

303 , Tilting Velocity of Top.—From equations (15) and (16) we
may now find the value of the angular velocity about OB, that is,

the velocity of tilting injthe azimuthal plane ZOC.
Thus, substituting in (16) the value of from (15), we have

m(cos e.-cos e).

Whence
fF^(cos ^0— cos 0

)
sin*^— C‘*o>*(cos^o— cos^)*

_ ^ sin B '

And dividing this by the equation obtained from (15) expressing the

precessional velocity we obtain the ratio of the two velocities

^ / sin*^ / .

---= (sin^)w -y7— — I (23),
yjr

' 'v 2 A(c0S ^0— cos 0)

where 2A is used as before to denote C^Di^l2A Wh,
This equation gives, m terms of 0

,
the direction of the path traced

on a spherical surface by any point on the axis OC. Its projection on

the horizontal plane xy lies between two circles which correspond to

the limiting inclinations and of the axis. Further, the path meets

the inner circle with cusps tange^itial to the radiiy because there ^/‘^=oo,

as shown by (23), and touches the outer circle, because there ^/y=o, as

shown by (6) of article 300 and the fact that Q is stationary at

Thus, before any precession is established, the top yields slightly to

the tilting torque, but soon the precession exceeds the steady value

which the torque could maintain, and the top rises to the next cusp.

304. Minimal Velocities for Top to Spin and to ‘Sleep.'—The
foregoing considerations lead us to note that if the value of is such

that the body of th^ top catches the horizontal plane, it will cease to

spin. Suppose the inclination when the top thus catches the plane is

then for spinning we must have 0^ > 0 ^. And this may be shown to

necessitate a minimum value of the angular velocity <0 of spin. Thus

(following the method of Crabtree) we may write from (15) of article

302
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where k is the positive f»nstant i — cos Hence yjr increases with 6.

Thus if corresponds to 0 ,, we have ^a>^i« But, reverting again to

(15), we have

C<i)(cOS ^0— cos Oj)

A sin* 0j
(*s)-

And by (20) we have

[jr^=z2 IV/l/Cia (26).

So, on substituting the values of these two precessions in the

inequality connecting them, we have

Ccu(cos Oq— cos ^a) 2 IVk

A sin^^a
^ *

Or 2
2A Wh sin*^a

*** ^ C’“(cos ^0 cos ^2)
• (27)-

For the top to sleeps that is, spin in a vertical position, put 0q
= o.

Then (27) gives for a top starting vertical *and not falling so far

as ^3

If we now limit 0^ also to zero, so that the top if disturbed from
verticahty returns to it, we have finally

io^>^AWhlC^ .... (29).

Of course, in the case of any actual top whose spinning is not

maintained, friction will check the speed until it falls below the value

in (29), and the top then begins to wobble, and finally falls.

305 . Examples of Gyroscopic Motion.-— Perhaps the most important

example of gyroscopic motion is that of the earth itself, which we may
regard as a top spinning about its polar axis and subject to fluctuating

torques or couples due to the attractions between its equatorial pro-

turberances and the moon or sun. Fig. 123 illustrates this effect of

the sun or moon when in its most favourable position for producing it.

For the attracting body B is

shown in the plane containing

the polar axis of the earth.

Now since the earth is not

spherical we may regard the (b)
attractions on it as separable

into three components, viz.

(i) the main one correspond-

ing to the sphere on the polar fig.

diameter and acting at the

centre; (2) a small force of

like sign on the eastern equatorial protuberance; and (3) one of

opposite sign on the western protuberance. These smaller forces

are obviously due to the one protuberance being nearer to and
the other farther from the attracting body than the earth’s centre

is. We have thus a counter-clockwise torque or couple acting on

N

®
S

;. Cause ftp Precession of the
Equinoxes.
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the earth as shown in the diagram. Then by, the phenomena of pre-

cession, as already dealt with, we see that since the earth is rotating

from west to east, instead of simply yielding to this torque, it will turn

about the third rectangular axis WE, and in such sense that N comes
towards the spectator and S recedes as indicated by the conventional

signs © and ©, representing respectively the point and the feathers of

an arrow.

If now we transfer the attracting body to the same distance on the

other side as indicated by the dotted circle B', it is evident that though
the mam attraction is reversed, as shown by the dotted arrow, the

couple represented by the small arrows remains unchanged. But, if

B is brought to a position on the normal to the diagram through the

centre of the earth, then the couple vanishes whether the attracting

body is before or behind the plane represented. For the W and E
protuberances shown are in those cases equidistant from the attracting

body and the near and far protuberances (not shown in the figure) are

exactly in the line of centres. Thus we see that as the moon goes

round the earth the torque alternately waxes and wanes, vanishing

twice in the period of the moon’s orbit, but has always the same sign.

This torque* produces the lunar precession. The sun also produces the

solar precession ;
and similar remarks apply to this as to waxing and

waning and constancy of sign, the period being now that of the earth’s

orbit, or a year. The solar and lunar precessions are roughly in the

ratio of 3 : 7 The combined effect is sometimes called the luni-solar

precession. In consequence of this the pole P of the earth on the

celestial sphere slowly describes a circle of radius 23“ 27' round K, the

pole of the ecliptic on the celestial sphere. The average angle described

in a year is about 50" 2, and the time of a complete revolution is of the

order 25,800 years.

But, superposed upon this precession, there is also nutation
;
and this

is due partly to the sun and partly to the moon. The lunar nutation is

due to the change of the moon’s nodes, and has a period of about

18 years 220 days, being that of a sidereal revolution of the moon’s

nodes. The solar nutation is due to the variation of the sun’s

declination, and has a period of half a tropical year (which year is the

time between successive vernal equinoxes). The amplitudes of these

lunar and solar nutations are of the order 9" and i"’2. Hence the pole

P of the earth’s equator traces a wavv line on the celestial sphere round
the pole K of the ecliptic.

There are many other examples of gyroscopic motions, some of

which are quite famliar. Thus, the turning of a hoop when rolling

along and made to lean, or of a com, are cases m point. The rearing

or plunging of a very fast single-screw turbine steamboat, instead of

answering its helm, is another.

Two cases in which gyroscopic actions have been applied may be
mentioned. Thus Otto Schlick has arranged to steady a vessel at sea

by means of gyroscopes, a rolling amplitude of 15° each side the

vertical being thus reduced to an arc of rolling (out to out) of
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Louis Brennan has appjicd gyroscopes to balance a special monorail

car, both when going on the straight and round curves, the principle

underlying his automatic devices being that of hurrying the precession,

and thus causing the car to rise from a tilted position. It is beyond
the scope of this book, however, to enter into details of these ingenious

inventions or the many other problems of gyroscopic motion.

The interested reader may consult H. Crabtree’s Spinning Tops

and Gyroscopic Motion^ A. M. Worthington^s Dynamics of Rotation., and
Sir G. Greenhill’s Notes on Dynamics

\
also Engineering, vol. Ixxxiii.,

1907, pp. 442, 448, 623, and 794, and p. 797 of June 24, 1910, and
Nature, Professor Perry’s article. The Use of Gyrostats, vol. Ixxvii.

pp 447-450, March 12, 1908 ; Professor H. Lamb’s Theory of Gyroscope,

Roy Soc. Edin
,
Proc. 35, pp 153-161, 1914-1915.

Examples—LVII.

1. A top IS spinning about an inclined axis with its^ughest and lowest points
supported, discuss what happens when the upper point is released and
the axis is accordingly set fiee to move.

2. Explain what are meant by the teims precession and nutation, and give
examples from an experiment and from the solar system.

3 In a typical case of the motion of a top under gravity, find an expression
for the velocity of nutation or movement in the azimuthal plane.

4. Explain how the late of precession changes when nutation is occurring,
and obtain the limiting expressions for this rate.

5 Show that there are minimum velocities of spin for a top to clear the
ground and for it to ‘ sleep.’

6. Give several examples of gyroscopic actions ; some of them presenting
difficulties to be overcome, others being useful applications of this

action

306. Centrifugal Reactions and Torques.—Referring now to Euler’s

equations, obtained in article 296, we note that the whole changes
occurring in the values of the component angular velocities Wj, o>2, and
Wg are not entirely due to the direct action of the external torques L,
M, and N, but are due in part to the centrifugal reactions which
occur in virtue of the motions of the particles and the rigidity of the

body. Thus, taking the last equation of (8) m the article referred to,

It may be written

^<0, N ,
A^B

(>)•

Hence, of the increase occurring in the time dt in the velocity

co„ the part NdtjC is due to the direct action of the forces whose
rpoment is N, and the part {A’--B')iax^idtlC is due to centrifugal

actions. Following Routh, this may be enunciateef and proved thus :

—

If a rigid body be rotating about an axis OI with an angular

velocity a>, then the moment of the centrifugal reactions for the whole
body about the axis of z is (A—B)(o^io^, OZ being the instantaneous
position of the moving axis OC, the component velocities being (u„ Wj,

and oig.

In Fig. 124, let P be the position of any particle m of the
body, its co-ordinates being x, y, and z, which are represented re-

spectively by OR, RQ, and QP. Let PS=r be the perpendicular
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upon 01 and let OS= i/. Then, as the particle m rotates round 01
at angular velocity w, the centripetal force heeded on it is mio^r

directed from P to S. Accordingly the reaction exerted by the

particle is oppositely directed

and of equal magnitude.

Hence, it is mia^r acting at P
and directed from S. Since

the vector SP=ris equivalent

to the vector sum of SO, OR,
RQ, and QP, this force

is equivalent to the four forces

— m(jDy, and mo)*Zf

all acting at P and parallel to

2/, X, y, and z respectively.

The moment of round
OZ is —mto^xyy while that of

maty is the same but with

the positive sign. The mo-
ment of mo)^z round OZ is zero.

Thus, three of these four com-
ponents produce no moment
about OZ. The remaining
force, — acting at P par-

allel to 01, may in like manner
be resolved into three forces

parallel to the axes and of values -^muanDiy — wwoxdj, and — re-

spectively, since the direction cosines of 01 are Wi/a>, wj/w, and (Oj/w.

The moment of these forces round OZ is

— lo^x) (2).

Also, by projecting upon 01 the broken line OR, RQ, QP, PS, we
have

(0 , (0 .

u=-^x+^}'+-is
(3)

Then, substituting (3) in (2), we find for the centrifugal torque round
OZ

— -x^)-\- iai <ji^z >-- iaiio^zx -\-{ia\-- io^^xy
} . . . (4).

Let us now suppose that the moving axes OABC fixed in the body,

which instantaneously coincide with OXYZ, are principal axes, so that

all the products of inertia vanish. Then, on summing up the expression

(4) for all particles in the body and omitting the sums which vanish,

we obtain for the cerftrifugal torque about OZ
= —5*—a:®) . . (5).

We can now by symmetry write the three component centrifugal

torques, thus :

—

Z'= (^—C)t«)aa)8, il/ =(C— .4)a),e0i, N'^{A’- (6).

Let the resultant centrifugal torque or couple be and let the angle

between its axis OG and that of rotation 01 be called 0. Then, since
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the direction cosines of these lines are respectively

and (Oj/u), Wj/o), we* have

cos 0=
“j-AT(i>^ -f-N <0g

G(j)
(7).

because the numerator of the fraction vanishes in virtue of (6). Thus
10G= :n-/2, or ax/s of the centrifugal torque is at right angles to the

instantaneous axis of rotation.

Hence, returning to (i) and inserting the values from (6), we have
for the three angular accelerations

^a)i= Z-f and Cd)8=iV4* • • (8).

307 . Independence of Translation of Centre of Mass and Botation
about it.—We have hitherto in this chapter supposed one point of our
rigid body to be fixed. Let this restriction be now removed. Then
the subsequent work is often much simplified by the fact that the trans-

lation of the centre of mass and the rotation about any axis through it are

quite independent of each other. That this Is so might have been
inferred from what was previously shown for coplanar motions. But
it is more satisfactory to have
an independent proof. We
shall deal in turn with linear

momenta, kinetic energy, an-

gular momenta, and their rates

of change.

Linear Momenta —Refer-
ring to Fig. 125, let OXYZ
denote fixed axes and GABC
axes whose origin G is at the

centre of mass of the moving
body and whose directions re-

main parallel to those of x^

and z. Let a particle of mass
m of the body have co-ordinates

y, z with respect to the fixed axes and a, b, c with respect to GABC.
Further, let the moving point G have co-ordinates y, and z and
velocity components u, Vy and zer, the body having angular velocity

components cu*, (Oy, and Then we have the following relations

among the co-ordinates and velocities :

—

x=:x+ ay yr=y-f^, 2=2-fr
^

d= (OyC—(a^y — (o-pC, <:r= (1)3.^— I
. (i).

x=u-{-(i>yC^iOzbj z=w+<aah--<Oya J

Let the linear momenta be px^py^ and /z, then w^have

py.= '^mx=uLm -f o}y2mc—

But since G, the origin of <2, by and Cy is the centre of mass, 2w^=o
vszZmb^^ma. Thus, writing Afiox the total mass, we find

px=Afuy py^MVy and pt^Afw (2).

In other words, the linear momenta of the body are not affected by

any rotations and equal those of the whole mass at G.

Fig. 125. Independence of Trans-
lation AND Rotation.
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308 . Kinetic Energy of Rigid Body in General Motion.—Let us
now form the expression for the kinetic energy* of a rigid body whose
centre of mass has velocities v, and the body at the same time
having rotations co^;, o>y, and about axes parallel to the fixed axes

OXYZ. Then, using (i) above, we have for the kinetic energy

Tr=\l.m{x^-\ry^W)

= + (i}yc— + (v+(x>za— o)^y-\-(w+ (ajf— (Oyaf }.

Whence, squaring and omitting the terms which vanish in virtue of G
being the centre of mass, we find

— Ddiyiaz— EiUziiix— /
* * *

the letters A^ C denoting the instantaneous moments of inertia and
Z>, F the corresponding products of inertia. It is easily seen that

the first term on the right expresses the kinetic energy of the whole
mass as if concentrated at G, while the other six terms give the kinetic

energy of rotation about the axes through the centre of mass. (See
equation (2) of article 299 )

But it should be noted here that, since the

axes GABC are not fixed in the body^ but only the point G, the values

of the moments and products of inertia in (3) may be continually

changing.

309 . Angular Momenta of Rigid Body in General Motion.

—

Using again Fig. 125 and equations (1) in article 307, we may form the

expressions for the angular momenta hx, hy^ and hz about the axes of

jv, y^ and z.

Thus, for the first we have

hx^-^mizy^yz)
= -f — o)j/a)(v+

—

a>2<2— + ^) }.

And, on performing the multiplications, omitting as before the vanish-

ing terms, we find

hx=^{tvy^vz)^m-\-n)^m{F -\-d)— (ii)y'Zmab-~ii)^mca . (4).

Hence, on substituting the usual symbols for the mass, moments, and
products of inertia, and writing the other momenta by symmetry, we
obtain

hx— M{wy—vz)-\-Atiix’'^ Fioy-^Efi)z

hy—M{uz—7Vx)‘-FiOx~\-BiOy—I)iOz -
(5 ).

hz=Mi^x— uy) — A War—i?Wy+ Cw^

These again show that each of the angular momenta splits into two
parts, one representing about the given axis the angular momentum of

the whole mass concentrated at its centre G, and the other expres-

sing the angular momentum of the actual body about a parallel axis

through G. (See equations (3) of article 290,)

Examples—LVIII.

1. In Euler’s equations show that the increases of angular velocities are

partly due to centrifugal reactions, and determine the resultant axis of

these reactions.

2. In the case of a rigid body rotating under torques as expressed by
Euler’s equations, prove that the moment of the centrifugal reactions
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about any principal axis is the continued product of the difference of

moments of inertia about the other two axes and the two corresponding
angular velocities.

3. Show that the linear momentum of a rigid body moving generally in solid

space is that of the whole mass as if at its centi e

4 Prove that the kinetic energy of a rigid body in general motion in three

dimensions splits into two terms, one expressing that of the whole mass
at Its centre of mass and the other that of the rotation of the actual body
about an axis through the centre of mass as though it were at rest.

5. Show that the angular momentum of a rigid body in any motion is the

sum of that of the whole mass at its centre and that of the actual body
about a parallel axis through that centre.

310 . Equations of Motion for Axes of Fixed Directions.—We
have just shown that, as regards linear and angular momenta and
kinetic energy, a rigid body moving in any way is replaceable by the

total mass at its centre of mass together with the actual body in its

actual motions relative to the centre of mass* It is clear without a
formal proof that the same independence will hold for rates of change
of angular momenta since it holds for the momenta themselves

Hence, adhering to our co-ordinate axes GABC moving parallel to

themselves with their origin G always at the centre of mass of the body,

we can now write general equations of motion of the rigid body. For
each product, mass of a particle into its acceleration, corresponds to a

force, and each change of linear momentum to an impulse. Thus, if

the force components are represented by A, F, and Z acting at the point

we may write, by the results of articles 307-309, the following

equations :

—

^Xdf=Mdu, y. Ydt^Mdv, ^Zdt^Mdw (6),

l.{Xdx^ Ydy-\-Zdz)=:dT (7),

^{Zy- Yz)dt=:dh^,^Xz-Zx)di=dhy,^ Yx-X))dt=dht (8),

^X=Mu, 2 V=Mv,'EZ=Mw (9),

= ^Xz-Zx)=Ay, 2
( Yx~Xy)=Iiz . . . ( 10),

X{Z6-

^Xc-Za)=~J,-£w^+£o,y-Do,,) (ii),

where a, b, and c are the co-ordinates with respect to the axes GABC
of the point of application of the force components AT, F, Z.

If we perform the differentiations indicated by®

/

4a; in (10), using the

values from (5) of article 309, and remembering that a, b, and c are

variables as shown in (i) of article 307, we obtain
'

2{Zy— Yz)

=

M{wy

—

vz)-YA^x— —ECiz

— Z>(cdJ •— (U®)— — C)a>y&>2 -f- Fiiiz^x—
The other two equations for hy and kz could then be written by sym-

metry. The cumbrousness of these expressions (due to the fact that
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1

At Bt C, Dt Et Ft are varying) shows that it is usually desirable

to adopt moving axes so that the abovd coefficients become
constants.

Thus, since we have already seen that the translation of the centre

of mass and the rotation about any axis through it are independent, we
may use for the latter Euler’s equations and for the former the equations

for a particle. Another system is given in the next article.

311 . Hayward’s Equations —We have just been discussing the

equations of motion with respect to axes with origin fixed in the

moving body and at its centre of mass but with directions always

parallel to those of the axes fixed in space.

Let us now refer the general motion of a rigid body to rectangular

axes whose origin is fixed in space but whose directions vary by rotate

ing at angular velocities 0*, and 0^ about their own instantaneous

positionSy being, in fact, the

system usually referred to as
‘ moving axes ’

We have already found
(articles 290 and 294) the form
assumed m this case by the

expressions for the angular mo-
menta and their rates ofchange.

And it might be inferred that

precisely similar expressions

would hold for linear momenta.
It is, however, desirable to

give here an independent proof

of this.

At the instant in question

let the moving axes OABC coincide with the fixed axes OXYZ as

shown in Fig. 126, and consider the point P of co-ordinates x, z

with respect to OABC and velocity components w, Vy w m the direc-

tions of the moving axes, but reckoned with respect to the fixed origin

O. Then the velocity u is the algebraic sum of

fi) that of P relative to Q;
(2)

that of Q relative to R ; and

(3) that of R relative to O. Thus, writing these values in from

the figure and by symmetry the similar expressions for v and Wy
we find

u=iX^-yB^^rzO^
v—y^zBt-\rxBA (i).

' w=Z'-x9i-i-y0i)

If we now wish to pass from the velocities to the corresponding

linear accelerations «, and Cy parallel to OABC but with respect to

the fixed origin O, let OR, RQ, and QP in Fig. 126 now represent to

some scale the velocities «/, zf, and u. Then, to the same scale, the

component velocities of P will represent the accelerations required.

Hence we have, by substitution in (i),

Fig. 126 Linear Momenta and
Moving Axes.
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a— u—vO^-\-wO^
b^v—wQy’\-uOA (2).

If now we suppose a particle of mass m to have these accelerations,

we may sum the products of mass into acceleration over the whole

body and equate to the corresponding sum of force components
Xy K, and Z Thus

2X= '^ma= '

2mu— '

2tnvQ^+
'

2mwB^.
Or, if the sums of the force components are denoted by ^7

,
F, and

Wand the linear momenta by /i, /a, and we have

.... (3)-

~/l ^24-A
Let us now quote here the equations (1) from the beginning of article

294, expressing the relations between the torques Z, il/, and N about
moving axes and the corresponding angular mcmienta hi, hf, and h^.

L=hi—h^B^-{-hsBA
M=ii’-hiBi-]rhiBA (4).

7V=
J

It is now seen that these two sets of relations between forces and
linear momenta in (3) and torques and angular momenta in (4)

are precisely alike in form. Further, by the independence we have

already seen to exist between the translations of the centre of mass of

a rigid body and its rotations about any axis through the centre of

mass, equations (4) still hold when the body has a motion of transla-

tion provided the origin of these axes now coincides with the moving centre

of mass of the body.

The equations of motion in the forms shown by (3) and (4) were

first given by R, B. Hayward, F.R.S. (see Camb. Phil, Trans,, Part i.

vol. X., 1856).

Thus, in the preceding and present article, general equations have
been obtained for the translations and rotations possible and referred

in each article to different systems of moving co-ordinate axes. It is

not, however, by any means necessary or desirable to use either system

in Its entirety for any given problem. On the contrary, we may often

with advantage treat the translation of the centre of mass as though
the whole body were concentrated there and the rotations by equa-

tions involving moving axes (say Euler’s) as though the centre of mass
were at rest. This is illustrated in the next article.

312. Motions of a Qnoit.—Following the treatment of Tait, let us

now consider the motions possible to a quoit wfftn thrown. Let the

moment of inertia about OA, the axis of figure, be A, and B and C
those about any two rectangular axes OB and OC in the plane of the

ring. Then obviously A>B=C, and by Euler’s equations we find

.^0)1=0, or (Uj is constant (i),

B^i^(B’—A)iaiiai= 0 (2),

B<i>t—{A-‘B)iaxia^^O (3)
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For brevity write
,

—a),=«, a constant (4).

Then (2) and (3) become respectively

W2-f«aj3= o (5),

and Wg—«w2=o . (6).

From (5) we obtain aij=—

.

. (7),

and this differentiated and substituted in (6) gives

C03+;/'*0)3=0. . (8).

But the solution of this may be written

0)2= o)„cos(«/+<^) (9\
the corresponding angular acceleration being

<03= —«o)3 sin («/+<#») • •
(io)j

in which and
(f)
depend upon the initial conditions of the throw.

This value of 0)3 put* in (7) gives for the other angular velocity

(,>3=0)0 sin (;?/+</)) . . .
.

(ii).

Thus, the resultant of 0)3 and oig about the perpendicular axes in the

plane of the quoit is an angular velocity about an axis OD in the

plane of BOC and making at time t

the angle («/+ <#>) with OB, as shown
in Fig. 127.

Hence, compounding this angu-

lar velocity o)o with o>j, we find the

magnitude cu and axis 01 of the in-

stantaneous angular velocity to be
given by

o)*=o)J-i-o)J . .
. ^12),

and tan0=a>o/u)i . (13),

where 6 is the angle between OA and
01.

Thus the instantaneous axis of

rotation describes with respect to the

quoit a right circular cone of semi-

vertical angle 0 about the axis of

figure OA. This is the body cone
shown dotted in the figure. Further, as shown by equations (9) and
(ii), this cone is described with angular velocity «, in the same
direction as that in which the body is rotating. In other words,

the dody cone rolls externally upon the space cone^ their common vertex

being the centre of ipass, which is the origin of co-ordinates, and their

line of contact being the instantaneous axis of rotation 01.
So far we have dealt with the rotations only as though translations

were absent. But, as shown in article 131, the most general motion of

a rigid body may be represented as the rolling of a cone, fixed relatively

to the body, on a cone which moves in space, the vertices of the cones

being common. Thus we have further to specify the motion of the

common vertex. But in the present case this vertex is the centre of

Fig. 127. Motions op a Quoit.
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mass of the quoit. Hqnce, apart from the resistance of the air, the

trajectory of this point is easily seen to be a parabola whose elements

depend upon the angle of elevation and the velocity at the instant of

the throw.

We have further to specify the space cone on which the body cone
rolls In the present very simple problem, since B—C^ it might be
inferred from symmetry that the space cone is a right circular cone.

But the full treatment of the space cone is quite beyond the scope of
the present work

;
indeed its equation cannot, in general, be found.

In the case of the earth there is a shift of the instantaneous axis

within It analogous to the description of the body cone just noticed

for the quoit This shift of the earth^s instantaneous axis of rotation

gives the phenomenon known as the change of latitude. The value of

\A-—B)IB for the earth is of the order 000328, which would give a

period of 305 days to this change of latitude. But, owing to imperfect

rigidity of the earth, this period is about 42J5 days. (J. H. Jeans^

Theoretical Mechanics^ p. 310, Boston, 1907.)
When a body is thrown into the air spinning, the trajectory of its

centre of mass is a parabola, and the motion of the body about an axis

through that centre is as though that centre were fixed. This leads us

to Poinsot’s discussion of the motion of a rigid body about a fixedpoint
under no forces, in which an ellipsoid is regarded as rolling in contact

with a plane, the locus on the ellipsoid of this point of contact being

called the polhode^ the locus on the tangent plane of the same point

being called the herpolhode.

When the body cone closes to a single line, it is evident that the

space cone is reduced to a single line also. This illustrates the case

with which the study of rotation naturally commences, namely, that in

which the axis of rotation is fixed both in the body and in space.

Simple problems like the rolling of spheres on rough planes under
the action of forces passing through the centre are easily solved by the

principles already illustrated For the more complicated cases of the

motions of rigid bodies in three dimensions the reader is referred to

the classic treatises by Routh, and to Professor A. G. Webster’s recent

Dynamics ofParticles and of Rigidy Elasticy and Fluid Bodies (Leipzig,

1904).

Examples—LIX.

1. Obtain an equation of motion for a rigid body, using axes whose origin

moves with it while the directions of the axes are unchanged. What
drawback has this form of equation ?

2. Derive the set of six relations for the motion of |l rigid body known as

Hayward’s equations. What special advantages do they present ?

3. A body of revolution, say a cylinder or disc, is thrown into the air with

a spin about its geometrical axis
;
discuss its subsequent motion.

4. What do you understand by the terms polhode and herpolhode}



302 ANALYTICAL MECHANICS [art. 313

PART IV,—STATICS

CHAPTER XV

STATICS OF PARTICLES

313. Forces on Body devoid of Acceleration.—When force is defined

as the product of mass and acceleration, we have to inquire how the

forces are to be estim^gited respecting a body devoid of acceleration,

i.e. either at rest or in uniform motion. There is usually no difficulty

in this, for it is generally easy to separate the conditions affecting a

body into two or more divisions such that certain accelerations corre-

spond to one or more of those divisions. Take, for example, the case

of a body of mass m resting on the top of a table. Then, relative to

the earth, we have no acceleration of the body. But we can separate

the conditions under which the body is placed into two divisions :

—

(i) the proximity of the earth to the body; (2) the contact of the table

top with the body. Now we know that, with the first set of conditions

only, the acceleration of the body would be vertically downwards of

valuer (about 981 cm./sec.^ or 32-2 ft./sec.*). If we now regard the

equilibrium resting state of the body as the resultant of two accelera-

tions opposite but numerically equal, we see that the reaction R of

the table must correspond to an acceleration — i.e, vertically up-

wards. We may accordingly write

R=-mg=^lV (i),

where fV is the weight of the body.

Or, generally, if a body is at rest we can divide the conditions under
which it rests into two sets or divisions corresponding to opposite

accelerations a, a! and forces F, F. Then we have

a= —a'2J\dF~ma——F . . . (2).

Or, in other words, one of the forces said to be acting upon the body
at rest is gauged by minus the product, mass into the acceleration, which
would occur in it, were this force removed.

Again, we may express the circumstances of the equilibrium in the

above cases in the fallowing obvious manner :

—

lV-\~R=o 2Lnd F-^F'=o .
. (3),

and this is in accord with the general custom for statical problems.

It may be noted here that a body may be instantaneously at rest

though not in equilibrium, or instantaneously in equilibrium without

being at rest. On the other hand, it may be for a finite time at rest

in equilibrium. A particle at the end and at the middle of rectilinear
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simple harmonic vibrations illustrates the first two, and, when stopped,

the last.

314. Composition and Eesolution of Forces.—Since a force is the

product of the scalar quantity mass and the vector quantity acceleration,

it IS itself a vector quantity of the

same direction as the acceleration.

Hence the composition of forces is

simply an example of vector addition

(see articles 14-16 and 23-25). Thus
the parallelogram, triangle, and polygon

of forces need no further proof. We
may, however, note a few results of

vectorial addition in typical cases.

If two forces P and represented

in Fig. 128 by OP and OQ, act on a particle at the point O, their

resultant is represented by the diagonal 01^ of the parallelogram

OPRQ. It is easily shown that the magnitude and direction of the

resultant are given by

i?^=/^-f<2H2/’(2cosa (4),

O R

O PM
Fig. 128. Parailelogram of

Forces.

and tan ^=- Q sin a
(s).‘i^-j-(2c0Sa

where a is the angle between P and B that between P and R, For
a is the supplement of OPR, hence the cosines of these two angles

differ in algebraic sign only; this gives (4). Equation (5) follows from
tan ^^= MR-t-(OPH-PM). We may also note the useful though not

independent relation

.^=/'cos ^-1- (2cos (a—

.

. (6).

If instead of compounding P and Q into their resultant R we have

to resolve R into a pair of components, it is soon obvious there are an

infinite number of ways of doing so. To make the problem of resolu-

tion definite we must have the angles fixed
;
thus if a and B are given

as well as R we can easily find P and <2>
which are now determinate.

The preceding relations are not, however, suitable for this inverse

process. We may accordingly replace them by

P -Q -R
(,)

s\n{a— B) sin ^ sin a '

obtained by applying to the triangle OPR the constancy of the ratio

(side sine of opposite angle)

Of course, both composition and resolutior^ may be performed

graphically when preferred and if the utmost accuracy is not desired.

In compounding graphically the forces applied at O, we may quite

legitimately draw OP, PR, and OR instead of the whole parallelogram.

But it should be noted that OR would need shifting parallel to itself

to be the resultant of OP and PR, acting along those lines instead of

both at O. See article 398.

It is seen by the equations (7) that, when a given force R is re-
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solved into two components P and Q, the„ magnitude of each one

depends upon both the angles which they make with R.

Thus, ^n order to give definiteness to the convenient phrase, ‘ com-
ponent in a given direction,’ we must have some convention as to the

direction of the other component. The ordinary convention is this,

that the two components are at right angles to one another when
nothing IS said to the contrary. Hence if the horizontal eastward com-
ponent of a certain horizontal force is said to be four dynes, it is under-

stood that the other component is along the north and south line. Or,

generally, if the component parallel to the axis of x is Jf, it is under-

stood that the other of the two components is taken parallel to the

axis of jv, if the original force is in the plane of xy. This convention

IS adopted because usually simplicity results from resolving forces into

directions parallel to rectangular co-ordinate axes. Hence, if B is the

angle between the original force P and a component P, we have the

relation

P^PcosB (8),

the other component being understood to make an angle tt/z — ^ with

the force .^and on the other side of it.

Examples—LX.

1. Accepting the definition that force is the product of mass into accelera-
tion, how IS it possible to speak of a force or forces acting on a body at

rest ? Give examples, making your meaning quite clear

2. Obtain analytical expressions for the magnitude and direction of the
resultant of two specified forces.

3. Show how forces may be resolved each into two components. When
speaking of one component of a force, what restriction is essential about
the other component ?

4. Find a pair of forces of fixed directions at the angle a, acting at a point
and so related that as one force P remains of constant value and the
other Q grows from zero, the resultant E at first diminishes in magni-
tude, then reaches a minimum, and thereafter inci eases indefinitely.

5. Give a graphical construction for the composition of three or more forces,
and write its analytical equivalent.

315. Conditions of Equilibrium.—If we have several forces acting

on a particle, it is obvious that the condition of equilibrium is that their

resultant vanishes. But the resultant is represented by the line which
closes the polygon, whose sides represent the forces as if placed eod to

end. Hence for equilibrium this closing side must vanish, or the

polygon of forces must be itself closed.

We may also give the same ideas in analytical form. Thus, let

forces Pi, jF, . . . be applied to the particles in the plane of xy, their

components being X,, y,, K,, etc. Then, for equilibrium we
obviously have the conditions

2A^=:o,:j:y=o . (0,
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since the resultant R is*given by

and accordingly only vanishes when (i) is satisfied.

316 . Inclined Plane.—Let us now consider the equilibrium of a
particle on a rough inclined plane
under the action of a force at an
angle with the plane. Let the weight
of the particle be IV, the coefficient

of friction between it and the plane

)u=tan/?,*the inclination of the plane
to the horizontal a, the angle be-

tween the force P and the plane 0.

Take the axis of x down the plane,

the origin at the particle, call the

normal reaction of the plane and
suppose the equilibrium to be such
that the particle is just on the point

of moving down the plane. Then
the frictional reaction on the plane

is upwards and equals its limiting value \iN.

are shown in Fig. 129
Then on reference to the figure and using the conditions of equili-

brium as expressed in (i), we have

2X= f^sin a— /xiV— /^cos ^=0 (2),

2 F= — fFcosa-f-iV'—Z^sin ^=0 (3),

two equations from which to find F and N.

Fig. 129. Equilibrium on Rough
Incline.

The forces mentioned

Eliminating N between the two equations we find

P= W sin (a—

^

3
)

cos (O—p)
Then, substituting for Pin (2) and (3), we have

N-.= w{<cosa-f
sin ^sin (a—S)

(4).

(S).cos {
0—p)

Equation (4) shows that for a minimum supporting value of P we
must have 0—/3=Oj when

Pmin.= ^sin (a— ^) . . (6).

If the particle is to be on the point of moving up the plane instead

of down, we must reverse the sign of in (2). We then obtain the other
limiting case in which the force, now distinguished by a dash, is

sin (a+/3
)

COS (
0+ 1̂ )

(7 ).

And now for the minimum value of P\ which is on the point of

dragging the particle up, we find ue. P' is pushing at angle P
below OX or pulling at the angle above pN in the figure, the corre-

sponding value of the force being

P'min.= IFsin (a-f- /?) (8).

u
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317 . The Wedge.—For F horizontal putc^=a in equation (7),

and we obtain

F=lVUn{a-\-P) (9)-

Further, on putting two such planes of inclination a base to base,

we pass to a wedge of angle 2a=y say, the total horizontal force being

zF^Q say. We have then the state of things represented in Fig.

130. The relation between Q and is obviously represented by

F^mania^lS),

or Q=2mm(j+I3jj

Of course, if

W-7P

F >
K
A 7

p

Ml ?

V
7

.

W-6P

Fig. 131.
Tackle of

Single Multi-
PLI80 Cord.

the friction is negligible, this reduces to

(2=2 lVta.n y/z (ii),

or if the angle is small
Q=z IVy nearly (12).

If the angle is not small, and the resistances are

taken R, R normally to the inclined forces of the

wedge, we have instead of (i i)

Q=2Rs\ayl2 (13),

as may be seen at once from the triangle of forces,

which is a figure like the wedge shown but turned

through a right angle, the base representing Q and the

sides the equal resistances and i?.

318 . The Multiplied Cord or Tackle.—The com-
bination of several plies of a cord, rope, or chain with

pulley blocks is called a tackle or purchase. The
pulleys are of great practical importance in certain

cases as they lessen friction at the places where the

directions of the cord chang;e considerably, but the

essential efficacy of the contrivance lies in the re-

duplication of the cord or its disposition in repeated

plies or parts side by side, and the pulleys are in

some cases omitted with advantage. Many arrange-

ments and combinations may be made and are in use.

It will suffice here to consider two illustrative types.

Take first the system represented in Ffg. 131. In
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this tackle, since only q»^g cord is used and pulleys are provided at the

bends, the tension will be practically the same throughout if we regard

friction and stiffness of the cord as negligible. Hence, the resistance

PVf which may be balanced by the applied force F at the free end of

the hauling part of the rope, is given by the expression

W=hP .... (i),

where n is the number of plies supporting the lower or running block.

Thus in the figure IV= 6F. If we write IV' for the load put by the

upper or fixed block on the beam supporting it, obviously

(2),

where is the number of plies hanging from the fixed block, in this

case seven. The IV is, of course, the total re-

sistance which the plies of the cord balance, and
includes that of the running block itself. Thus
if this block has the weight only an additiomd

load W—7V could be supported by the force P,

Consider now a system with several cords

and several running or movable pulleys. This

is shown in Fig. 132, from which it is seen

that the first movable pulley is supported by
two plies of the cord to which the force P is

applied. Hence the cord from it has a tension

2P. But this cord has two plies which support

the next movable pulley, which can accordingly

exert on its cord a tension 4/I Finally, as

shown, two plies of this rope support the weight

which is accordingly 2>P. Thus, as we take

for the number of separate cords and movable
pulleys I, 2, 3, . . . «, we see that the ratios,

weights which can be supported to the force P
applied, are given by 2’, 2*, 2*, . . . 2^ Hence
the general relation for this system of plies and
pulleys

W^P,2^ (3),

w’here n is the number of separate cords and of

movable pulleys. If here, again, is the weight put on the beam
by the upper or fixed block, we have

W'=W^-P=:P{2-+i) (4),

which is the relation required if the system is inverted.

Of course, if the weights of the pulleys themaielves are comparable

with the tensions in the plies they must be taken into consideration.

Thus if Wx is the weight of the pulley supported by the first cord of

tension P^ the tension of the second cord is aP—Wj. If the pulley

supported by this second cord has weight the tension of the third

cord is 2(2P—Wi)— zi/,, and double this value is available to support

the weight zr, of the third pulley and the load hung on it

W^9P

Fig. 132. Tackle of
Several Muuiiplild

Cords.
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Examples

—

LXI «•

I. Express analytically and graphically the conditions for the equilibrium of

a pat tide under a number of coplanar forces.

2 Find the force required to support a body on a rough incline and plot

force against inclination, thus confirming the analytic result that the

minimum result is W sin (a -
/
3
), where W is the weight of the body, a the

inclination of the plane, and tan ^ the coefficient of friction.

3. Obtain the ratio of resistances to force m the case of a wedge (1) when the
resistances are in opposite directions along the same line, and (11) when
they are each normal to the respective faces of the wedge.

4 Explain why a wedge when driven into wood does not slip out again,

(jive a numerical instance, and work it out to support your explana-
tion

5. Sketch two arrangements of ‘tackle’ or ‘purchase,’ and find in each case

the relation of load to applied force, allowances being made for the

weights of the pulleys.

319. Work for given Force and Displacement.—Consider the

work done on a particle when it has a displacement OD under the

action of a force P inclined at an
angle with OD as shown in Fig. 133.

From P let fall PQ perpendicular to

OD produced, and from D the per-

pendicular DE on OP. Then, if OP
represents to scale the force P^ OQ will

represent to scale the component force

Q along OD, the actual displacement

Also OE represents the component dis-

placement in the direction of the force

P. Now, by a definition in article 212,

work is the product force into dis-

placement in the direction of the force.

Hence we have three forms for the work W in question, viz.

fr=/’.OE= <2.0D=/^.0D cos ^ (i).

These are easily seen to be identical, for OE=OD cos and
^—/'cos

<l>. If the component displacement in the direction of either

force be denoted by the corresponding small letter, we may state the

above results still more compactly thus :

—

JV=P/>=Q^=Pgcos<l> (2).

320. Resultant Work is

Algebraic Sum of Components.
—Let now a particle have a
displacement OS while under
the action of forces,'say A,
and C, whose resultant is R.
Estimate the works of each of

these forces as in the last article.

Then it mav be readily seen

that the work of the resultant

force R is the algebraic sum of

the works of the component forces. Thus, let the forces A, and C be

Fig. 134. Resultant Work is Sum
OF Components.

Fig. 133. Work for given
Force and Displacement,
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represented to scale, o«d to end, by OA, AB, and BC, their resultant

by OC= ^, and the displacement by OS along OT. Let fall from A,

B, and C the perpendiculars AL, BM, and CN on OT, and denote by
a, p, y, and <#> the angles which the forces A, C, and R make with

OT. Then, by the geometry of the figure, we have

OL+LM+MN=ON,
or A cos cos p-\-Cco^y^R cos<i>.

Multiply throughout by OS=J say, giving

A{s cos cos p)-\-C{s cos y)^R(s cos <^).

But the quantities in brackets are the component displacements in the

directions of the various forces. Hence, denoting these by the corre-

sponding small letters, we may write

Aci~\~ Bb-\- Cc'=‘ Rf' . . . (3)*

Or, in a general case, where the forces are Pu Pjj etc., and the com-
ponent displacements /i, /a» etc., we have •

. .= 'S,Pp=Jir .... (4),

for what holds for these forces is obviously valid for any number.

It may be noted that the forces Ay By C or P,, P^y etc., are not restricted

to a plane but may be distributed m any way in solid space. Further,

for these results to hold each displacement must be small enough

for the forces to be practically constant in magnitude and direction

throughout it.

321 . Virtual Work is Zero for Equilibrium.—Suppose a single

free particle at the point O is in equilibrium under the action of

given forces P^^ P^y etc., and let it be imagined to have an infinitesimal

displacement dSy whose components or resolved portions in the directions

of the forces are respectively dp^^y dp^y etc.

Then dSy dp ly dp^y etc., are called virtual displacements of the particle

in the given directions
;

also, the products P^dpy^y P^dp^y etc., are called

the virtual works of the corresponding forces.

(Sometimes the phrases virtual velocities and virtual moments are used
instead of the above.)

If, for an instant, we imagined the forces to have a resultant Ry
along whose direction the virtual displacement was dry we should have
from (4)

Pxdp^-\-Pidpi-\-, . ,~^Pdp=.Rdr . . . . (5).

But, since for equilibrium R must be zeroy it follows that the total

virtual work is then zero for any virtual displacement. Or, in symbols,

2/V/=:o. (6).

Conversely, if the total virtual work vanishes for any virtual displace-

ment, the particle is in equilibrium.

This dual statement expresses what is called the Principle of
Virtual Work as applied to a single free particle. The principle

also applies to a particle on a curve or surface (as we shall presently

see), and even to rigid bodies, as we shall note in a later chapter.

Thus, for a particle in equilibrium on a smooth curve or a smooth
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surface, there would be the reaction Q of fke curve or surface in

addition to the other impressed forces A, etc. Hence by (6) we
should have for any small displacement

l.Pdp-\-Qdq^o (7).

If, however, we take ds along the curve or in the surface, dq
vanishes, because Q and ds are at right angles, and (7) accordingly

reduces to (6).

Conversely, consider the particle constrained to move along a curve,

the virtual work for a tangential displacement being zero. Then, the

resolved part in that direction of the resultant of the impressed forces

is zero also. Hence the particle is in equilibrium.

Also, for a particle constrained to move on a smooth surface, if the

virtual works for any two displacements, not in the same straight line,

are each zero, the particle is in equilibrium. Because in that case

obviously the resultant force had no component in either of those

directions, and accord in'gly vanished.

If the curve or surface were rough, the frictional forces would need
taking into account. And usually the principle of virtual work, now
under discussion, is not then of any service, it being as hard to find

those frictional forces as to solve the whole problem by some other

method.
A more general statement of the principle of virtual work is the

following, quoted from Todhunter^s Statics :

—

‘ If any system of particles is in equilibrium, and we conceive a dis-

placement of all the particles which is consistent with the conditions to

which they are subject, the sum of the virtual moments works) of

all the forces is zero, whatever be the displacement. And conversely,

if this relation hold for all the virtual displacements, the system is in

equilibrium
’

It is easily seen that this form applies to all systems of multiplied

cords or tackles, and gives the results already obtained.

Examples—LXII.

1. When the displacement of a point is inclined to a force acting upon it, as

in the case of a canal boat towed by a horse, find several equivalent

expressions for the work done.

2. Prove that the resultant work is the algebraic sum of the component
works in the case of a particle displaced under the action of various

forces.

3. State clearly the principle of Virtual IVork^ and establish it for a
particle.

4 ‘Enunciate the principle of Virtual Work. If a material system is in

equilibrium under the action of gravity and smooth constraints, under
what condition will it rest in all positions into which it can be placed

without violating the constraints ? Apply this to the following case .

—

A
is a fixed smooth pulley

,
a light flexible cord passing over the pulley

has a freely hanging mass of weight P attached to one end and a ring

of weight IV to the other , if this ring is constrained to move along

a smooth fixed wire in the form of a certain conic having A for focus,

the system will rest in all positions.’

(Lo.nd. B.Sc., Pass, Applied Math., 1905, i. 6.)
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322. BqnillbriTim Bent Oord.—If between two points P and
P' on a stretched cord there are no forces applied (except the tensions),

it is almost obvious that this portion of the cord would remain straight

and of constant tension throughout. This has already been assumed
in dealing with the multiplied cords and tackles. If, on the other

hand, isolated forces occur at various

points P, P', etc., of a stretched cord,

it IS evident that the cord will change
its direction or the magnitude of its

tension at each of these points, re-

maining straight and of constant

tension between them. The equili-

brium at each of these points may
obviously be dealt with by the poly-

gon of forces.

If, however, a fine inextensible

flexible cord is subject to forces Q Equilibrium of Bent
per unit length between the points Cord.

P and P', it is obvious that the

tensions 7* and T at the points must differ in magnitude or direction

or both. And the precise mode of these differences requires examina-

tion.

Thus, referring to Fig. 135, and resolving along and perpendicular

to OK, we have
rcos PP'.2<2cos</)=o)

T^sin i/'-fPP'.SQsin
'

the sign of summation being introduced before Q to cover the cases

where various forces occur, of which Q is the type and all are stated

per unit length. The above equations are wntten m the form which
applies when the angle ^ between the tangents at P and P' is finite.

Now let P' and P approach and the angle become the infinitesimal one
then cos d\p is unity and sin dip becomes dip. Also Z'— Z* is dT

and PP' is the infinitesimal ds. Thus equations (i) transform into

dT ,•^+2Qcos^>

d^ sin j)

ds"^ T
These are the general differential equations for a cord in equilibrium

under coplanar forces. They may be expressed in words thus :

—

Space rate of change of tension equals tangential component of

forces.
•

Curvature equals quotient of normal component of forces divided

by tension. It should be remembered that the forces are estimated per
unit length. We easily see from (2) that when Q vanishes dTJds^o,
and or /o=oo, that is, the cord is of constant tension and
straight.

323* Cords wrapped on Curves.—Let us now suppose the forces Q
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to be due to the reaction of a curved surface tQn which the stretched

cord IS wrapped. At first suppose the surface to be perfectly smooth
so that the angle

<f>
becomes 3^/2, and the force Q may now be called jN

since it is normal to the surface.

Thus equations (2) reduce to the following :

—

-7-=o and
ds ds T p

(3).

These show that round a smooth curve the tension is constant and
that the normal reaction N is

Tjpi where p is the radius of curva-

ture.

Consider now a rough surface,

and denote the normal reaction

by A^and the tangential frictional

force by E as shown in Fig. 136.

Suppose the cord to be on the

point of slipping in the direction

of Tj the tension applied at P'.

Then 7^= )u.A^ numerically and its

</)=7r, the </) for N being still

37r/2 as for the smooth curve.
Hence for the rough surface equations (2) give

r~ p

Eliminating ds between the two equations of (4) we find

dTjd^^pT (S).

Thus, if the tension Tq aX A and T at the angle between
these directions being a, we have by integration of (5) between these

limits

Whence log^r— loge7;=fia=loge(777J).

Thus, on raising e to the powers indicated by the two sides of this

equation, we have

or W

Fig. 136 Cord on Rough Curve.

dT ,, .d^p_ zzzaNaxio. ~ =

ds ^ ds

It is noteworthy that the ratio of the tensions is independent of the

form of the curved surface, but depends only on the coefficient of

friction and the /<9/«/<ingle involved.

Also, owing to the exponential form, the ratio of the tensions

increases very quickly with the angle a. Thus a turn and a half of

a cord round a cylinder will give a threefold tension if the coefficient of

friction is slightly over one-tenth (say 0*1166). And three turns would
give a ninefold tension. This explains the possibility of hauling

against a great resistance /“with a rope which has a couple of turns

round a capstan^ the slack of the rope being taken off with a small but
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indispensable tension Thus, with a rope round a wooden post, a

single complete turn may yield a twenty-fold tension.

324. Uniform Cord under Gravity.—Let us now consider the

equilibrium of a uniform, inextensible, and flexible cord under gravity.

If attached at one point only, it is clear that its position of equilibrium

is that of the vertical line below that point, the tension at each section

being the total weight of the portion of cord below that level.

If, however, the cord is attached at two points not in the same
vertical line, the cord will hang in a curve which needs investigating.

There are various problems to be
solved and different ways of attacking

them. We will first apply the methods
already used and then pass to others

which are desirable for the sake of

the further light they throw upon the

subject.

Let the cord have weight w per

unit length, and consider an element

of length PP'=^j inclined at an angle

^ with the horizontal, the tensions at Uniform Cord under
its ends being Tand T+dT, as shown Gravity.
in Fig, 137. Then we see that, in the

notation of article 322, the angle <l> between POK and the weight Ow
is 37r/2 — i/'; thus cos ^=— sin ^ and sin </>= — cos Hence equa-

tions (2) of that article reduce to

and

dT . , \

as

d\p_w cos

5F"" T .

(7).

These may be put into the rather more useful form

and
dT=^was sin = wdy
T=pw cos ^

where y and p are the vertical ordinate and radius of curvature respec-

tively at the point P to which 2^ applies. From the second of these it

is clear that for ^^^=0, ue, the bottom point of the cord, we have for the

tension there cWy the letter c denoting the radius of curvature at this

point. But from the first of (8) we see that the tension increases

proportionally to the vertical height
; hence if we chose the origin of

y so as to make the constant of integration zero, we have

and
T —wy\
T^— wc] (9).

showing that the horizontal axis of x must be taken a depth c below'

the lowest point of the cord at which ^=0. The tension at any point

P is then the weight of cord whose length equals the vertical ordinate

of P, reckoned from this axis of x. The curve assumed by a uniform

cord under gravity is called the common catenary.
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Elementary Relations
FOR Catenary,

S25« Slementary Eolations for Catensm^^.—We began treating

the problem of a cord by taking a finite length, which was then

indefinitely reduced. Another method is to pass from the finite

portion to the infinitesimal ele-

^ -p ment by differentiation, which
/ will be convenient now in de-

/ riving further elementary rela-

/ tions from the uniform cord

V // at rest under gravity.

p 2 Thus, referring to Fig. 138,

'y let us begin by considering the

/ equilibrium of the finite portion

AP=j of the cord from its

' lowest point A, under the

To forces T’o at A horizontally to

C 2 *
T' at P upwards to the

t yc right at inclination ip, and its—^ weight IV vertically downwards

V w through Its centre of mass G.

Fig. 138. Elementary Relations origin is taken at the dis-

FOR Catenary, tance ^ vertically below A, so

that 7’o=:<r7</ and where
w is the weight of the cord per unit length ; we may also for conveni-

ence write T=zt7£f.
Resolving the forces parallel to the axes of x and y and equating

the sums to zero gives

^= /7£/cos ^ and .fze/= /ze^sin .... (10).

Whence tan and (ii).

It is convenient to represent these relations .

graphically also, as in Fig. 139, which obvi- /
ously forms the triangle of forces for the /
equilibrium of AP. /

This diagram and the equations (10) ex- . /
press all that can be stated on the basis of /
the mechanical conditions alone. We now ^ /
introduce a geometrical relation and combine / ^
itwith(ii). Thus /

^=tan^=:'^- (12). L
dx ^ c

To eliminate the x we use another geo- / ^
metrical relation and combine with (12), so ^
obtaining Triangle of

(

dy\ dy^ Forces for Equilibrium

Ts) +
Then, taking the root and integrating from A to P, we have

P , sds

C
Fig. 139. Triangle of
Forces for Equilibrium

of Cord.
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And, on evaluating, we find

or / * * ‘ ^*3)-

Referring to the second equation of (n), or to Fig. 139, we see that

/=>» and T^wy . (14),

thus confirming equation (9) of the previous article. We may now
see from Fig. 139 or equations (ii) that

y= ^=csectp (15),

the tension T being w times this.

Many simple problems on the common catenary can be solved

from the above elementary relations. It is, however, important also

to derive the cartesian equation of the curve, which we proceed to do
in article 326.

Examples—LXIII.
*

1. In the case of a flexible cord m equilibrium, prove (1) that the space rate

of change of tension equals the tangential components of the forces, and
(11) that the curvature multiplied by the tension equals the normal
component of the forces, these forces being reckoned per unit length.

2. ‘ Obtain a formula to show the variation of tension along an mextensible

weightless string which is wound tightly round an imperfectly rough
post and is just on the point of slipping.

‘How many turns of a rope round a post (coefficient of friction =0*2)

would enable a tension of i lb to support a weight of 1000 lbs. f It may
be assumed that log<,io= 2*3.’

(Lond. B Sc., Pass, Applied Math
, 1910, i. 8.)

3. ‘Investigate the catenary formulas

s= a tan y=a(sec yjr
~ i),

connecting the arc s and the height with the slope yjr.

‘ Prove that m flying a kite at a maximum height of i mile at the end of

2 miles of steel thread 0*03 inch in diameter, the tension at the

lowest point is the weight of miles of thread, or nearly 20 lbs., and the

pull of the kite is the weight of 2J miles of thread, or 33 lbs., acting at

about 37° with the vertical
’

(Lond. B.Sa, Pass, Mixed Math., 1902, ii. 2.)

326. Equations of Common Catenary.—To obtain the equation of

the catenary in terms of x and y we eliminate s from equations (12)

and (13), thus obtaining

dx c

Transforming this so as to separate the variables and integrating

from A to P gives

Thus
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Hence, on taking exponentials, we obtain

c^o=y-\- 77^
Transposing and squaring gives

Whence
(*6).

or y—CQO%h.xlc J

which is the cartesian equation required, and shows that the common
catenary is a ‘ cosh * graph.

Putting this value of in (13) we find

s^=c^{cosWxlc— i),

gxlo^g-xle
s=c =csinhx/c (17).or

By addition and subtraction of (16) and (17) we have also

y-\-s=:ce^^^

y—s=ce~^
relations which are sometimes useful.

(18),

327 . Alternative Method for Equations of Catenary.—We may
now very briefly indicate a method for obtaining the equations of a

catenary in which the relation between s and x is first obtained and
from it that between x and y.

The mechanical equations are

/sin /cos

Combining with them the geometrical relation we have

The expression for ds then gives

/ _+/
\dx/ dx^

Thus dx,

and fsinh“^j/^=Ar,

or r/c= sinh xjc

which agrees with (17). Returning to (19), we now have
(20).

Whence

and
agreeing with (16).

^=^=:sinh^.
dx c c

j
dy=j* sinh (xlc)dXf

y—^cosh(xlc) . (21),

328 . Elementary Properties of the Common Catenary.—Let us

now note some of the definitions and elementary properties of the

common catenary. Thus, on refeience to Fig. 140, the lowest point A
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of the curve is called \h^^vertex, the vertical line OY through it is the

axis^ the length c represented by AO and equal to the radius of curva-

ture at the vertex is called the parameter, the horizontal line OX at this

depth below the vertex is called the directrix.

Take any point P on the curve and from it draw the tangent,

normal and ordinate, cutting

the directrix at Z, H, and N
respectively. Also from N let

fall NL perpendicular to the

tangent and meeting at the

point L. Then, calling the

inclination of the tangent to

the horizontal we see that

the angles PNL and NPH are

each equal to rp. Referring

to Fig. 139 and equation (14)
we see that NP represents / as

well as and that in con-

sequence NL=ir and LP=j.
Further, from equations (8) and (14) we have

yz=i=:pcosyp (22).

Thus the normal PH on Fig 140 represents by its length the radius

of curvature p for the point P, the corresponding centre of curvature C
being, of course, on the concave side of the curve on HP produced
where PC= PH. This is seen to agree with the parameter OA=<r
being the radius of curvature at the vertex.

It is easily seen that the common catenary is a curve of the class

having only a single parameter each. Thus different catenaries differ

in size only and not in shape. Familiar examples of this class are the

circle, parabola, and cycloid, defined respectively by radius, latus

rectum, and radius of generating circle.

For some further geometrical properties of the catenary and methods
of constructing the curve the student is referred to Minchin and Daleys

Mathematical Drawing.

Examples—LXIV.

1. ‘ The ends of a uniform chain are attached to two fixed points, and the

chain hangs freely under the action of gravity
; deduce the equation of

the curve in which it hangs.
‘ A uniform chain has a mass of 2 lbs. per foot length, and the catenary in

which it hangs has for equation locosh (jt/io)
; find, by using the

tables, the tension and the vertical component of tension at the point for

which ;i:= 25 feet.’ (Lond. B Sc
,
Pass, Applied Math., 1907, i. 9.)

2. ‘ If a string hangs in equilibrium in the form of a catenary, show that the

tension at any point is equal to the weight of a length of the string equal
to the height of the point above the directrix of the catenary. A kite

is flown with 600 feet of string from the hand to the kite, and a spring
balance held in the hand shows a pull equal to the weight of loo feet of

the string inclined at an angle of 30"* to the horizon
; find the vertical

height of the kite above the hand.*

(Lond. B.Sc., Pass, Applied Math., 1908, i. 9.)

Fig. 140. Elementary Properties of
'I HE Common Catenary.
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3. * Show that the length of an endless chain whifji will hang over a circular

pulley of radius a so as to be in contact with two-thirds of the circumfer-

ence of the pulley is

^log.(2-fV3) 3 /

(Lond. B.Sc., Pass, Applied Math, 1909, i. 9.)

4. ‘ Prove that the difference between the tensions at two points of a uniform
chain hanging under gravity is equal to the weight of a portion of the
chain whose length is the vertical distances between the points.

‘ A uniform chain is stretched between a point on the ground and a
point 100 feet above the ground. The tension at the ground is the
weight of 3100 feet of chain, and the inclination there of the tangent to

the horizon is cos~^( 16/31).
‘ Find the length of the chain to the nearest inch.’

(LoNa B.Sc., Pass, Applied Math., 1910, i. 9.)

5. Draw carefully a catenary, indicating its vertex, axis, and directrix.

Obtain graphically the length of the curve from the vertex to any point

P, also the radius oftcurvature of the catenary at P.

6^ ‘ A uniform chain 100 feet long is to be suspended from two points m the

same honzontal line with such a span that the tension at the ends is to

be three times that at the middle.

‘Find (with the help of tables) the required span to the nearest
inch.’

(Lond. B.Sc., Pass, Applied Math., 1905, i. 9.)

829 . Approximations to the Catenary.—When x is so smaU that

its fourth power is negligible, we may see from equations (16) or (21),

on expanding the exponentials, that the approximate value of the

ordinate is

X . X* jr®,

Thus y=c+x^l2c, \
or x"^= 2ciy— c) wGBxXy j

•
• \

which is the parabola of latus rectum 2c with vertex at (o, c) and axis

vertically upwards, which approximates to the catenary at its lower

portion.

On the other hand, when x is large the negative exponential

vanishes in comparison with Thus, for the higher parts of the

catenary the curve approximates to the positive exponential only. Or,

^=— nearly

There is an intermediate portion of the catenary for which neither

(23) nor (24) furnishes a close approximation.

830. Sag and Excess Length in Tele^ph Wires.—We may now
find the sag and extra length due to it in the case of wires tightly
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stretched between points j£>n the same horizontal level and at a distance

p apart, as in the case of telegraph or telephone wires. Clearly we are

here concerned with a relatively small portion at the bottom of a very

large catenary. Hence we may commence with the parabola

approximation of (23). Thus putting x=pj2 and denoting by ^ the

sag or dip (y—c) in the middle, we have

g-PV&c . .
. (25).

For the unknown c on the right side we may use the approximate
value /= Tjiv^ the tension T at the ends in terms of the weight w
per unit length being supposed known. We accordingly write as the

working approximation

(26)

For the excess length we may conveniently calculate s from its true

expression as in (17) and (20). Thus, expanding the exponentials,

s
c

2

X X X

Hence, omitting powers of xjc beyond the cube, we find

s=^x-\-x*[6P.

Accordingly, for x=pj2, we have for the excess length in a single

span
2r— nearly . . . ... (27).

For the c on the right we may here use r=_y=:/ nearly, or the closer

approximation
c=y-q=t-q (28),

q being approximately known from (26).

The case in ‘question may be more conveniently illustrated by a

numerical example than by a diagram. Thus, let the poles be

88 yards apart and the tension of the order, weight of a mile of wire.

Then, by equation (26), the sag is given by

^=^878 X 1760=11/20 yard=i9*8 inches.

Again, by (27) and r=/ nearly, the excess length due to this sag

may be written

25—^= 88724^“ = 11/1200 yard= o*35 inch!

By (28) we note that c is i759'45 yards, hence the directrix of

the catenary is practically a mile below the wires.

831 . Parameter of Oatenary. —Where the foregoing approximations

are not sufficiently close for the purpose in view, it may be necessary

to determine the parameter c of the catenary from the data and then
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use the true curve. This may be done graphic^jlly as follows:—Suppose

the X and s for a given point are known ;
then, using (i 7) or (20),

r/^= smh

Transform this by writing i/s and x-=^b.

It thus becomes

52=sinh /52 . .... (29).

Now plot the two graphs

(30).
y^=sz 1

and y^= sinh bzj

as shown in Fig 141.

Their point of intersection, I, gives by

Its abscissae z the required root z of (29).

And the reciprocal of this is the value

sought for the parameter c.

332 . Parabolic Cord requires Uniform
Horizontal Load.—Let us now suppose a

cord to hang in the form of a parabola,

and let us find the law of distribution of

the load per unit horizontal length for this

to be the position of equilibrium. It is, of

course, indifferent for our purpose whether the load is due to the

weight of the cord or to masses supported by it. The equation of the

parabola may be written

giving tanvt=g=^ (3,).

Fig. 141. Graphic
Solution for Parameter

OF Catenary.

The mechanical conditions for equilibriums are

Tcos xj/ = Tq and T'sin JVj

W
giving (32),

where Wis the total weight from the lowest point of tension to

that at inclination xf/ and tension T. Thus, equating the right sides of

(31) and (32), we find

JV=xTol2a B.nd dWjdx^Tolza^h s&y . .(33).

We accordingly see that the parabolic curve requires the total weight

to be proportional to x or the law of load per unit horizontal length

to be one of uniformity, for h is evidently a constant.

If we are only dealing with a small portion of the curve near its

lowest point, it is ciear that the uniformity of load horizontally is

practically a uniformity of load along the curve, which is here so near

horizontal. Thus, if the 2a of the parabola equals the c of the catenary,

we have k=w, as should be the case.

The importance of the parabola for the form of a hanging cord or

chain lies in the fact that it is the curve assumed by the chains of a
suspension bridge, the load due to the roadway being practically uniform
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per unit horizontal length. We now see from another point of view
how well the approximation of article 330 was justified in the numerical
example given in illustration at the end of that article. For the para-

bola, to which the catenary was
there assimilated, is rigorously

exact for a uniform hoiizontal load,

and the excess distance in a 88
yard span was less than one-third

of an inch

!

333. Laws of Load for a
Cord to hang in a Circle.—Let us

now find the distribution of load

both along the curve and along

the horizontal when the cord hangs

in a circle. Let its equation be

Then, for the inclination of the tangent at any point P, see Fig. 142,

we have

(35 ).

But, from the mechanical conditions of equilibrium of the portion

of weight lV(iom the lowest point A to P, viz.

J'cos and J'sin \/y= IV,

we find JV= To tan ^ . . . . .... (36).

Consider first the law of load per unit length of curve s=a\p.
Then, using (34) and (36), we have

Fig. 142. Cord hanging in a
Circle

dW_dW
ds

~~
adxp

But, by (35) and (34), since P is on the circle, we see that

^ sec“i/'= I =^vy-

Hence
"Zx

(37 )-

The negative sign is here inserted before the j as we are concerned
only with the lower half of the circle for which the ordinates are

negative.

Again, for the law of load per unit horizontal length we substitute

(35) (3^) differentiate. Thus

dx dx\ y / y'

Then, simplifying by (34), we have

(38).
dx {-y)

'

We accordingly see from (37) and (38) that at the ends of the

horizontal diameter where y vanishes, the circular form of the cord
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would lequire an infin te load per unit lengthowhether estimated along

the cur\e or on the horizontal.

It m.iy he noticed here that since AP is in e(|uilibrium under the

three inclined forces T’, and they must intersect. Hence the

centre of mass G of AP is vertically over this point as shown.

Examples—LXV.

I ‘ Prove that a chain loaded so that the weight of any portion is pro-

portional to Its piojectionon the horizontal will hang in the form of

a parabola.
‘Also prove that the horizontal tension is equal to wl^ where w is the
weight per foot at the bo- tom and / is the semi-Iatus rectum.’

(Lond. R.Sc, Pass, Applif.d Math., 1906, i. 9.)

2. ‘ Demontier qu’une chaine hoinog^ne en equihbie sous I’lnfluence de son
propre poids prendra la foime de la courbe

^

= cosh (a/rt)

‘ Si I’on construit une parabolc ayant metne axe, m^me sommet et m^me
couibuie au sommet, que la chainette, determiner si cette parabole
passe au dessus ou au dessous de la chainette ’

(Lond. B.Sc., Pass, Applied Math., 1906, i. 8 )

3
‘ If any heavy flexible chain, whether uniform or not, is suspended
vertically from two fixed points, show that the tension has everywhere
a constant horizontal component A uniform chain of length 2/ and
weight lY IS suspended from two points, A, B, in the same hoiizontal

line. A load P is now suspended from the middle point of the chain,

and the depth of this point below AB is found to be h. Prove that each
terminal tension is now

(Lond. B.Sc., Pas.s, Mixed Math
, 1904, 11. 4

)

4. Show that the lower part of a catenary is approximately a parabola, and
express the latus rectum of that parabola in terms of the paiameter of

the catenary Prove also that the two curves have the same cuivature

at their common vertex.

5. Prove that to hang in a form of a circular arc a flexible cord must have
at every point a linear density inversely as the square of its depth below
the centre of the circle,

6. Find the law of load per unit horizontal length which, attached to a

flexible cord of negligible weight, bends that cord into a circular arc.
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CHAPTER XVI

ATTRACTIONS AND POTENTIAL

334. Attractions of Two Particles.— Having given any law of

attraction between particles, it is an important problem to deduce
the resultant mutual attraction of any two given bodies in specified

relative positions. Such problems may be based upon any assumed
law of attraction, but as we are so specially concerned with the law

of gravitation, varying inversely as the distance squared (see article

209), we shall here practically limit ourselves to this law of paramount
importance, which is often referred to as the natural law

Consider first the case of two particles of masses m and m' at P
and Q respectively, then dis-

tance apart, PQ=r, being very

great compared with the size of

either particle, and wl very

small compared withw,asshown
in Fig. 143 Then, according

to Newton’s law of universal

gravitation, we have the attrac-

tion proportional to mm'lr^. Or,

introducing the factor y to con-

vert the proportionality into an

equality, we may write for the

attractive forces in question

E= ymfn
'

fr
^

. (i), Fig. 143 Attraction and Field.

where the force on m is in the

direction PQ and that on w' is m the direction QP.
The factor y is called the Newtonian constant of gravitation. Its

numerical value obviously varies with the units m use, and in the c.g.s.

system it is approximately

y=6-7 X 10 ”® (2 ).

The method of deducing this value may be dealt with later. See

article 350.

335 . Gravitational Field.—Referring again to equation (i), we may
note that the force of attraction experienced by the mass ni is the

product of its mass and the factor ym/r^y which accordingly expresses

in some way the magnitude of the influence due to the existence of the

mass at a distance r away. And, if for w' were substituted any other

mass, still the attractive force would be found as the product of the
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factor just referred to and the mass of our nfw particle. We are thus

led to connect this expression ymjr* with the presence of the particle

of mass m at P, a distance PQ=r away from Q. And we may regard

the point Q as temporarily impressed with a certain property to a
certain quantitative degree in virtue of the existence of the particle

of mass m at P. There may not be any gross matter at Q, nor any
force applied there. But, owing to the particle at P, there is such

a specialised state of things at Q that gross matter if there will inevitably

experience the force as defined by equation (i). This conception is

concisely expressed by stating that there exists at Q a gravitationalfield

of magnitude m the direction QP. Thus, field is a vector quantity

like force, for it is the quotient force per unit mass. We may accordingly

wnte for the field/due to m
f—ymir' (3),

while f=zym'lr^ (^a)

similarly expresses the* fieldf due to nl, the r in either case measuring
from the mass in question. It is evident that we may now write (i) for

the force Em the new forms

F=fm'=fm (4)
and (3) for the fields in the new forms

/^FIm',f=Flm (5).

Equations (3) and (3a) expressed the fields due to given particles,

whereas (5) leads us to a more general point of view. For whatever

particles, known or unknown, may be producing the field/at a point Q,
if a particle m' placed there experiences a force Ein virtue of this field,

then that field at Q is measured by the quotient Eltn.

Referring again to equations (i) and (2), we see that the numerical

value of y in any given system of units expresses in that system the

attractive force between unit masses condensed into points at unit

distance apart. But y is not itself a force, being of different dimensions.

Thus, from (i) we have the dimensional equation, in terms of mass
length Z, and time Z,

MLT-^= [y]MnL-\
Whence the dimensions of y are given by

= (6).

Accordingly the Newtonian constant of gravitation is approximately

67 X io“® cc. per gm. per sec. per sec.

Again, from (4) or (5), we see that the dimensions of gravitational

field are given by

[/]=iizzr-*-r-Af=zr-“ . . (7).

In other words, a gravitational field has the dimensions of an
acceleration, as could also have been seen from the definitions of field

and force. Hence we may rightly speak of the acceleration ^ of the

gravitational field in which we live on the earth’s surface.

Also, in the case of the field /at Q due to the particle of mass m at

P, a distance r away, we see that f^ymjr^ expresses the value of the

acceleration which would be experienced by a free particle of any mass
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placed there, the frame reference having its origin at the centre of

mass of the two particles. Or, if the mass m at P is very large in com-
parison with m' at Q, we may then without sensible error take the origin

of the co-ordinate axes at P itself.

Thus, for the acceleration of a stone falling near the earth’s surface,

we may take our origin at the centre of mass of earth and stone, or at

that of the earth simply. If the masses of the two attracting bodies are

comparable, we must take ymjr' to be the acceleration of nl towards
the centre of mass of the two. The mutual or relative acceleration of

the two bodies is the sum of those separate accelerations, and is accord-

ingly given strictly by

(8).

Thus, Ignoring m' in comparison with m is like taking the frame of

reference fixed in the larger body of mass tn. Hence (8) would be
reduced to the usual approximate relation

/=ymlr*=iilr* . » (8a),

where the ft is the factor used in central accelerations (articles 83-91 of

Chapter v.). It is now obvious that we may think of the /either as the

field or as the acceleration of any point defined by the r. As the

magnitude of the field is independent of the direction of r, we see that

it must be a radial one liaving the same value at any point on a sphere

of given radius r about the position P as centre.

We may note from (4) that if the mass m* at Q is unity, then i^is

equal numerically to/ And it is customary to speak of the attraction

at a point on a unit particle and to denote it by .^and its cartesian

components by A, and Z., This convenient practice will be followed

here, but it should be borne in mind that we may sometimes be thinking

of a force F and sometimes of a field or acceleration of the same
numerical value and represented by the same symbol, yet the natures

and dimensions of the two quantities are different.

336 . Filament and Particle : Axial Case.—Let us now consider

the attraction bet;ween a straight filament and a particle of unit mass at

a point either in the direction of the filament or off to one side.

Thus, for the axial case which is specially simple, let the particle be
at P in the line of the filament AB as

shown in Fig. 144.

Let the linear density of the filament

be A. and its ends A and B be distant

from P by a and b respectively, the gravi-

tation constant being denoted by 7.

Then, for an infinitesimal element

of the filament at Q distant r from P,

dF^yXdrjr^^ whence

where Af is the mass of the filament. This initial result is important

since it shows that, in respect of this attraction, the filament is replace-

P A Q B
CL r b

Fig. 144. Axial Attraction
OF Filament.

the attraction is given by
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able not by a particle at its centre of mass, but by a particle at a distance

from P which is the geometric mean of PA aiM PB.
We easily see that if, while A is stationary, the filament is lengthened

by moving B to infinity, the attraction becomes

(2).

337. Filament and Particle : General Case.

—

We pass now to the

second case, in which the particle is at a point P off the line of the

filament AB and at a perpendicular distance,

I p say, as shown by PL in Fig. 145, the

B point P being at the origin of co-ordinates

/ and the filament lying along the line x=^p.

V / Join PA, PB and denote their inclinations

M with the axis of .jc by a and p. Also take

/ ^ PQ inclination 6, another PM
/ making the angle with PQ, and let fall

QN perpendicularly on PM. Then the

^ angle MQN is 0 also. Let the filament as

P ~ P L[ X before have the linear density A, and con-

Fig. 145. Attraction of sider the attraction dE on unit mass at P
Filament off irs Axis. due to the infinitesimal element QM. Then

we have from the figure

(3)-

Taking now the X and Y components of this attraction of the

element QM, we have

dX=idEcos 6 and dY=dFsin d (4).

Hence, on substituting from (3) and integrating, we find

Ar=^J^cos0i/0=^(sin sina) (5)*

and

Y=^r sin 6d0=^(cos a --cos 13) (6).PL P . ,
X /

Let us now denote the resultant attraction by R at an angle with

PX. Then from (5) and (6) we obtain

(7),

and

Thus R is directed along the bisector of the angle APB.
We see from (6) and the figure that the attraction component

parallel to the filament may be written

which may be compared with (i) for the axial attraction.

(9),
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From (7) and (S) we may write at once the values for an infinite

filament extending one dt both ways from A or L to infinity.

Thus, if it extends infinitely both ways from L, a=— 7r/2 and
^=4-^/2. Hence the resultant attraction is

7?'= 2yA/^ (lo)*

338 . Particle and Circular Filament.—Let a circle be described

about P with radius PL, cutting the lines PA and PB at C and D, and
let a filament of linear density A be supposed to occupy the arc CD
Then it is easy to see that the attraction at P of the infinitesimal

element ST of this filament lying between PQ and PM is given by

But this agrees with (3), giving the attraction of the corresponding

element QM of the straight element. Hence we see that the attrac-

tions of corresponding finite lengths of tiie straight and circular

filaments are precisely alike.

Particle and Two Straight Filaments.—For the attraction of two or

more straight filaments on a unit mass at any point, it is evident that

we could find the resultant attraction of each filament and then com-
pound them by vectorial addition for the final resultant.

339 . Mutual Attraction of Collinear Filaments.— Suppose now
that we have two straight filaments lying along the same straight line,

and let it be required to find their mutual attraction We may simplify

the work a little by assuming the attraction of one filament for a particle

along Its axis, as found in article 336 ,
the particle in the present case

is then taken as an element in the

other filament. Thus, let the fila- m ^ a a l
ments be AL and BM of lengths a ^ m— ^

and b and of linear densities A and P P s

/A, the distance AB between their fig. 146. Attraction of Col-
near ends beirtg c; all as shown linear Filaments.

in Fig. 146. Take a point P in BM
distant s from A and from L, and consider the attraction of the

filament AL on the element ds at P. Then, by (i) of article 336, we
may write for this attraction

dF—ya\
fids

Hence, integrating between the prescribed limits, we find

log,

which is seen to be a symmetrical expression of the right dimensions

If either of the filaments becomes infinite by the addition of matter

at the end remote from the other, the attraction is still finite. Thus
for
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(j=co, . . (12),

and for 3=00, {13),

But if the filaments be brought together so that c=o, the attraction

becomes infinite in any of the cases (i la) to (13). On the other hand,
it is seen that the attraction vanishes with a or b, as should be the case.

The problem may be solved directly by a double integral. Tiius

taking the origin at A, let the elements be dr at a distance r in AL and
ds at a distance s from A in BM. 'Fhen we have for the attraction

between the filaments

whence y\fX loge
{6+c){c+a)

as before.

(>4).

Examples—LXVI.

I Explain carefully the expressions —attraction between two particles and
field of one particle What word may be substituted for field m the
second phrase ? How must the axes be chosen for the motions of
particles of comparable masses under their mutual attraction?

2. Show that the attraction of a uniform straight filament for an axial

particle is proportional to the geometric mean of the distances of the
particle from the ends of the filament.

3. Find the attraction of a straight filament of density X per unit length for

a particle not on the direction of the filament.

4. ‘Find the attraction of a thin uniform circular arc whose mass per unit

length is p, upon a particle of unit mass situated at the centre of the
circle.

‘Write down conditions necessary for the equilibiium of a particle

situated at the centre of a circular wire whose mass per unit length at

any point is a given function of the angular distance of the point from a
chosen diameter.’

(Lond. B.Sc., Pass, Applied Math., 1906, ii. 8.)

5. ‘Find the resultant intensity of attraction at the point whose co-ordinates

referred to rectangular axes are (a, d) due to attracting matter of line

density m placed along the co-ordinate axes from x^a to.r=2<?, and
from y— aXoy — lal

(Lond. B.Sc., Pass, Applied Math., 1909, ii. 6.)

6. ‘ Prove that the attraction of a uniform rod AB on any particle B bisects

the angle AFBI *

(Lond. B.Sc, Pass, Applied Math., 1910, ii. 9.)

340. Disc and Particle on Axis.

—

Consider now the attraction of
a thin circular disc of radius a and surface density o- on a particle of

unit mass on the axis of the disc and distant z from its centre. Take
in the disc a ring element of radii rand as shown in Fig. 147,
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and consider first an element Q in the ring subtending the angle dO at
its centre. Then the of this element is dr{rdO), its mass o- times
this, and the attraction on unit mass at P
equals «

B

Obviously, the resultant attraction of / ^
the disc will be axial

;
so we may take at / ^ \

once the axial component, ignoring the /
perpendicular components which will an- * X
nul each other. Passing also from the
element at Q to the complete ring, we

^

have for its attraction

dF=i — -vff-
^

.
Fig 147. Disc and Parficlk.

Hence, from the whole disc, we find
•

(TtSp =—7-(- -

p__'zyM(
a* \ .Jz^+a'r

where J/is the mass of the disc.

Thus, if z is very small compared with a, we obtain the result so

important m electrostatic theory :

—

F=^ — 2Try(r (16).

We see from (15) that this result is obtained whether z vanishes or
a becomes infinite

341. Two Coaxial Discs.—Let us now suppose a particle placed
on the common axis of a pair of coaxial discs with the planes conse-
quently parallel. Let one disc and the distance of the particle from it

be as in article 340, the other being characterised by accented letters.

Then froili (i5)*we see that the attraction on unit particle between the
discs may be expressed as follows :

—

Or if, as may occur in the electrical case, we have cr'= — <r,

and z'==Zy then

08)-

And when, in addition, z is very small compared with a, this
becomes

A'=-47ryo-

842 . Disc and Coaxial Filament.—From equation (15) of article

340 we may easily pass to the attraction between a disc and a fila-

ment along the axis. Thus, let the filament BC, Fig. 147, have length
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b and linear density A., and be placed with its near end distant c from
the centre of the disc O. Then, we must replace the unit mass at P
by \dz^ that of the element of the filament, and integrate from c to

b-{-c. Hence (15) gives

and

I
• • (20)-

7^= — 27rya-A}3— 'J(b "Y
= — 27ry(rA{BC--AB + CA}

Thus if f=o, C coincides with O, and we have

jr— ^ 2'Try(jX(b—- J b"^ d)\
or A’=-27ryaA(BO-AB+ AO)j

‘ ’

If we introduce the masses M and m for the disc and filament

respectively, we have for the general case

^=_£Ii^(BC-AB+CA) (22).
a o

(21).

343 . Cylinder and Coaxial Particle.—Refeiring again to equation

(15) of article 340, we see that on writing pdz instead of cr, we may
interpret it as referring to the attraction between a slice of thickness

dz in a cylinder of radius a and density /> and a coaxial particle of

unit mass. And, if the cylinder has length b and the particle is

distant c from the centre of the near base, we have then to integrate

between the limits c and b-Yc to sum the effects of all the slices

composing the cylinder. Hence

dF=

-

2.y

and

= — 27ryp(b— ^(b+cy-i-a’^-Y . . .(23).

Thus, if ^ vanishes, the particle being at the centre of an end
of the cylinder, we have

jF= - zTvyp(b—‘ A-
( 24 )*

Again, if b, the length of the cylinder, is infinite, (23) reduces to

L'=- 27ryp(^^‘-f-a^--c) (25).

Of course, if we wish, the mass JL of the cylinder may be intro-

duced. The expression in the general case is then

— s/ib-h^y+a^’h . . .(25^0

344, Thin Spherical Shell and Particle.^—Let the spherical shell

have radius a and surface density o-, the particle P being of unit mass
1 See art 353 for Gauss’ Theorem, which affords an alternative method for this

symmeti ical case.
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and distant ^ from O, the centre of the shell. Take any point Q on the

shell, the plane OPQ beTfhg that shown in Fig. 148. And at Q let there

be a small mass dm of the shell. Its attraction on unit mass at P is

then ydmjr^ where r denotes the distance QP. But it is obvious from

symmetry that the resultant at-

traction between the shell and ^

the particle will be along PO.
We may accordingly consider / y
the component in this direction / \
simply. It IS derived from the

j
\

former expression by the factor I Q MJ C
cos QPO, and this is MP/QP \ J
or (C'—a cos ^)/^, where 6 is the \ /
angle POQ. N.

Take now as our element of ^ ^

the shell a ring with OP as axis p.c riruLKu-AL Shet.i, and
and passing through Q. 1 hen • Par 1 icle

Its radius is a sin 6 and its

width add. Hence, corniiining the above considerations, we have as

the axial attraction of this ring on the unit mass at P

dF= — y ^ ^ ^

But we have here, so far, the two variables 6 and r We accord-

ingly eliminate 6 by aid of the relation which holds for the triangle

OPQ, viz.

^ 2ca cos B.

P'rom this we have, by transposition,

a cos c^=—! (2),

and may derive, by differentiation,

2rdr—2ca sin BdB^

so that a ^\x\B dO—rdrjc (3).

Now, substituting (2) and (3) in (i), we obtain

.... (4).

345 . Case I. Particle Outside.—Before integrating this equation we
must decide wheie the particle i*s to be. We take first the case where
It is outside the shell, as shown m Fig. 148. We then find for

the attraction required

VTracr.
^ M

- ^
(4rr)--r7-

where M is the mass of the shell, which accordingly has for an ex-
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ternal particle the same attraction as though its whole mass were
concentrated at its centre O.

'

Case 11. Particle Inside .—For the particle inside, the inferior limit

of integration changes sign. VVe thus have

<«
That is, no attraction is experienced by a particle within a uniform

spherical shell of material attracting according to the law of -the

inverse square of the distance.

Case III. Particle on Shell.—We consider finally the case of a

particle on the outer surface of the shell. Here c—a, and the limits of

integration are o and 2 <2 ; but if we attempt to integrate (4) with these

inserted, a difficulty is experienced with respect to the term {c’^ — a^)IP.

It appears at first sight to be zero. But this is not the case where r is

very small near the lower limit of integration. Perhaps the simplest

method is to write firsts for c the sum a-\-h^ and then finally make
h vanish The limits of integration are accordingly h and 2^2+/^, and
we have from (4)

__ yirairr 2ahr\^^^

V r JA

= --y47rrtV/<;^ when h vanishes.

„ J/ yM
Thus F=-y~f=—^r= —W®’ • • • (7).

Or, the law for the outside region holds good up to and including the

surface of the shell itself

In article 359 will be found an alternative method for obtaining

these fields from the potential. This, though
apparently lacking directness, is quicker for

this particular problem.

346. Sudden Change of Field through a

Shell is 47rycr.—In article 340, equation (16),

we saw that the attraction on unit mass near

the centre of a large disc is ZTryo-, where <t

is the surface density of attracting matter in

the disc. Hence the sudden change in the

field on passing through the disc is from plus

to minus the above, t e. the change is \Trya.

Again, in article 345 we saw by equations (6)

and (7) that the attraction is zero inside a

spherical shell and 47ry(r just on it or infinitely

near it outside. Thus in this case also the

sudden change on passing through the shell

is, as before, 4^70-. These are only special ex-

amples of a general case, as may be seen, thus:

—

Fig. 149. Sudden
Change of Field
THROUGH Shell.
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Consider a portiorj^of a very thin shell of gravitating matter and
the fields F and Gat very near points P and Q (Fig. 149) just opposite

each other to the left and right of the shell. Take in the shell a disc-

like portion AB whose diameter is large^ compared with the distances

of P and Q from its centre, but small compared with the rest of the

shell. Then each of the fields at P and Q may be regarded as made
up of the two terms, R due to the portion of the shell beyond the disc

AB, andN due to the disc AB. The former term R is practically the

same in magnitude and direction for P and Q. Whereas the latter

if called positive at P, is negative at Q, its magnitude remaining

unchanged while its direction is reversed on passing through the disc.

But A^ as seen in article 340, equation (6), is 27ryo-. Hence the change
of field on passing through the shell from one to the other of the

infinitely near points P and Q on opposite sides of it is

G=-^+ 27ryo-— (i?— 27rycr)= 47ryo- , , , (8),
•r

Examples

—

LXVI I.

1. Obtain the attraction of a thin circular disc for a particle on the axis.

What does this become for an infinite diameter?
2. Pass from the attraction of a disc for a particle to the cases of

(I) a disc and an axial filament, and
(II) a cylinder and an axial particle.

3. Prove that the attraction of a thin uniform spherical shell for an external

particle is equal to that of the shell condensed to its centre

4. Show that on passing through a thin shell of surface density <r there is a
sudden change in the field of 4»ry(r, where y is the gravitation

constant.

5.
‘ Show by any method that the attraction of an infinite uniform plane
stratum of matter is the same at all points external to it.

‘ How could this result have been predicted from the theory of “dimen-
sions ” ?

’

(Lond. B.Sc., Pass, Applied Math., 1905, ii. 8.)

6. ‘Prove that the attraction of a thin uniform circular disc upon a particle

of unit mass situated on its axis at a distance z from the disc is

2Tryp[i - sj where a is the radius of the disc, p its mass per unit

of area, and y is the gravitation constant’

(Lond. B.Sc., Pass, Applied Math , 1906, ii 10, ist part

)

7. ‘Find the attraction at any point, internal or external, due to an infinite

uniform layer of matter of thickness 2a and density p, bounded by
parallel plane faces.

‘ Show that ifN be the normal attraction of such a distribution, and s be
measured perpendicular to the layer, dNjdz is discontinuous at the

interface of this layer.

‘ Show that, in the case of an infinitely thin plan®, layer of uniform surface

density, N itself is discontinuous as we pass through this layer.’

(Lond. B Sc, Pass, Applhd Math., 1910, 11. 7.)

8. ‘A hole, bounded by the circle r~a^ is cut m a uniform lamina of

surface density <r whose edge is the curve prove that the

attraction at the origin is rrycr, where y is the constant of gravitation.

‘ Prove that if the edge of the lamina is r-^B\ and the edge of the hole

r^cf{6\ where c is a constant, the attraction at the origin is zero.’

(Lond. B Sc, Pass, Applied Math., 1908, ii 10.)
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347 . Solid Sphere and Thick Shells.^— may easily pass from
the attraction of a thin shell to that of a thick one bounded by
concentric spheres, for unit mass at^^oints outside, in the substance of

the shell itself, or within the cavity. Let the external and internal

radii of the shell be a and d respectively and the distance of the

particle of unit mass from the shell’s centre be c, also let the shell have
density p and total mass M,

Case I. Particle Outside —Then when oa^ the particle being at the

outside of all the thin concentric shells of which we may regard the

thick shell built up, each shell is replaceable by ns mass at the centre

(equation (5), article 345). Hence the field is given by

F=-yMlc' (9),

which clearly holds also for a solid sphere.

Case II. Paiticlein Cavity .—Here and the particle is inside

every one of the thin shells which build up the thick one. Hence the

field is zero, for each sucVi shell produces no field in its cavity (equa-

tion (6), article 345), or

Case III. Particle in Substance of Shell,—Here we have a>c>b.
We must accordingly divide the thin shells into two sets :—(i) those

whose radii exceed c^ which clearly contribute nothing to the field, and

(11) those whose radii do not exceed Cy and which may be replaced by
their masses at the centre (equation (5), article 345).

Thus we find, for the field in question,

-^= - ( 1

1

)•

Case IV Field in Solid Sphere —On putting <5= o and in (i i),

we pass to the field at any point in the substance of a solid sphere,

which is accordingly r- ^ / xF=-^vypr (i2),

or Fexr. To make this applicable to the earth, supposed solid and
homogeneous, on the surface of which at radius P the field is we

( 13 ).

Hence (12) may be written

F=-grfF (14).

Of course,
.f,

r, and P must be expressed in terms of the same
system of units to give incorrectly in any system

348 . Graphical Eepresentation of Fields.—It is often very desir-

able to represent lieltfs graphically, their intensities being plotted as

ordinates and the distances of the points as abscissae. In other words,

the distance of the point P from the centre of shell or sphere is

plotted as x and the corresponding value of the field as y Figs. 150
and 15 1 show the fields in this way for the thin spherical shell and solid

sphere. Since the field is to the left when the distance is to the right,

the ordinates are always negative when the abscissae are positive. The
student may with advantage draw other fields for himself, preferably

1 Art 332 and the principle of symmetry afford a useful alternative method.
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using squared paper or\ which to plot to sc^le. Fig. 150 gives an
interesting academic example of a discontinuity in the field. This
discontinuity would not, however, occur m nature, for the shell to have

Yl

+« X

Fig. 150. Field of Thin Shell. Fig 151. Ftrtd of Solid Sphere

a sensible value of the surface density a- would really need an appreci-

able thickness also. And in this thickness the change of field ^Trya-

would occur without actual discontinuity.

349. Field in Eccentric Spherical Cavity.— Consider now a homo-
geneous sphere of radius a and density p
with an eccentric spherical cavity of radius

and let it be required to find the field at

any point in the cavity. Let the centre of

the sphere be S, that of the cavity C, and
consider the field at P (Fig. 152). Regard
the eccentric shell as built up of a complete
sphere of radius a and density p, and a
second sphere of radius b and density

minus p, their centres being at S and C
respectively. Then the field at P has com-
ponents in the directions PS and CP due 1^2. Field in Kccen-
lo these component spheres and expressed trig Spherical Cavity.

1 y
* ’ — F’rypSP and -|a7(-p)CP.

Hence these components may be represented to scale by PS and CP
and their resultant E by PF parallel and equal to CS. Thus we have
for the field at P

^=-i^ypSC ( is ).

And since this value is independent of the co-ordinates of P, it applies

to any point in the cavity whose field is consequently uniform
throughout.

350. Newtonian Constant of Gravitation.—For detailed accounts

of the determination of the Newtonian constant of gravitation the

reader is referred to physical text-books. It may, however, be remarked
here that many of the methods consist essentially in finding the attrac-

tion between given bodies at a specified distance apart in teims of the

weight of a standard body or unit. For this determination Professor

C. V. Boys used a special torsion balance. Professor J. H. Poyntmg
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used a special form of the ordinary beam balance, as did also Drs. F.

Richarz and Krigar-Menzel. Suppose by any method it is found that

the force of attraction between masses M and m a distance r apart

equals the weight of a mass n. Then we have

F^yMmjr^^ng (i).

But, if the earth be taken as a nearly homogeneous sphere of radius

E and mean density A, we have (by equation (13) of article 347)

gz=* lT
‘i/Mi (2).

Thus, by division, we find the density m terms of measurable
quantities ;

—

«
The value of the Newtonian constant may be found from (i) or (2)

provided g is known from experiments with the pendulum or by other

means. Thus from (i)'^or (2)

(4)-

The values found for 7 and A by the investigators referred t*o are

given in Table xiii.

Table XIII. Gravitation Constant and Earth’s Density.

Investigator,
Newtonian Constant.

7 in c,g.s. units.

Earth’s Mean Density.
A in gm /cc.

C. V. Boys . . . 6*6576 X io“® 5 527

J. H. Poynting . 6 6984 X 10" ** 5'4934
Richarz and I

Krigar-MenzelJ
6'685 X io‘

*

5*505

Examples—LXVIII.

1. Find the fields inside and outside a solid sphere of homogeneous material,

and plot them as graphs.

2. Show that the field is uniform in an eccentric spherical cavity of a
homogeneous sphere

3.
‘ Prove that the attraction exerted at any external point by a homogeneous
solid sphere of gravitating matter is the same as that which would be
exerted by a partcle of equal mass situated at the centre. Find the
law of attraction in the interior of the sphere.

* Show that, if a smooth straight tunnel could be cut between any two
places on the earth’s surface, it would be traversed by a particle,

starting from rest and influenced only by gravity, in about 42^
minutes.’

(Lond. B.Sc., Pass, Applied Math., 1907, ii. 8.)

4. ‘ Prove that the gravitational force within a uniform solid sphere vanes
, directly as the distance from the centre.
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‘A uniform solid sphere cf mass M is cut in two by a diametral plane ;

show that the resultant attraction between the halves is

16

where a is the radius of the sphere and y the constant of gravitation.'

(Lond B.Sc., Pass, Applied Math., 1908, 11. 9.)

5. ‘ If the volume density of a sphere varies uniformly from zero at the centre
to 2p at the surface, show that the intensity of its attraction at a point
of its surface is half as great again as that of a sphere of the same radius
whose volume density is uniformly equal to p.'

(Lond. B.Sc., Pass, Applied Math., 1909, ii. 7.)

351. Solid Angles, Lines and Tubes of Force.—Let ABODE
(Fig. 153) be any closed figure, curved or polygonal, plane or not, and
let lines be drawn through each point of the closed figure to any other
point O. Then these lines form a cone, and the closed figure is said

to subtend at O a solid or conical angle, which we will denote by w.

To define it quantitatively, describe about O as centre a sphere of

radius r intersecting the conical surface at nbcdcy and let the area of the

spherical surface thus enclosed be S. Then
o>=.S/r* (i)

is the relation which defines the magnitude of the solid angle. It is

easily seen, as in the case of a plane angle, that cu is independent of r

for a given cone.

If there is a particle of gross matter of mass m at O in Fig. 153, it

is obvious that the generating

lines of the cone in question, or

of any Qone with vertex at O,
would be directions along which

are directed the forces ol attrac-

tion of m for any other particles

lying on those generating lines.

And even if the other pai tides

are not present to experience that

attraction, we can still think of

the field round w, and describe

It by drawing these lines and
specifying the intensity of the

field yw/r® at a number of points. Fig. 153. Solid Angle.
Accordingly the lines in question

might be suitably called lines of the field. They are, however, usually

called, with less appropriateness, lines offeree.

If we take an infinite number of such lines sidb by side, say those

which practically constitute the conical surface between ABCDE and
abede (Fig. 153), we then have what is usually called a tube offeree.

Here again tube of thefield would be a better phrase.

Now each line of the field has at each point the direction of the

attraction experienced by a small particle placed there, and the wall

of the tube is composed of these lines. Hence no attraction crosses

the wall of such a tube from inside to outside or vice versa,

y
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Consider now the field a distance r from a particle of mass m.

It is given by
F=ymjt^ (2),

which accordingly expresses the field at the spherical surface in Fig.

153. Let us now take the product, field into area, for a portion of

the spherical surface, say that contained by the cone. Then this

product is FS\ or, substituting from (i) and (2) the values of and
we have

FS—ynm (3),

which is a constant for the given cone of solid angle to with the mass m
at its vertex O, independent of the distance r from O. Thus, if we
describe another sphere about O with radius Y, the field there being

F' and surface enclosed by the cone S\ we should have the product of

the same numerical value as before. But if we were taking the pro-

duct, field into area, positive when entering this frustum of a cone, we
should have to give th& two products for its bases opposite signs. And
we have seen before that no field crosses the sides of a tube of force.

Accordingly for the whole product entering such a tube of force we
have

FS^FS^o (4).

If we drew the bases of the frustum obiique^ making an angle 6 say

with the spherical surface, then an equation like (4) would still hold if

we took the component of the field normal to the new surface. For
obviously this component would be the true field multiplied by cos

and the new surface would be the corresponding portion of spherical

surface divided by cos 0, Hence (4) holds for any surfaces provided

the Fs always mean components normal to those surfaces.

It is easy to give to these relations a graphical aspect. For, since

the product FS remains constant for the cross section of a tube of

force. It is evident that we may represent the intensity of a field at

any section by the number per unit area of continuous lines drawn
through it. Thus the product FS will then be the total number of

such lines in the tube, which by their continuity remains throughout a

constant quantity, as required by equation (3). Hence, these lines may
pass continuously from a given mass without annihilation or creation

in space devoid of ponderable matter.

Another and perhaps better plan of graphic representation is to

imagine the tube of force divided into a number of smaller tubes lying

side by side, such that the cross section of any such small tube shall

have its value of FS equal to unity. Such tubes may be called unit

tubes.

If, for our conical tube of force round a mass w, we take the whole

external space, we must write for w the value 47r. Hence, for all the

lines or unit tubes from a mass we have by (3)

FS=^7rym (5).

If our field is due to two or more particles the lines of force and
tubes of force will usually be curved, but the above relations still hold,

as.will be seen presently.
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352 . Gauss' Theorem.-y—The important theorem given by Gauss in

1839 tie stated as follows (see Routh's Statics, ii. p. 52, 1902):

—

* Let S be any closed surface, and letM be the sum of the attracting

masses which lie within the surface, M* the masses outside. Let dS
be any element of area of this surface, F the normal component
at this element of the attraction of the whole mass both internal and
external. Then shall

\^FdS=±i.irM,

where the integration extends over the whole surface of S and the upper
or lower sign is taken according as i^is estimated positive or negative
when the normal force acts inwards.’

In the above enunciation the units of force, length, and mass are
supposed to be such as make the Newtonian constant of gravitation

unity. Thus y does not appear. If we write the equation on the
understanding that ordinary units are employed, then y appears on
the right side. If also we take F positive inwards, the above equation
becomes

FdS=4vyM (6).

This theorem may be easily established by reference to Fig. 154
and use of the equations (3), (4), and (5).

For consider first at O' outside the surface S any particle m' of the
total M* outside. And draw from O' a small cone cutting the sur-

face .S at A'B'C'I)'. Then by

(3) and (4) the products FdS
at A' and B' annul each other,

as do also the other pair of values

at C' and D'. And it is evident

that any cone from an outside

point O' will intersect any such

closed surface in an even number
of places. *Hence no such cone

with vertex outside S can con-

tribute anything to the final sum
expressed by the left side of (6).

Second, consider a mass m
at the point O inside the closed surface S, and draw from it a

small cone cutting the surface at ABCD. Also describe round O
and inside the surface S a sphere cutting this cone at a and b.

Then, here again, we see by (4) that the surfeces CD will con-

tribute nothing to the sum required, for they give products of equal

numerical value and opposite signs. But the surfaces at A and B will

contribute something to the integral sought, for they each give positive

products of the same value as expressed by (3). And, when we have

taken all possible cones with vertices at O so as to embrace the whole

closed surface 5, we shall also have included the whole of the sphere

ah subtending at O the solid angle 4ir. Hence, by (3) or (5), we s^e

Fig. 154. Gauss’ Theorem.
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that the particle m at O contributes to the reguired integral the product,

which we may write

j/IS=4nym (7),

wheref refers to the field due to m only. Thus, when we sum m to

obtain the total internal mass f becomes and we have

jFdS-^vyM (8),

as was required to be shown.
From this result it follows that for any tube of force, straight or

curved, containing no masses, the sum or normal flux/FdS is zero for

the whole surface of the tube. But since there is no F through the

sidts of the tube, we have for the ends FS-\‘F

S

' as was obtained
simply in (4).

We may further nc^ice that, if a mass m" is situated at an ordinary

point on the surface itself (say at K, Fig. 153), then the whole surface

S subtends at this point the solid angle 2n. Hence for such a particle

the total value of the integral would be 27ryw". Thus for a mass M"
consisting of particles on the surface at ordinary points, we should have
generally •

jFdS=‘ 27tym’ (9).

This applies only to particles at points like K which may be touched
by single tangent planes. At internal or external conoidal cusps
resembling dimples or spikes, as L and N, the above value would
obviously be modified, and might range anywhere between the extreme
values of ^Trym and zero.

Calling the left sides of (6), (7), (8), and (9) the Gauss integral, we
may summarise the results of this article thus :

—

The Gauss integral for a closed surface receives no contribution

from masses outside it, and has the value 47ry times the total mass in-

side it. Particles on the surface itself contribute to the integral the

value 2iry times their mass if at points of the surface each of which may
be touched by a single tangent plane, but a larger or smaller value if

situated at the vertex of an internal or external conoidal cusp. We
sometimes for brevity use the termflux instead of Gauss* integral.

853 . Potential Introduced.^—^As we have already seen, the gravi-

tational field in any region may be specified by stating its magnitude
and direction at a sufficient number of points. It may also be re-

presented graphically by unit lines or unit tubes, the closeness of these

lines or tubes per unit area being directly as the intensity of the field.

Further, if at a certain point P the field has a magnitude F and a
given direction, then the component of the field in any other direction

inclined 0 to the lines of the field at P is clearly given byF cos since

the field is a vector quantity. Hence, the field being specified by its

^ For symbolic definitions of potential, if desired at the outset, see Equations (xi) and
(la)ofart 355.
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magnitude and direction, ^we can find the components of the field in

any other directions whatever.

All the foregoing may be illustrated by a possible method of indi-

cating the slopes of a hilly district on a map. Thus we might state, for

each of a number of points on the map, the direction of the steepest

slope there and its gradient (analogous to the direction of the field and its

magnitude). And from these supposed details on the map we could then

deduce the gradient in any other direction at any one of these points.

But, instead of carrying out on maps this idea (like our specification

of a field), an entirely different method is generally taken to present

quantitatively the features of the hills and valleys. Thus, we usually

have the height above sea-level stated for a number of points, and often

series of lines are shown, each point of any one line denoting the same
height above sea-level. These are called contour lines^ and are given

on many ordnance and tourist maps, sometimes with the intervening

bands in special colours. Then, the heights beipg known, the gradient

in any direction is inferred as the rate of change of height per unit

horizontal distance in that direction. Here, then, there is substituted a

scalar quantity, height above sea-level, in place of the vector quantity,

steepest gradient. A distinct advantage in simplicity results from this

method of describing or specifying the region, and very little dis-

advantage, if any, is entailed in consequence. For each point requires

only the magnitude of the scalar quantity to be given, whereas both
magnitude and direction are needed for a vector quantity. And, as to

the readiness of using the map, it is practically as easy to read the

gradients in any direction from the heights and their distances apart

as it would be from the steepest gradients if shown.
A like advantage is often obtained in the theory of gravitational

fields, if instead of specifying them as heretofore we state for each

point a scalar quantity called the potential, whose rate of change in any
direction gives the corresponding field component. The maximum rate

of change of the potential at any given point gives by its direction and
magnitude the lines and intensity of the field at that point.

This pofentialj from which the gravitational field is derived, is often

called the Newtonian potential to distinguish it from the electric or

magnetic potentials from which the corresponding fields are in like

manner derived.

854, Potential and Field.—Let F denote the potential at any
point P, and let X, V, and Z be the field components parallel to the

axes of co-ordinates. Then, by the relations between them, we have

dx^ dy dz
' . (I).

In any direction defined by the co-ordinate s (see Fig. 155) the field

F is given by

(2).

The resultant R of X, Y, and Z gives the field, or the direction and
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magnitude of maximum space rate of change of V. Thus, we have the

field given by

(3)

stating its magnitude, and the following set of direction cosines

X/X, Y/X, Z/X (4)
defining its direction.

If we denote by r the co-ordinate along the direction of E, we may
write

dr (5)

If we suppose the direction cosines of the co-ordinate i to be

Fig. 155. Potential and Fields.

/, w, n referred to the axes of x,y^ z, and the angle it makes with that

of r to be 0
,
we have by projecting E upon s

E^EcosO (6),

But also by projecting upon s the Xy K, Z components of Ey we
obtain

E=^X/-i-Vm-YZn (7).

Hence the right sides of (6) and (7) should agree. This is easily

seen to be the case if we write the usual expression for the cosine oi

ROF. Thus, from (4),

cos^=^/'i-^w+^» (8),

so that the two expressions for E in (6) and (7) are seen to be
identical.

355. Potential and Work.—We have hitherto written for the field

E, as derived from the potential dVjds simply, without regard as to

whether the positive or negative sign was appropriate. This question

must now be examined. We see trom (i) that change of potential

equals field multiplied by distance. If we place a particle in the field

it experiences a force. So the passage of a particle from one potential

to another involves the product force multiplied by distance. Accord-

ingly such a passage involves work. Thus, if we have the signs rightly

arranged, a body must have work done on it to pass to a higher

potentialy and then possesses the exact equivalent of that work in its

potential energy. To secure this convention of signs, the potential and
potential energy must increase when the motion is against the field.

That IS, when the force exerted on the body is —Emy where E is the
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field and m the mass of the body moved in it. Thus, we must have
for the increment of worltf done on the body

d l'V=md —Rm)dr\ . .

or R^-dVjdr f W
And, if the field R is due to a mass Mat distance r, we have

(10).

Thus, by (10) in (9),

Mdr dW . ,^^=r-:x-=— (”).

and we may well note here that the equality of the first and last quanti-

ties in (ii) forms the basis of the definition of potential in elementar\

electrical theory.

Now let the zero value of V be arbitrarily chosen to correspond to

the infinite distance from the mass M to which it is due. Then we
may integrate (ii) between the limits as follows:

—

r—£?
Whence V=>—yMjr (12).

Thus we see by (9) and (12) that, with these conventions for

mutually attracting material, the field is the rate of decrease of the

potential, and that the potential is itself negative for all finite values of

the radius r.

But as mutual repulsions also have to be dealt with in electro-

statics and magnetism, it is customary in mechanics to calculate the

numerical values of field and potential without inserting the negative

signs in either of the relations shown in (9) and (12). Hence, in the

following working of the potentials and fields for various cases, we
shall usually regard them as expressed by

V=yMlr (13),

and F^dV:ds (14),

the appropriate signs being aftei wards inserted if required.

But, jn plotting curves for V and F, the correct relations are

observed in this work (see Figs. 160 and 161 of article 361).

It may be noted here that, if the velocities of two attracting bodies

are derived from their loss of potential energy in approaching each

other, then the velocities of each body with respect to the centre of
mass of the two bodies will be so determined. The kinetic energy of

either body as found from its velocity relative to the other will not

necessarily equal the loss of potential energy of the system by the

mutual approach of its parts.

The forms of (13) and (14) suggest some •other expressions for

potential and change of potential. Thus, from (13), we see that if the

potential at a point P is due to various masses Wj, etc., distant

rj, r,, etc., from P, then we may write

(«s).^

For obviously, each element of the potential contributed by any

quotient w//*, being a scalar, they all add arithmetically. If, however,
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the mass is continuously distributed with a density p at the distance r
from P, then

^=7
/j

gives the resulting potential, the integration extending over the whole
volume occupied by the matter in question. One of the forms, (15)
and (16), is the basis of any calculation of the potential produced by
specified masses.

Another view of potential difference, viz. the line integral of the

fields is suggested by (14). Thus, transforming it, integrating between
I and s along the path taken in the field, and calling the two potentials

r and V, we find

y-V'=j''dV=j'^Fd'; (17).

In this equation F is the field component along the cut ve s,

856 . Equipotential Surfaces.—We have already seen that the re-

sultant field R has the direction and magnitude of the maximum rate

of change (or gradient) of the potential. And further, that the value

F oi the field inclined at an angle ^ to is cos 6 . Hence at right

angles to R the field vanishes. Thus, since the potential difference is

the line integral of the field, there can be no potential difference if we
move in any direction at right angles to the resultant field at the place.

By moving in such a manner we should describe an equipotential

surface. And it is evident that a region in which gravitational or

other attractions are experienced may be graphically represented by
plotting the field lines or tubes and the sections of the equipotential

surfaces. Thus, for a single particle, the field lines or lines of force

are radial and equally distributed, the tubes of force are of equal

conical form with a common vertex at the particle, and the equi-

potential surfaces are concentric spheres. I’hey may be drawn to

represent a common difference of potential by use of equation (13).!

Examples—LXIX.

1. Explain what you mean by lines and tubes of force, and how a field

may be specified in terms of them.
2. Defining potential as that function of the co-ordinates whose space rate

of change is the field, prove that the difference of potential at two points

is the quotient W\m^ where W is the work done on a particle of mass m
as it passes from one of those points to the other.

1 Potential ofStraight Filament.—For the uniform filament SS', of length / and linear

density X, let it be required to find the potential at any point P distant rand r' respectively

from the ends S and S'. Then, by art 337, the direction of thefield at P bisects the angle

SPS', so It IS the normal at P to the ellipse through P whose foci are S and S'. Hence,

fior Ihe filament SS', this ellipse is the equipotential line through P for the plane SPS'.

Let fys produced meet this ellipse at A. Then the potential at P equals that at A, and
rAs'

this last is readily found by use of (15) of art. 355. Thus, Vr> = Va=7X I ^=7X log

AS
r+r'+Z
r+K-7
ellipses by

It is obvious that the equipotential surfaces are ellipsoids derived from the

revolution about SS'.
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3. ‘ Define the terms tube offorce and equipotential surface. Prove that

m a field of force du4 to gravitating matter systems of tubes of force

and of equipotential surfaces can be drawn, such that at any point of

free space the force vanes inversely as the cross section of the tubes,

and also inversely as the distance between consecutive surfaces.

^Will these properties be affected if the attraction does not follow the

Newtonian law?*
(Lond. B.Sc., Pass, Applied Math., 1905, ii. 7.)

4. ‘ Show that, if the law of attraction be that of the inverse square, the sui -

face integral of normal attraction over any closed surface =4777 (mass
inside), where y is the constant of gravitation.*

(Lond. B.Sc., Pass, Applied Math., 1907, ii. 10.)

5.
‘ Define equipotential surfaces, lines of force, tube of force. Show that if

F be the force intensity along any tube of force, or the cross section of

the tube, then /^<r= constant along the tube of force.’

(Lond. B.Sc., Pass, Applied Math., 1908, ii. 8.)

6. ‘ Define the potential of a given distribution of matter at a point external

to the attracting masses. Show how from the value of the potential

to deduce the attraction in any direction at a^given point.’

(Lond. B.Sc, Pass, Applied Math., 1906, ii. 9.)

7. ‘ Define gravitation potential, and show that the component of attraction

in any direction is the corresponding space gradient of potential.*

(Lond. B.Sc., Pass, Applied Math., 1907, ii. 7.)

357 . Laplace’s and Poisson's Theorems.—These theorems enable

us from a knowledge of the potential at and near a point to determine
the density of any of the

matter there.

To establish them sim^

ply by use of Gauss^ theorem
(article 352), consider an in-

finitesimal parallelepiped at

the origin of co-ordinates

and of edges dx^ dy, dz as

shown in Fig. 156, and take

for its bounding surface the

total flux, or oum of pro-

ducts, normal field into area.

Let Vi be the mean poten-

tial at the face in the yz plane,

be written Vi-^{dVldx)dx,

Fig. 156. Laplace’s and Poisson’s
Theorems.

Then that at the opposite face may
Then, differentiating these expressions

with respect to x to obtain the normal fields, and taking their differ-

ence since one is in and the other out, we have

dV^,d(dV\. dVr d^V, •
,

Thus, multiplying by dy^ dz, the area of either of the pair of faces at

right angles to the x axis, we see that they contribute to the required

flux the quantity
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The other two pairs of faces contribute corresponding terms, and
so give for the total normal flux required, all bver the parallelepiped,
the symmetrical expression

• • • • (* 9).

But, by Gauss’ theorem, we already know that this flux may be
expressed in terms of the matter in the volume enclosed by the
surface S (see equation (8) of article 352).

Firsts suppose that this infinitesimal parallelepiped contains none
of the gross matter to which this potential is due. The above sum is

accordingly zero. This leads to Laplace's Theorem^ which is then
expressed by

Second
, suppose that there is gross matter of density p within the

parallelepiped and to which the potential is wholly or partly due. Its

mass is therefore pdxdydz, and, by Gauss’ theorem, equation (19),
then gives

d^F,d*Y.d^y . .

+
which expresses Poisson's Theorem,

In accordance with the convention of signs here adopted, the right
side of (21) is positive. In using the theorem for an electric field, we

have F^—dVIds, and the right side

2 is negative,

358. Axial Potential of Disc,
P
^ —Consider now the potential V at

\ a point P distant z along the axis

\ from the centre of a disc of radius a^ and surface density cr. Take, as the
infinitesimal element, a ring of radius

^ V r and width dr passing through Q as
shown in Fig. 157. Now, for each

Fig. 157. Axial Potential of Q ^.nd

Disc. subtending the angle dQ at O, the con-
tribution to the potential at P is

simply (mass~-PQ), and all such parts add arithmetically. Hence for

the whole ring element we may write the mathematical expression for

this and integrate between the appropriate limits.

Whence F= 27ryo'( —a') .... (i).

From this, by differentiating with respect to z, we obtain the Z
component of the field, i.e. the field along the axis of the disc.

y dY / 2 \ .=—
. (*).
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It may be seen thaj this agrees with the value found directly for the

field and given in equation (15) of article 340.
Having the potential of a disc at any point on its axis, we could

apply this to the potential at a fixed point P contributed by any thin shce
of a cylinder of finite length, and so pass to the potential for the whole
cylinder and then to its field. But for this particular problem the

field is obtained more readily by the direct method, whereas in the case
of the spherical shell it is rather quicker to obtain the potential first

and then derive the field.

359 . Potential of Spheri-

cal Shell.^— Let us now calcu-

late the potential of any point

P due to a thin spherical shell

of radius a and surface density

<r. Let the centre of the shell

be distant c from P, and con-

sider the infinitesimal ring, ele-

ment QML, where PQ=rand
the angle POQ= ^, all as shown
in Fig. 158.

Then the radius of this ring

is a sin its width adO^ and the

distance of each part of it from P is r simply. Thus its contribution

to the potential at P is expressed by

dV'=sy27r(a sin 0)(ad0)crlr=:27rya^(rsin dddir (3).

But we have here two variables B and r, one of which we must
eliminate by the properties of the triangle POQ. Thus

r’= -fa* -- 2ca cos 9,

which, on differentiating, yields

rdr=:casm 9 dO (4).
• •

Using this, (3) reduces to

dV=^27ryaa-drle (5).

The treatment now falls under three heads according to the

position of P.

Case I. Point outside Shell—Integrating (5) between the appropriate

limits we have

y_ g”-ya(r

c i-,x C •(
^

where M\s the mass of the shell and <'=OP. Thus the potential is the

same as for the given mass collected at its centre O.

Fig. 158. Potential of SniERicAL
Shell.

1 The principle of symmetry and the Theorem of Gauss [Eqn. (6) art. 352] furnish a
useful alternative meihod. Thus, for any exteinal point at distance r from the centre of

a spherical shell or solid sphere of mass M, the field F\s given by f/^<f5=/^4irr®=4T7A/,

or But, by (14) of art. 355, F^dVldr

,

whence V~yM\r numerically.
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Case IL Point on Shell,—Again integrating (5) with the limits

required, we find

^ ^a A a a

where M is the mass of the shell and a its radius.

Case III. Point inside Shell,—Using again the correct limits in (5)
and integrating, we have

y- - 4»rya<rc_
e L, ( a

showing that the potential is constant throughout the interior.

Field outside Shell.—Writing in (6) x for and differentiating with

respect to x^ we find for the corresponding radial field

dx
as in (5) of article 341.

The Field inside the Shell is seen from (8) to be zero, because the

potential shows no variation inside the shell.

360 . Potential of Solid Sphere.—Let it be required to find the

potential at any point of a
solid sphere of radius a

and uniform volume den-

sity p.

Case I, Point outside

Sphere or on Surface .

—

First, let the point be P
outside the sphere as shown
in Fig. 159, and denote
OP by X.

Then since each thin

shell of which we may re-

gard the sphere ac com-
Fio. 159. Potential of Solid Sphere. posed is inside P, its contri-

bution to the potential at

P is as though the mass of the shell were concentrated at the centre O
of the sphere. Thus the potential at P is given by

V=y^rra*plx=^yMlx ( 10).

The corresponding radial field outside is

yM
L dx x^

'

And the above relations obviously hold when P moves up to and
coincides with the outer surface of the sphere.

Ca^e II. Point inside Sphere.—Now lake the point Q inside the

sphere at distance r from its centre O. Then all the shells whose
radii do not exceed r may be replaced by their masses at the centre

O, thus giving a contribution to the potential at Q expressed by

y^TiPpIr. We have next to consider the shells external to Q of radius
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y say. Each of thes§ gives to the potential at Q a contribution

expressed by (mass~j/). Hence for the entire potential at Q we find

Tr A 3d!*— r* ,,3«*— ^*

Thus, on differentiating, we find for the radial field inside

j. dV
^ yMr

(m).

(13)-

Further, we may note from (12) that the potential at the surface of

the sphere is to that at the centre as 2 : 3, the values being yMfa and
3yJ//2a respectively.

361* Graphic Be-

presentation of Fields

and Potentials. — We
now give as illustrations

of the relation between

field, potential, and dis-

tance their graphic re-

presentation for the two
important cases of a

spherical shell and a

solid sphere in Figs. 160

and 16 1 respectively.

The distances from the

centre are plotted as

abscissae, the poten-

tial and field as ordinates. The curves for the field are in full lines

marked F and the potentials in broken lines marked V. The
potential and field are each

plotted of the appropriate sign

which make potentialcorrespond

to potential energy, the zero

value of potential being at in-

finity.

The student may make simi-

lar diagrams for other cases, say

a thick spherical shell. The
work of plotting is reduced if

squared {taper is used.

The discontinuity shown in

the field for the spherical shell

is only an ideal case, and would not occur with any real material shell,

but would be there replaced by a line connecting the maximum field

just outside the shell to the zero field inside.

Fig. 161. Potential and Field for
Solid Sphere.

Fig. 160. Potential and Field for
Spherical Shell.
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Examples

—

LXX.

1. Establish Laplace’s and Poisson’s theorems as to the space rates of
change of field at places unoccupied and occupied by gravitating matter.

2. Find the axial potential of a thin circular disc, and from it derive the field.

3. Find both for external and internal points the potential due to uniform
distribution of gravitating matter in an infinitely thin layer on a spherical
surface.

4. ‘ Show that the mean value of the potential over a sphei ical surface, due
to matter outside the sphere, is equal to the potential of this matter at

the centre of the sphere.
‘ How IS the mean value affected by matter inside the sphere ?’

(Lond. B Sc., Pass, Applied Math., 1905, ii. 10.)

5. * State Gauss’ theorem of the surface integral of normal force.

‘ Find the attraction of an infinite solid circular cylinder at an external

point.’

(Lond. B Sc
,
Pas.s, Applied Math

, 1909, ii. 9.)

6. ‘Find the potential of a uniform circular ring at a point on its axis.

*Af B are the ends of the axis of a straight uniform thin tube of circular

section and mass m per unit length : a, |3 are points on the correspond-
ing edges

;
is a point on BA produced.

‘ Prove that the potential at P is

ym log {{PB + P^)I{PA + Pa)}
;

and show that if a particle, starting from rest at A^ moves under the

attraction of the tube, it will arrive at the middle point O oi A

B

with

velocity equal to

sj[2ym log {{OA -P Oa)yAa(AB + A^)}] ’

(Lond B Sc, Pass, Applied Math, 1908, 11. ii.)

7. ‘ Two similar spheres of radius a are placed with their centres at a distance

4a apart
,

find the time they take to come into contact under their

mutual attraction.’

(Lond. B.Sc., Pass, Applied Math
, 1909, ii. 8

)
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CHAPTER XVII

PLANE STATICS OF RIGID BODIES

362 . Kesultant of Parallel Forces.—Suppose we have two parallel

forces F and Q applied at the points A and B in a rigid body, and let it

be required to find their resultant. Since the body is supposed rigid

we can without change apply

to the system at A and B two
opposite forces each equal to

F and acting along AB as

shown in Fig. 162. Then, com-
pounding F and the F acting

at A, also Q and the F acting

at B, we obtain AP' and BQ'
respectively. These we may
produce to meet in a point

O. Then at O we may resolve

AP' into OFi parallel to the F
applied at B and a force equal

to F and parallel to its orig-

inal direction, viz. along OC.
Similarly, BQ' may be resolved

at O into OF3, equal and op-

posite to OFi, and a force Q
along OC. Hence OFj and
OF3 annul eacft other, and we
are left with a force equal to

F-\- Q along OC. We may accordingly write for the magnitude of the

resultant

(t).

For its point of application C we have by the geometry of the figure

CA/OC=i7/’and BC/OC=^/(2.

Thus P.CA=KOC=Q.^C,
P Q R • ,

BC~CA“AB W-

Since the body to which F and Q are applied is supposed to be
rigid, the resultant R may be regarded as applied at any point of the

body in the line OCR.
The figure has been drawn for F and Q in the same direction, that

is, egch may be reckoned positive. If they are in opposite directions

Fig. 162. Resultant of Parallel
Forces.
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one may be reckoned positive and the other negative. Then R has the

magnitude of their algebraic sum or numerical difference, and one of the

segments BC or CA exceeds the length of the line AB, thus showing
that C falls on AB produced.

To picture easily the resultant in any case, it is well to recall

the set of three parallel forces

in equilibrium as shown by

and S in Fig. 163, and related

in magnitude and position like

Q, and R just dealt with.

Then, the resultant of any two

of these three is obtained by re-

versing the direction of the thirds

leaving its magnitude and line

of action unchanged. Thus, the

resultant of AP and CS is BQ".

Having seen how to deter-

mine the resultant of two par-

allel forces it is clear that, by repetition of the process, that of any
number could be found. Thus, for forces Px^ Ptt P%x etc., the resultant

has magnitude

(3).

And if moments be taken about any point from which the perpendiculars

on the forces and resultant are respectively /j, /„ etc., and r, we
may find from (2) that

Rr--'^Pp (4).

363. Couples.—Suppose we consider two parallel forces of equal

magnitude acting in opposite directions. By equation (i) the magni-

tude of their resultant disappears, and by (2) BC and CA are each
infinite but of undetermined sign. In other words, we have here a

system which refuses to reduce to a single force as its resultant, and the

system in question must be treated as an entity in analj^sis which may
be defined and described as follows :

—

Definitions.—A pair of forces numerically equal and acting in

opposite directions along parallel lines is called a couple.

The plane containing these localised forces is the plane of the

couple.

Any line perpendicular to this plane may be regarded as the axis of

the couple.

The product, either force into perpendicular distance between their

lines of action, is called the moment of the couple.

This product, since its factors are perpendicular vectors, is itself a
vector perpendicular to both component vectors, and hence parallel to,

or along, the axis of the couple. For the only direction characterising

the plane containing the factors of the moment is the normal to that

plane, along which the vector representing the moment accordingly

lies.

The moment of a couple may thus be represented graphically#to

Fig. 163. Parallel Fcprces in
Equilibrium.
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scale by a suitable lengtl; measured in the right direction along its axis.

We shall here follow the right-handed system and take the positive

direction along the axis related to the positive direction of rotation due
to the couple as that of advance to rotation in a right-handed screw.

Thus, if a couple tend to produce a counter-clockwise rotation in the

plane of this paper, it would be represented by a line of suitable length

drawn perpendicularly to the paper towards the reader.

The reason for defining as above the moment of a couple lies in the

fact that this is the value of the algebraic sum of the moments of the

two forces about any axis perpendicular to their plane.

Thus, if the forces are P and —Py their perpendicular distance

apart py and we consider their moments about any point O, whose
perpendicular distance from the nearer force —/’is r, then the sum
of the moments about O is

^Pr^P(r^p)=.Pp (5 ).

This accordingly is the magnitude of the vector to be drawn along

the axis in the direction as described to represent the couple. We can
then compound any couples by the addition of vectors in the usual

way.

364. Resultant of Coplanar Forces.—Let us now find the resultant

of a system of any number of coplanar forces acting in different

directions at various points of a rigid body.

Let the forces P^ P^y etc ,
act at points Ai(jri, 71), hji^x^y j,), etc

,

and have components parallel

to the co-ordinate axes denoted y P
by X and Yy with subscripts ^ f ^
corresponding to the forces. /
Then, taking the component
Xy^y we may, as shown in Fig.

164, introduce two other op- / ' )

posite forces Xy_ and X' at the / v '
‘ )

origin pai'allel to the original
\

/ S
component and each of the ) I

same magnitude as ATj. This xT X
is legitimate, because the body
is supposed rigid. Then we
have the force OX, at the origin Y'v
and also the couple formed yig. 164. Reduction of Coplanar
by AiXi and OX', which is Forces.

ofmoment (— AxVi). »

Similarly, we may introduce forces Fi and Y at the origin in

opposite directions, but each of the magnitude of Vt at Ai, and parallel

to Its line of action. Then we obtain the force Yi at the origin and
the couple formed of AiYj and OY', which is of moment (-f- YiXy).

Proceeding in like manner with the remaining forces, and summing
by algebraic addition the three sets of vectors so obtained, we find for

the whole system :

—

z

Fig. 164. Reduction of Coplanar
Forces.
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Forces along OX=SX= 6^ say . (i).

Forces along OY=2 K= F' say ... .
. (2).

Moments in the plane XOY

=

2
( Vx--Xy)= G say (3)

The moments of the couples are reckoned positive when they tend

to turn OX towards OY, and they are then denoted as vectors by the

positive direction along OZ.
The forces evidently yield a resultant R applied at O and acting at

an angle 0 with OX, which may be expressed by

(4),

and ta.n 6=: lljll (5).

If the forces Pj, etc
,
act at angles ai, a„ etc., with OX, we

evidently have

Xi= Pi co^tti and Vi = Pi sin a,, etc. ... (6)

In the case where U= F=o, then R vanishes, and the resultant is

the couple 6^, whose mopient is, of course, the same about any point in

the plane XOY On the other

hand, G may vanish, and the

resultant of the system reduce

to R simply.

But when both R and G are

finite a further reduction to a

single force is possible.

Thus, referring to Fig. 165,
let G— Rr^ and draw for the two
i?’s representing the couple G
the forces ORi and O'R', where

O Ri IS opposite toO R, and there-

fore cancels it. There is thus

Fig 165 System reduced to Single left as the final resultant of the
Force. system O'R', equal and parallel

to OR, their perpendicular

distance apart being given by

OK=r=6^/i? "...
(7).

365. Change of Axes.—Suppose the axes of co-ordinates to move
parallel to themselves till the new origin is at (a^b\ then by (i) to (5)
we see that R is unchanged, but that G changes to G' where

G^l.{Y{x--a)--X(y^b)\^G-{ya-‘Ub) . . (8).

If, on the other hand, the origin is retained while the axes are

rotated through any angle, ^ say, then neither R nor G suffers any
change. •-

This is easily seen on reference to Fig. 164. For this shows that

AiPj is replaced by the force applied at the origin together with

moments about the origin which are equivalent to Pxpx^ where px is the

perpendicular from the origin on to AjP, produced if necessary.

Hence neither the force nor the moment in question is altered by any

rotation of the axes. And since this holds for the first typical force, it

holds for every other and for their combined effects. This mode of
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regarding the matter ^as also the advantage of bringing into view
another aspect of the resultant force and couple R and G, For
evidently R is the vector sum of the jPs and G is the algebraic sum of

the products Pp Or

G=:Pp,-\-P,p,-\-Pzp^+^ . . ^Rr
Let us now revert to the final reduction of R and 6r, when both are

finite, to a parallel R at distance r from its original position. Then we
see from (8) that for a new origin making G'=o, we have

G:=Va--Ub . .(10),

in which equations (i) to (7) hold. Hence, substituting for a and b the

current co-ordinates x and^ and dividing through by we find as the

equation of the line on which the origin must he to make the couple
vanish

tan r sec ^ , (ii).

But this is the line KO'R' of Fig. 165, thus leading to the single

resultant O'R' already found, which is thus definite except for the point

of application O' on the line. This may be anywhere in the body
since It is considered rigid.

366. Poinsot's Analogy between Statics and Kinematics.

—

Several analogies between statics and kinematics have been pointed
out by Poinsot. The following interesting one may be noted here.

Referring to article 94, we see that

(i) In Plane KtnemaitcSy a linear displacement ds of a point A in

a rigid body and an angular displacement dO about A are together

equivalent to an equal angular displacement alone, but about a point

distant dsjdd from A in a direction perpendicular to both ds and the

axis of dB.

Referring now to articles 364-365, we have

{2) In Plane Statics^ a force R and a couple G are together equi

valent to an equal force R alone, but shifted a distance GjR from its

original’ line of action in a direction perpendicular both to R and
to the axis of G.

It is particularly noteworthy that, in the kinematical case, the com-
bination of linear and angular displacements reduce to an equal angi4lar

resultant shifted parallel to itself. Whereas in the statical analogue the

combination of force and couple concerned respectively with linear and
angular accelerations reduce to an equal force shifted parallel to itself.

Thus the analogy presents a cross connection which is somewhat
startling. »

Yet it is easy by a single dynamical illustration to link up these

apparently conflicting kinematical and statical propositions.

For, let the motion, first considered kinematically, be that of a rigid

body of appreciable mass.

Then, by the theorem of the independence of translation and rota-

tion (article 269, etc \ we may fitly reduce the whole coplanar motion

to the linear velocity v of the centre of mass and the angular velocity
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0) of the body about an axis through the centre^ of mass. But, for the

instant, these further reduce to an equal angular velocity (o alone about
a parallel axis shifted through v/m. Again, the linear and angular

momenta corresponding to v and w may be equated to the impulse and
impulsive couple competent to produce them, each to each. And these

linear and angular impulses have as factors a force and couple respec-

tively which we may denote by E and G and then further reduce to an
equal force E alone shifted a distance G/E. Hence this new force

corresponds to an impulse which could produce the whole motion
originally contemplated. Thus the entire momentum of the body may
be represented by E (that of the whole mass at the centre of mass and
moving at its speed) together with Ho, the angular momentum of the

actual body about an axis through the centre of mass. But, for some
purposes, the entire momentum may be further reduced to P alone

shifted parallel to itself through a distance H^jP,
Further, the shifted or^ instantaneous axis of rotation in the kinema-

tical case and the shifted line of action of linear momentum in the

dynamical case are, for the body in question, an axis of rotation and
the corresponding line of percussion.

307 . Conditions of Eanilibrium—If we consider the state of a

rigid body capable of any motions parallel to a given plane, XOY say,

it IS easy to see that the possible motions are three in number, viz

the translations parallel to OX and OY and the rotation in the

plane XOY.
Hence the conditions of equilibrium of such a body given initially

at rest are, no accelerations m any of the above ways. Thus, consider-

ing that force equals mass into linear acceleration and couple equals

moment of inertia into angular acceleiation, we have as the required

Conditions of Equilibrium

2Ar=o. 2F=o (i),

and 2(Fr-^)=o=2^ (2).

Equations (i) may be called the equations of resolution and (2) the

equation of moments. ' ’

A little consideration will show that in the equations (i) the axes

need not be at right angles. For in order that there should be

equilibrium both R and G must vanish since they cannot balance each

other. But if one of the axes, x say, were taken by chance perpendi-

cular to E, so that 2^ vanishes though E were finite, then any diiection

of not parallel to x would furnish a finite value for 2 K
Thus, the additional vanishing of 2 F oblique to the axis of x would

show that E was zero. ,

As to the couple C?, though its value varies for different positions of

the origin when E does not vanish
;

its value is the same for any origin

when E does vanish. Hence the vanishing of G with respect to any

origin is sufficient.

We may thus put the conditions of equilibrium of a rigid body
under forces in one plane as follows :

—

The sums of the component forces parallel to each of any two
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inclined axes in the ^lane of the forces must vanish, and also the

algebraic sum of the moments of all the forces about any one point

must vanish.

We easily see from the foregoing that if three forces in a plane

maintain a rigid body in equilibrium, their directions either meet in

a point or are all parallel. For if two of their directions meet in a

point, then the moments of these two about that point vanish Hence
for G—o with this point as origin the other force must pass through
the same point.

368 . Alternative Conditions for Equilibrium.— Suppose now it is

known that for three different points (ci, (flg, ^2), and the

algebraic sums of the moments of the coplanar forces vanish. Then
by equation (10) we have

II

I!

1
1

[ (3)>

and G^Va,-^Ub,\1

where G is the moment about the origin.

Whence, on eliminating G^ we may write

[ (4).and V{a,-a,)=U{b,-b,)
J

So that either
— b^

(5).

or, K=o . (6).

But (5) expresses the condition that the three points (^2^a)>

and shall he on one straight line. So, unless this is fulfilled, (6)

must be satisfied, in which case, by (3), G also vanishes
;
or

U=F:=G=o (7).

Thus, if the algebraic sums of the moments of a system of coplanar

forces on a rigid body vanish with respect to three points in the plane

not in a straight line, that system is in equilibrium.

» •

Examples—LXXI.

1. Sketch a set of three parallel forces in equilibrium, indicating the relation

between their magnitudes and positions and showing also what con-

struction gives the resultant of any pair of the forces.

2. Explain fully what you understand by a couple^ and show how it may be
represented by a line, and thus facilitate the composition of coplanar
couples.

3. Reduce any set of coplanar forces to a single force and a single couple.

What may the system reduce to in certain caoes ?

4. How are the resultant force and couple of question 3 affected by a change
of axes ?

5. Enunciate one of Poinsot’s analogies between statics and kinematics.

6. Give two forms of the conditions for equilibrium of a rigid body in

circumstances allowing motions in a given plane, and establish one of

these forms.

7. Show that any system of coplanar forces may be reduced to two forces if

not to one, and indicate the conditions of each case.
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8, * Show that a system of forces acting m one plane on a rigid body can be
reduced to a single force or to a couple. •

'‘ABC IS an equilateral triangle and P is the foot of the perpendicular
from C oxi A

B

Find in magnitude and line of action the resultant of

the following forces :

—

‘ 10 acting from to 8 from ^ to C, 12 from A to C, and 6 from C to P.*

(Lonb. B.Sc., Pass, Applied Math., 1905, i. i.)

9w ‘ Show that any number of couples acting simultaneously on a ngid body
can be replaced by a single couple.

‘ (The proof may be confined to the case of couples all acting in the same
plane.)

'ABC IS a triangular plate
;
A', B', C are respectively the middle points

of CA^ AB
\
forces represented in magnitude and sense by % A B^

k.BC^ k.CA^ XB'A', XA'C'y and XC'B keep the plate m equilibrium ;

what IS the relation between k and X?*
(Lond. B.Sc., Pass, Applied Math., 1907, i i

)

10 ‘ Show that a system of coplanar forces may be reduced to two com-
ponents along chosen axes at right angles to one another together with

a couple in the plane oithe axes.
‘ The algebraical sums of the moments of a system of coplanar forces

about points whose co-ordinates are (i, o), (o, 2), and (2, 3) referred to

rectangular axes are G^y G^y G^ respectively
; find the tangent of the

angle the direction of the resultant forces makes with the axis of xJ'

(Lond. B.Sc., Pass, Applied Math
, 1908, i. i.)

11. ‘Show that a system of forces in one plane is in ,equilibrium if its

moment, about three points of the plane not lying in a straight line,

IS zero.

‘The moments of a system offerees about two points Ay B are P and Q
respectively. Construct a point in the line of action of their resultant.’

(Lond. B Sc., Pass, Applied Math., 1909, i. 1

)

12. *ABCD is a square lamina which is acted upon by forces of 5 units along
BAy 3 units along BDy 7 units along DCy and by a couple of moment
Za in the sense ABCDy where la is the length of a side of the square.

Find the equation of the line of action of the resultant ot the system
referred to AB, AD as axes of co ordinates ’

(Lond. B.Sc, Pass, Applied Math., 1910, i. i.)

369. Determination of Centroids.— T he conception of a centroid

was introduced in article 25^', was used a little in Chapter xiiL, but

must now be more fully dealt with and its positions calculated for some
typical cases.

As before stated, the term centroid may be applied to the centre of

a number of points, to the centre of given lines, surfaces, or volumes,

or to the centre of any scalar quantity distributed discretely or con-

tinuously in space.

We are here particularly concerned with the centroid in its use or

application as the centre of mass or centre of inertia
;
often referred to

as the centre of gravity. But it should be noted that every distribution

of mass has a single definite centre of mass fixed relatively to that

distribution ;
whereas, strictly speaking, it is the exception for bodies

to have a true, single, fixed centre of gravity, when they are large enough
with respect to the distance of the attracting body to make the attractions

of their separate particles sensibly inclined.

Bodies that have this exceptional property are called centrobaric.
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Homogeneous spheres afford an example of this class, as we saw in the

sixteenth chapter on attractions.

Of course, any small body, commonly used in experiments on the

earth, has its centre of gravity then practically fixed at its centre of

mass. But the two conceptions are entirely distinct. See, e.g., equation

(i) of article 336 and the remark following it.

It is the centroid that we usually find in what follows, whether of

particles supposed condensed at points, or material condensed into

lines or surfaces, or material distributed in solid space. If we
abstract the idea of the associated matter, we have the centroid of

the given points, lines, surfaces, or volumes. If we keep the notion

of the matter in the foreground, we may then fitly speak of the centre

of mass. If the body is small, the forces of gravity on its particles,

though vectofs instead of scalars^ may be regarded as parallel and
hence the single invariable point found as the centroid may be taken

as representing with sufficient accuracy the really movable point which

is the true centre of gravity.

The working rule for finding the centroid may be quoted here from

article 25^.

_ 'Imx _ Swv _ , V

(i).

From this it may easily be seen that if the centroids of certain

portions of the system are known, then, for the centroid of the whole,

each such portion may be replaced by its magnitude at its centroid.

Hence, we may sometimes easily find the centroid of the whole from
those of its parts. To formally prove this, let the ^s have the

subscripts I and 2 to distinguish two parts of the system. Then,
finding the centroid for the whole from its two parts, we have

or
_ ^mx
^=2;r’

as found from the direct treatment of

the whole* system and given in equation (i).

Before passing to the use of integration for centroids we notice a

few simple cases which may be solved more quickly by other methods.

370. Elementary Examples of Centroids.

Three Equal Masses at the Corners ofa Triangle .—Take the origin of

co-ordinates at one corner and the axis ofy parallel to the opposite side.

Then the co-ordinates of the masses may be written (o, o), (tj, b\ and
(<z, c\ and each mass denoted by m. Hence by .(i) we have

Thus the centroid is two-thirds along any median from the vertex,

which agrees with the result found by taking first the centroid of

two masses and supposing the doubled mass to be concentrated there.

Hence we see that the three medians intersect at one point.
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Four Equal Masses at the Corners of a Tetrahedron.—Following

the analogy of the previous case, we see that the centroid of the four

masses must be at threefourtks from any vertex along the line to the

centroid of the corresponding base Another way to regard the matter

is to take the centroid of one pair of masses at the middle of the edge
joining them, then similarly the centroid of the other pair at the middle

of the opposite edge. Thus the centroid required will be found by

bisecting the line joining these two middle points of edges. But
as the tetrahedron has six edges, three such lines may be drawn.

Obviously therefore they bisect one another, which is another geometri-

cal property derived from the conception of the centroid.

Sides of Triangle—Consider the sides of a triangle as though they

were very thin uniform wires or filaments, and let it be required to find

the centroid of this ideal triangular framework. Clearly we may
replace each side by a mass proportional to its length and placed at

the centre of the side. The co-ordinates of the centroid may then be

readily found by the Usual relations or by simple geometrical con-

siderations. Take the latter method first. Hence, in the triangle

ABC shown in Fig. 166, we
first replace each side by a

particle at its middle point

and of equivalent mass, t.e.

proportional to the length of

that side. We thus obtain

particles at D, E, and F of

masses proportional to a^ r,

the sides of ABC, but these

are proportional to the sides

EF, FD, and DE. Hence,
to find on DE say the

centroid of the particles

at D and E, we must divide it

inversely as the masses of

those partioles, jvhich is

directly as the sides FD and
FE Hence, according to

the well-known theorem, we must bisect the angle DFE in FG^,.
Similarly to find gx on EF, we must bisect the angle FDE by DG^i.
Thus, the intersection G of these two bisectors is the centroid re-

quired. In other words, it is the centre of the circle inscribed in

DEF, the triangle whose corners are the middle points of the sides

of the original triangle.

Taking now the afialytical method, let us denote the points A, B,

and C by the co-ordinates (o, o), {h^ k\ and (^, k-^d) in accordance

with Fig. 166. Then we easily find for the co-ordinates x^y of the

centroid G
^sx^h{2a-\-b-Yc) \
^sy=k{2a^b\‘c)-\‘a{(i-\-b)j

' *

2s=ia-\-b-{-c, the sum of the sides.

Fig. 166 Centroid of Triangular
Frame.

(3).

where
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371 . Surface of a Triangle.—Take any triangle, as ABC in

Fig. 167, and draw two ificdians AD and BE intersecting at G. Then
G is the required centroid, for each median bisects all elements of

the triangle parallel to the corresponding base, and therefore contains

the centroid of the whole surface. By construction and similar

triangles, we have

CB CA"”AB~AG“ 2 -

Whence AG=f of AD .... .... (4).

Volume of a Tetrahedron —Let ABCD in Fig 168 represent the

tetrahedron, and take in it the plane

CDE through the edge CD and the

middle point E of the opposite edge
AB Then by symmetry this plane

must contain the centroid sought

Take in CE and DE the centroids

F and G of the faces ABC and
DBA

;
join CG and DF intersecting

at H. Then since by symmetry CG
passes through the centroids of all slices

parallel to ABD, it contains the cen-

troid of the tetrahedron Similarly,

so does DF. Accordingly their intersection H is the centroid re-

quired. Join FG, then we have, by construction and similar triangles,

the following equal ratios :

—

EF_EG_FG_FH^
EC“ED~CD""HD

Whence DH=fDF (5).

Cone or Pyramid,—We thus see

that for a tetrahedron, a cone, or any
p>ramid, if we draw the line DF from
the apex D to the centroid F of the

base, then the centroid of the whole
volume is H where DH= JDF.

372. Frustum of a Pyramid.

—

As shown in Fig. 169, let the vertex

of the completed pyramid be O, A and
B being the centroid of larger and
smaller ends respectively. Let F and
G be respectively the centroids of the

whole completed pyramid and of the

small pyramid needed for the com-
pletion. Let OA=a and OB and
OH=i where II is the required cen-

troid of the frustum. Then the

volumes of the large whole pyramid and small completing one stre

D

Fig. 168. Centroid of a
Tetuahedron.

P'lG. 167. Centroid of a
Triangle
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to each other as and Thus by the relation (2) of article 369
we may write *

OF.a*=OG +On(a^-
or =

Whence ^=|^3^^=OH . (6).

Of course, this may be cancelled down somewhat or other expressions

substituted if desired, but this has the advantage of compactness when
reckoning from the apex of the completed pyramid as origin.

Fig. 169. Centroid of a
Frustum.

Fig 170. Centroid of Pierced
Circle.

373. Difference of two Simple Figures.—As a further illustration

of the principle just used, let us now determine the centroid of the

difference of any two simple figures. Thus take the figure left when

a circle is cut from a larger circle as shown in Fig. 170.

We may write the equations of the circles =<2* and {x—by
where a<^{b-\-c). Then writing x for the abscissa of G, the

centroid of the remaining surface of the pierced circle, we have

irc^b+ 7r(<z*— = o.

Qf course, ^aao.
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Obviously the same method may be applied to any figures formed
from ellipses, squares, trian|[les, or other combinations of simple figures.

Examples

—

LXXII.

1. Distinguish between centroid^ centre of mass, and centre of ^avity, giv-

ing as illustrations figures or bodies m which these three points are not
all coincident.

2. Calculate the position of the centre of mass of four equal masses at the

corners of a tetrahedron, and from this establish a geometrical property
of the figure

3 Establish the positions of the centroids of the surface of a triangle and
the volume of a pyramid.

4 Obtain the centroid of a frustum of a pyiamid in any form and reduce
It to the form, distance from centroid of larger base of area A towards
the centroid of the smaller base of area B is

Jl ^
4 A-v -J'aS-¥B ’ *

where h is the height of the frustum. Show also that the distance of the
centroid from the smaller base is the above fraction altered by the

transference of the coefficient 3 fiom the B to the A in the numerator.

5. A homogeneous cube has a pyramid cut off by a plane passing through
the three corners of the cube adjacent to that original corner of the

cube which forms the vertex of the pyramid. Show that the centroid

of the remaining poition of the cube is on a diagonal and one-twentieth

of Its length from its centre.

6. * A uniform square plate is cut in two along a straight line joining a
corner to the middle point of a side. Prove that the mass centre of

the larger portion coincides with that of foui particles of masses 4, 6,

5, 3 situated at the corners of the original squaie.’

(Lond. B.Sc., Pass, Applied Math., 1906, i. i.)

7. ‘A triangular plate ABC of uniform thickness rests horizontally on
three vertical props at A, B, and C ;

show that the pressures on the

props are equal’
(Lond B Sc., Pass, Applied Math

, 1907, 1. 2 )

8. ‘A square hooxd ABCD rests with its plane perpendicular to the plane
of a smooth vertical wall, one corner A of the boaid being in contact

with the*wall, and another corner B tied by a string, equal in length to

a side of the square, to a point in the wall. Draw carefully a diagram
showing the position of equilibrium of the board, and show that the

distances of the corners B, C, D from the wall are in the ratio i 4 3.’

(Lond B.Sc., Pass, Applh-d Math., 1908, i. 2.)

9. ‘An equilateral triangular lamina ABC rests in equilibrium in a vertical

plane with its sides AB, AC m contact with two smooth pegs in the

same hoiizontal line at a distance a apart. Piove that if AD, the per-

pendicular from A on BC, is not vertical it must make an angle B with

the vertical where cos d=s^ ^3/6^ and h is the lengfcli of AD.^
(Lond. B.Sc., Pass, Applied Math., 1910, i. 2.)

374. Centroids by Integration.—We commence this section of

the subject by the treatment of lines, passing afterwards to surfaces

and then to volumes
Circular Arc.—Consider first a circular arc AB of radius a and

subtending at the centre O of the circle the angle 2/?. Take the axis

of X through C, the middle of the arc, the origin being at O, as show^j
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in Fig. 17 1. Let the infinitesimal element PQ, subtending at O the

angle dO, be defined bv the co-ordinates^,^ 6f P and the angle COP=^.
Then for P, x==acosOj and m is represented by YQ=:adO, Thus,
applying the usual expression for the centroid G, we have

^ asmB chord . v

or x=a
I cos OdO-^al d0~—77-^= radius . (i).
J-p J.p p arc

That this may be put in the convenient form added in words is

Fig. 17 1. Centroid of Circuiar Arc.

easily seen It is also clear that G is rather nearer to C than to D, the

intersection of the chord with OC.
Obviously j?=o.

375 . The Oatenary—Taking the directrix as the axis of x and
the axis of the curve as that of the catenary is expressed by

cosh and sinh (;r/i:) . . . (i).

Thus ds= cosh (xIc)dx (2).

Hence for a portion s the working rule gives for the abscissa

X— f xds-=r f ds,

Jo Jo

or sx=
j
X cosh {xfc)dx=cj xd{smh(x/c)}

Hence
and

= [xc sinh {xlc)^-^ cosh {x/c)]^

=^irsinh {xlc)—d cosh {xlc)-{-£*.

sx=:xs~-^y+d

x=:x—c{y--c)ls . . (3)-

For the ordinate, the rule gives similarly

sy=
j
yds=c

j
cosh^(xl^)dx
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—-L 2 >re-'^<‘)dx
4 /o

4 L * 2

-TV ' )+T-
cx

2 2 *

or, j>=iiy+(x/s) (4).

For any other curve the difficulty is only that of finding the

expressions in terms of x for ds^ the element of length.

376. Centroids of Surfaces.—Passing now to the centroids of

surfaces, we begin with plane surfaces, taking first of all a

Circular Sector.—Let the origin of co-ordmaies be at the centre of

the circle of radius <7, the axis of x bisecting the sector of angle so

that y=o as shown in Fig. 172. Take as element the concentric

Fig. 172. Centroid of Sector.

circular strip PQ of radius x and width dx. Then its centroid g is

distant (jt sin /?)//? from O and its area is 2pxdx, Thus by the

ordinary working rule we have for the abscissa of the centroid of

the sector

f
^zPxdx-^ I 2pxdXy

Jo H Jo

Whence
sin/3 a* sin/3

o chord ,

.

= 2. X radius.

Another mode of arriving at the same result is to take as elemente
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triangles with their common vertices

portions of the arc ACB. Then the

Fig. 173. Centroid of Segment of
A Circle.

tegration for the segment being

working rule, we find

at O a/id their bases infinitesimal

r centroids lie along a concentric

arc between OA and OB and
of radius two-thirds that of the

circle. Hence the centroid of

the sector is that of this circular

arc, and so is (chord/arc) X f
radius, agreeing with that stated

above.

377. Segment of a Circle.

—

Let us now find the centroid G
of the segment ACBD subtend-

ing an angle of the circle of

radius a, as shown in Fig. 173.

In the segment take the ele-

ment PQ parallel to the base

ADB, and let the axis of x
bisect the segment in DC so

that jp=o. Let the abscissa of

P and Q be the width of the

strip dx, and denote by Q the

angle XOP. Then we have
a:=^cos 6

y
dx=. '-a sin B dBy and

PQ=2a sm By the limits of in-

? and B—o. Hence, applying the

sm^B cos BdB-.— 2a^
j

sin^BdB

= sin^Bd(sin B)-i-

—

^^?~ dB

So, finally, we obtain as the abscissa of the centroid

- o sin*^

p—smpcosp
(2).

As an alternative method we may derive the above value by con-

sidering the sector«OACB as made up of the triangle OAB and the

segment ADBC. Thus for the respective areas and abscissae of

centroids we have *

Areas

Sector.

Abscissae =

Triangle.

a* sin p cos p.

OF=|«cos/5.

Segment.

a^(p— sin P cos p).

OG=x.
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Thus, applying the relation for the area and abscissae of parts and
the whole, we have

= sin/?cos jSfdfcos ^+a*(/?--sin
j
3 cos/i?)x.

Whence
sin /3(i--cos’/?)__o sin‘/8 . v

sin^cosyS) sin^^cos^

as found before in (2).

As checks on the results of the present and preceding article we
may note that for a semicircle, which may be regarded either as a
sector or a segment, for which /?=7r/2, both (i) and (2) reduce to

x=i4al^Tr. For /3= o or very small we easily find for the sector

as should be the case. But for the very small segment where obviously

X approaches a in value, the right side of (2) becomes indeterminate of

he form 0/0. So here, applying the method of the differential calculus,

we must repeatedly differentiate the numerator and denominator, after

each such differentiation putting j8=o to test if the quotient is then

determinate. Thus, if the trigonometrical part of (2) is written

we find

So that

m_ sm»/?

4>(I3) 13 ~sm 13 cos P

/'"(P)_6 cos*/3— 21 sin*^cos ft

4COS*/?— 4Sin“^
'

Then on inserting this value on the right side of (2) we find that

for jS=o, x=aj as should be the case.

Another way of evaluating the indeterminate form is, of course,

available by expanding the functions in terms of p. Thus we may

as found before.

378. Parallel Portion of any Plane Area.—Let us now derive

general formulae for the centroid of a portion of a "plane area cut off by
the axis of x and two parallel ordinates, the fourth boundary being any
curve expressed by>'=y(.r) say, as shown by K^ba in Fig 174.

Take in the area any infinitesimal element bounded by
ordinates at x and x-k-dx. Then the area of this strip is ydx, and its

centroid is, in the limit, given by x and^'/a, where >• is the value ofpP
found from the equation of the curve AB. Hence, considering the area

in question as made up of these strips, and applying the usual relation.



368 ANAL YTICAL MECHANICS [arts. 379-380

we find for the co-ordinates of the centroid the following formulae, in

which a and b are the limiting abscissae Oa and respectively —
ydx (i),

Of course, the values of y in terms of x must be inserted before

the integrals can be evaluated.

Fig. 174 Centroid of Portion of Plane Area.,

379 , General Sectorial Area.—Referring again to Fig 174, let us

now take the sectorial area AOB bounded by the same curve AB. It

will now be convenient to use polar co-ordinates for part of the work.

We shall accordingly regard AB as given by r=:E{0
)y the limiting

values XOA and XOB of 6 being respectively a and /?. We now take

as infinitesimal element POQ, where OP= r, XOP= ^, and POQ=^^.
Thus the area of the element is \r^dB^ and the cartesian co-ordinates of

Its centroid are cos \r sin B), Hence, applying the usual rule, we
find the following formulae for centroid in cartesian co-ordinates :

—

•*=[ f \r'dB (3),

j>=r(^r sin (4).
Jb

Here the values of the rs must be inserted in terms of B from the

equation of the curve AB before the integrals can be evaluated.

380 . Plane Areas by Double Integration.—Let us now consider

a plane area bounded by any two ordinates x=a and x=b and any
two curves y= <l>{x) and y^\p(x), as shown by ABCD in Fig. 175.

This might be treated by single integrals as in article 378, but, to illus-

trate another method sometimes preferable, we will here adopt double

integration. We now divide the area into elementary strips parallel to

both axes of co-ordinates. Thus the strip P/$^Q is bounded by the

abscissae x and x-{-dx. The strip RrjS is similarly bounded by the

ordinates^ and>'-f^. Hence the infinitesimal rectangle uv, common
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to both strips, and which now forms an element of the area ABCD,
has area dxdy and, in the limit, its centroid has co-ordinates x and^.
Thus, applying the usual rule and inserting the limits of each integra-

tion, we have the following formulae

ta M(x)

xdydx-^
/

I dydx (5),
^(x) Jb Jip{x)

n
4>(x) ra

ydydx-^ I I dydx (6).
/(*)

Since the limits ofy involve

x^ it should be noted that the

integration oi y must be taken

first. After this integration is

effected we have the expres-

sions that might have been
obtained in the single integral

method. The advantage of

the double integral lies in its

power to deal with a lamina
occupying the area in question

and varying in surface density

with distance from the co-or-

dinate axes Thus, if the

density were crjcy, we should

simply have o-xy introduced m
each of the above four integrals

in (5) and (6).

Fig. 175. Centroid of Plane Area by
Double Integration.

381. Plane Areas by Doable Integration in Polar Co-ordinates.

—

Let us now consider an area bounded by any radii at angles a
and P and the curves whose
equations are r=<^(^) and
r=\p(9

)^
as shown by ABCD

in Fig. 176. We take as the

infinitesimal element of the
double integration the figure

sf bounded by the radii at

angles 6 and 6 -\-d6 and by
the concentric circles of radii

r and r+dr Then the ele-

ment has area rdOdr and, in

the limit, its centroid has co-

ordinates (r cos r sm ^).

Thus, applying the usual rule

and inserting the limits of in-

tegration, we derive the follow-

ing formulae for the centroid

of the area ;

—

2A
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fa fa f^ifi)

1 /
COS ^drdO-^ I rdrdd . . . (7).

Jfi Jp Jm
fa f^{B) r,a. rt}>(e)

y=\ I sin 6 drd$-i-
j I

rdrdO . . . . (8).Jm
As before, the inner integral (in t) must be evaluated first, as it

involves 6 in the limits.

The advantage of this method would be most felt in the case of a
lamina with surface density a function of r, or of 0

,
or of both.

Examples—LXXIII.

I Find by integration an expression for the centroid of a circular arc (or

uniform wire of that shape). Hence show that the centroids of a qu^-
rantal and of a semicircular wire are distant from the centre by 2a >^2!^
and 2al'ir respectively where a is the radius.

2. Determine by any method the centroid of a plane sector of a circle, and
confirm the result by another method.

3. Calculate by integration the position of the centroid of the plane area of

a segment of a circle, and check it by reference to a segment which is

also a sector.

4. Derive formulae for the centroid of a parallel portion of any plane area.

Apply them to the quarter of an ellipse between its axes, and check it

by reference to the quadiantal sector of a circle.

5. Obtain formulae for the centre of mass of a plane lamina in which the mass
per unit area was proportional to the distance from the origin Apply
these to show that for a semicircular lamina of the foregoing distribution

of mass the centre of mass is distant from the centre 3/2 rr of the radius.

0 ‘ Prove that the centre of mass of a uniform semicircular disc of radius a
is at a distance ^aj'^rr from the centre

‘A uniform solid semicircular cylinder is placed with its axis horizontal

and Its curved surface in contact with an imperfectly rough plane (of

coefficient /a) which is inclined to the horizon at an angle a. Prove
that, provided

tan a<fx and sm a< 4/3?r,

there is a position of equilibrium m which the inclination of the plane
face to the horizontal is

sin~‘(|7rsin a).^

(Lond. B.Sc., Pass, Applied Math., 1908, i. 3.)

7. ^AO

B

IS a diameter ol a circle whose centre is 6). On AO^ OB as
diameters semicircular arcs are described, on opposite sides. If

Cr, G be the mass centres of the two equal portions into which the aiea
of the circle is divided by these arcs, piove that the inclination of
GG X.0 A

B

tan“^(4/7r).’

(Lond. B.Sc, Pass, Applied Math., 1906, i. 5.)

382. Surfaces of Bevolution.—Let it now be required to deter-

mine the centroid of the surfaces generated by revolution, about either

of the co-ordinate axes x and of any plane curve defined by
yz^f(x\ lying between the limits x^a and as shown by AQPB
in Fig. 177.

In the curve AB take the infinitesimal element PQ of length ds^ P
having the co-ordinates {x^ y). Then, by revolution about OX, PQ



ART. 382] PLANE STA TICS OP RIGID BODIES 371

will describe the ring; element of area 2'Kyds and, in the limit, its

centroid will have co-ordinates {Xy o). Hence, by the working rule, we
find for the co-ordinates of the centroid the following expressions :

—

and j'«=o.

The values of y and dsjdx must be inserted from the equation to
the curve before the integrals can be evaluated.

0l b ^ ^ X

Fig. 177. Centroids of Surfaces of Revolution.

For the surface generated by revolution of the same curve AB
about OY, the abscissae of the centroid are obviously

- /“
.
ds , r ds ,ds ,

xy-~-dx-,
,

dx

Case I.—For a cylinder vixih its axis as the axis of Xy the y is the con-
stant radius and cancels out, and dsjdx— i, so that from (i) we have

a+6
^ a—b ~ '2 V3).

as evidently should be the case
Case II.—For a sphercy let the equation be x*-^y^=zd^. Then

dyldx:= —xly 2^x6, yds=cdxy t,e, the surface of each ring element has
the same area as that of the corresponding ring of the circumscribing
cylinder. Thus here also, for a spherical zone or cap, we have, as for
the cylinder,

(4 ).

Case III.—For a cone of semi-vertical angle a and vertex at the
origin we have7=:3f tan a and </j=seca.</jc. Hence (i) reduces to

(5).

Or, for the complete cone,
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383, Conical Surface by Projection.—Let us now illustrate the

method of projection by applying it to find the centroid of a portion of

the surface of a right cone on a circular base^ as shown by ABC in

Fig, 178.

The angle between an ele-

ment dS of the conical surface

and dHy its projection on the

base, is that between any gen-

erator and the base. Hence
it IS the complement of a if a

is the semi-vertical angle of

the cone. Thus</II/^/5=sina
And the axis of the cone being

that of 2, it follows from the

orthogonal projection on the

base that <f5 and dli have the

same co-ordinates in x and
and accordingly the like

equalities hold for the cen-

troids of the conical surface

S and its projection II. Or,

Fig 178 Centroid op Conical in other words, the projection
Surface. centroid of any portion

of the surface of a right circu-

lar cone on a plane perpendicular to the axis is the centroid of the

projection of that surface.

For the z co-ordinate of the centroid of S we have, by application

of the usual rule and the relations between S and IT, the following

expressions :

—

^_fzdS__fzdYl_ V
fdS'' fd^^^

where V is volume of the prism included between the conical surface

5
,
Its projection IT, and the lines of projection parallel to the ^xis.

Where, as in the figure, IT is the triangle AOB and S is the corre-

sponding conical triangle ACB, it is easily seen that

5=JOC (8),

which result holds also for the whole conical surface.

Projections of spherical surfaces on a diametral plane or on the

circumscribing cylinder are sometimes useful.

384, Centroid of l Solid of Eevolution.—Suppose a curve AB to

rotate about the axis of x, and let it be required to find the centroid

of the volume thus generated. Take in the curve AB, Fig. 179, the

point P of co-ordinates (x,y) and the adjacent point Q of abscissa

x-\-dx* Then, as the curve revolves about OX, the element PQ will

sweep out a volume rry^dx whose centroid, in the limit, has the

abscissa x simply. Hence, by the rule, we find for the abscissa of

the centroid
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r— ^-rrxy^dx^
j

iry^dx (i).

Also by symmetry we obviously have

y=i=o (2).

Fig, 179. Centroid of Solid of Revolution.

Thus, for a parallel slice of a sphere of radius r, we ha.ve y*=ic* —x^^
and (i) becomes

,, , ,, 2/_(a>+>) [• • • (3)

For a hemisphere^ a=^c and ^=0, and this reduces to

x=ii: . (4).

For a solid spherical sector of semi-vertical angle ^ we might use

the above general method, but each integral in (i) would split into

two. Thus from x=o to c cos /3 we should have^=;<: tan /?, while from
x=c cos p to x=cwe should have a:*. Hence on this plan

the woik would be somewhat long. We may therefore with advantage

adopt a device founded on the known centroids of the pyramid and
spherical cap. For we may consider the spherical sector as composed
of a number of pyramids with their common vertices meeting at the

centre of the sphere and their bases making up the spherical surface

of the sector. Then, since the centroid of each such pyramid is at

^c for the centre of the sphere, the whole sector is replaceable, for

our purpose, by a spherical cap of radius \c and semi-vertical angle /?

like that of the sector. But, by what has beer found for a spherical

zonal surface or cap, the centroid of this cap is distant from the

centre by the arithmetic mean of the limiting distances of the zone or

cap. These distances are respectively fr and ^c cos p. Hence for

the abscissa of the centroid we have

^=Mi+cos^) (s),

as would be found by the general method.

If now we regard a hemisphere as a solid sector, for which the
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semi-vertical angle /? is r/2, we see that by this expression we find, as

before in (4), ^=1^:.

Finally, if the sector is of vanishingly small base, /3 is very small,

and cos /8= i nearly. Thus for this figure, which is practically a right

circular cone, we have .^=3^/4, as should be the case.

385 . Centres of Mass for Uniform or Variable Densities.—The
positions of the controids hitherto found for lines, surfaces, or solid

figures of course apply immediately to those of the centres of mass of

bodies of uniform density and approximating to those lines or surfaces

or occupying those volumes.

If the density varies in any way with the co-ordinates either

cartesian or polar, this fact must be introduced as a factor in each of

the integrals whose quotient gives the corresponding co-ordinate of

the centre of mass.

We may use single, double, or triple integrals, and sometimes
shorten the work by a device. Thus, take the following example :

—

Solid Spherical Sector with Density directly as Radius.—Using
the device which led to equation (5) of article 384, we have now only

to find the new position for the centre of mass of the elementary

pyramids with their common vertices at the centre of the sphere. Let

the very small solid angle of one such pyramid be w, the density at any
point distant r from the centre be rpo, and consider the slice at r of

thickness dr. Its area is oir*, its mass (or^dr.rp^y and the moment of

this about the centre r times the latter expression. Thus for the

abscissa of the centre of mass of the pyramid we have

r^dr=^c . . . (
6
)

if the radius of the sphere is c. Hence the solid sector is replaceable

by a spherical cap of radius and of semi-vertical angle, P say, that of

the sector. Accordingly the centroid is at the arithmetic mean of the

limiting distances of this cap. Thus we have

x=ic(i+cosP) (7)

for the solid sector of density proportional to the radius

For a hemisphere with this law of density we thus find

•^= 1^ (^)*

386, Pappus’ Theorems.—The two following theorems, due to

Pappus, are useful in connection with centroids :

—

Enunciation.—Let any plane area A revolve through any angle

about an axis in its own plane, then

(1) The area S of the surface generated by the perimeter of A is

equal to the product of the perimeter into the length of the path

described by the centroid of the perimeter.

(2) The volume V of the solid generated by the area A is equal to

the product of the area A into the length of the path described by the

centroid of A.
In both these theorems the axis is supposed not to intersect the

plane area or perimeter.
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Proof—Take the plane of A as that of xy and the axis of rotation

as that of x. Denote oy s the length of the perimeter BCD of A
(Fig. 1 80), and let the distances from OX of the centroids of A and of

s be respectively d and s. In s take the element YCl— ds of ordinate

y\ then, in the rotation through the angle B about OX, PQ will

generate the area given by
dS^ 0yds.

Hence, for the whole perimeter, we have
S=0fyds—0s/ds=^{0s)s . « . . . (i),

which establishes the first theoiem.

Fig, 180. Pappus’ Theorems,

Again, for the volume generated by a small element dA situated

at y in the plane area A on its revolution through 0 about OX, we
have dF=BydA So, for the whole volume, we find

F=zd/ydA= 0d/dA= {0d)A .... (2),

which is the symbolic^expression of the second theorem.

Examples—LXXIV.

I Find the cenuoid of the whole curved surface of a right ciicular cone and
of any part of it

2. Show that the centroid of any parallel zone of a spherical surface is the

same as that of the corresponding zone of the circumscribing cylindrical

surface.

3 Find expressions for the centroids of a segment and of a sectoi of a
homogeneous solid sphere Check them by showing that for a hemi-
spheie each formula gives 3/8 of the radius as the distance of the

centroid from the centre of the sphere

4. ‘A uniform solid hemisphere rests with its curved surface m contact with

a rough plane, which is gradually tilted. Finu at what inclination the

hemisphere will be on the point of toppling over If the inclination be
less than this, is the equilibrium stable?’

(Lond. B.Sc, Pass, Applied Math., 1906, i 7)

5. ‘Find the position of the centre of gravity of a uniform solid hemisphere
‘ A uniform solid hemisphere of weight IV rests with its curved surface

on a smooth horizontal plane. A body of weight P is suspended from

the rim of the hemispheie ; find the mehnation of the base of the hemi“



376 ANALYTICAL MECHANICS [art. 387

sphere to the horizon in the position of equilibrium. Is the result

modified if the horizontal plane is rough.? (^Give the reason of your
answer)’ (Lond. B.Sc., Pass, Applied Math., 1907, 1. 7.)

6. ‘Show that the centre of gravity of the smaller portion of a solid

sphere of radius a cut off by a plane distant b from the centre is at a
distance

^ 2a -\-b

from its centre.

‘A spherical cap is cut off from a solid homogeneous sphere by a
plane whose distance from the centre is half the radius of the sphere,

and the remainder of the sphere is placed with the plane boundary in

contact with a perfectly rough inclined plane Find the greatest inclina-

tion of the plane if the truncated sphere is not to topple over.’

(Lond. B.Sc, Pass, Applied Math., 1909, i 8.)

7. ‘A frustum of a right circular cone of axial length 6 feet, and radii of

ends I foot and 4 feet, rests with its curved surface in contact with the
ground. If the weight of the frustum is 3 tons, find the number of foot-

tons of work that must be expended to raise the frustum into such a

position that it can fall over into a situation of equilibrium with its

larger end on the ground ’

(Lond. B Sc
,
Pass, Applied Math, 1910, i 3

)

387 , The Principle of Virtual Work for Rigid Bodies.—In article

321 the principle of virtual work was seen to hold for forces on a

particle. Let us now, following the treatment of Routh, consider the

principle more fully, not restricting the system to a particle, but

supposing It to be a rigid body or system of rigid and pliable bodies in

two (or three) dimensions.

Enunciaiion .—Let any number of forces -P,, jPj, etc
,
act at the

points Ai, Aa, etc., of a system of bodies. These bodies may be con-

nected together in any way so as to allow or exclude relative motion :

they may accordingly exert on each other mutual actions and reactions.

Let the system be slightly displaced so that the points Ai, A2, etc.,

assume neighbouring positions, the projections upon the directions of

the forces of these displacements of the corresponding points being

respectively dp^j etc. Also write

dPY=Eidpi-YEidp2+ Qtc (i).

Then the system is in equilibrium if

(2)

for all displacements consistent with the geometrical connections be-

tween the bodies of the system.

Also the system is not m equilibrium if one or more displacements

can be found for which dW\% not equal to zero.

Routh points out that, in strictness, we should say, not that dlVis
zero, but that it is a small quantity of the second order.

It is to be understood that these displacements called ‘virtual* are
‘ imaginary motions which the system might, but does not necessarily,

take. The principle of virtual work supplies a test, whether a given

position of the system is one of equilibrium or not. We first consider

what are the possible ways in which the system could begin to move
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out of the given position. If for any one of these the sum l^Pdp is

zero, then the system will not begin to move in that mode of displace-

ment. In this way all the possible displacements are examined, and if

^Pdp is zero for each and every one, the given position is one of

equilibrium.*

388. Concrete Example of Virtual Work.—The principle of virtual

work was made by Lagrange the basis of his Mecanique Ana/yttque, and
he made a brilliant attempt to give a general proof of it. Routh, how-
ever, states that ‘ no satisfactory method has yet been found by which
the principle for a system of bodies can be deduced directly from the

elementary axioms of statics.’ The full treatment of the subject is

accordingly regarded as beyond the scope of the present text-book, but
the following simple example of a

rigid bar resting on smooth inclines

at Its ends will serve to illustrate

the principle, and afford an insight

into Its meaning and application.

In Fig 181 the bar touches smooth

inclined surfaces at Aj and A,, its

centre of mass being G. We ac-

cordingly have forces Pi, Pg acting

normally to the inclines at Aj and

Aa, also the weight P^^Mg say

acting vertically downwards at G.
Now, if any motion of the bar is

supposed to occur with the restric-

tion that It remains in contact with

the surfaces, it is clear that, on ac-

count of the smoothness, ^1=0=
dp^. If we take the axis of z ver-

tically downwards we may denote
dp^ by dz. We accordingly have, by (i) of article 387,

dW^Mgdz=Mg~ds .... (3),

Fig. i8i. Virtual Work for a
Rigid Body

where ds is an element of the path s described by G when the contacts

Ai and A^ move on their surfaces. Hence by (2) the condition for

equilibrium here becomes

(4).

Or, in words, subject to contact between the rigid bar and its smooth
supports, the centre of mass G of the bar can desc-ibe a certain surface,

S say. Then, for equilibrium of the bar, the point G must occupy in

the surface 6" a point at which the tangential plane to S is horizontal.

Many examples on equilibrium occurring presently and later may be
dealt with by virtual work ; but some are done quicker without it,

especially if friction is present. Discretion must be exercised as to

which method should be adopted for each case. The principle of

virtual work is specially useful where there are pairs of equal and
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opposite forces with the same virtual displacements as at the junction

or contact of parts of the system or forces normal to all possible dis-

placements, for these contribute nothing to d and can therefore be
omitted.

389. Lever : Wheel and Axle—Let us now examine those simple

machines which include some rigid parts, taking first the lever which
consists of a rigid bar, straight

or bent, movable about a fixed

axis called the fulcmm. It is

acted on by at least two forces,

F and W say, besides that of

the fulcrum. The parts of the

lever between the fulcrum and
the points of application of the

other two forces are called the

arm^ of the lever, which we
may denote by a and b (Fig.

182). Let the force P act at

an angle a with the arm CA=a and W 2X an angle with the arm
CB=A Then, for equilibrium, we have by moments

Fa s\n a= Wb sin P (i).

By virtual work we should obtain for equilibrium

Pdp'^r Wdw^o (2).

But if the displacements are derived from a rotation dB of the lever,

we see that

Fig. 182 The Lever.

dp^ adB sin a dw^'-bdd sin P (3).

Hence by use of (3) equation (2) reduces to (i).

Of course, for a=^/2 = /?, equation (i) reduces to

Fa=Wb (4)

The Wheel and Axle is only a modification of the lever in a form
allowing of continuous motion through large angles, since the arms
a and b of the lever are replaced by the radii of the wheel and axle

respectively.

Other modifications of the lever occur by placing B (Fig. 182)

between C and A or by placing A between B and C. The ratio of

WioF, called the mechanical advantage^ for any such level is easily

seen to be always
W__asina
T'-'bsmp

Or, in words, the magnitudes of the forces are inversely as the per-

pendiculars from the fulcrum on their lines of action.

The Differential Wheel and Axle winds the end on a thick part of

the axle of radius b, while it unwinds it from a thin part of the axle of

radius the loop of cord passing round a pulley supporting the weight

Hence Fa=^ W^(b—c) where a is the radius of the wheel

Weston's Pulley Blocks is a compact tackle op the above principle,

in which
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390. Efficiency of a Simple Machine.—In dealing with the lever

we have supposed that the only resistance which opposes its motion
is the force which it is used to overcome by exertion of the force

P, which may be called the effort. In that case, as we have noticed,

the work done against the resistance is exactly equal to that done by
the effort. Indeed, it was this equality which, on the principle of

virtual work, gave the relation between W and P. But in any actual

lever or other simple machine (notably in the case of screws) there is

always some frictional resistance to be overcome in addition to the

main resistance for which the machine is used. And, since the total

work done against all resistances can but equal that done by the effort

which drives the machine, the useful work done will now fall short of

that total. The proper fraction expressing this ratio is called the

efficiency.

Thus, in any actual displacement of the machine (whether lever or

other machine), let the effort P^ the resistance Q, and the frictional or

other wasteful resistance R have displacements in their directions of dp^

and —dr respectively. Then, by the principle of virtual work,

and taking this actual displacement as the virtual one, we find

or

dJV=Pdp+ Q(-.dg)-hR(-dr)= o,

Pdp^Qdq-\-Rdr
Hence the efficiency rj is given by

_ QAq^ Rdr
'‘'~lPdp~

*
~'Hp (*)•

Or, in words, the efficiency of a machine is the ratio of the useful

work done by it to that done by the effort on it when the machine
receives any small actual displacement.

391. The Screw.—A screw thread may be cut m a cylinder by a

tool moving parallel to the axis with uniform speed while the cylinder

rotates uniformly. If the edges of the tool are respectively parallel

and perpendicular to the axis, the screw is said to be square-threaded
,

if inclined, .t is Suid to be V-threaded, For simplicity's sake we shall

here confine attention to square-threaded screws

Consider such a screw mounted so as to be capable of rotation

about Its axis, while any motion of the screw parallel to the axis is

prevented. Also, on this screw, suppose there is a nut (or piece with

internal screw fitting on the other) capable of motion parallel to the

axis while rotation of the nut is prevented.

Let a torque act on the screw of magnitude which wc may
suppose due to a force P acting perpendicular to an arm a so that

G^Pa,
Let the radius of the screw be b and its pitchy or advance of the

thread axially per revolution, be q. Then if we develop the thread by

unrolling it from the cylinder into a plane, we see that the angle between

the thread and the base of the cylinder is given by a where tan a=^/27rA

We may note here that although b and « are each variable quantities,

diffeiing from point to point along a radms, the pitch q is perfectly
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Fig. 183. Screw developed into a Plane.

definite. Hence if a and b are involved in any equation they must be

interpreted as the mean values of angle and radius, the expression in-

volving them being approximate only.

From the symmetry of the screw it is obvious that we may develop

the cylindrical thread

into an incline of angle

a, and treat the prob-

lem as one of two
dimensions. The
horizontal force Fajb
acting at the radius

of the screw thus pro-

duces the vertical force

Q on the nut, as shown
in Fig. 183.

Let the normal re-

action between the

screw and nut threads

be E and the coeffici

ent of friction between
them be /A= tan then

the tangential reaction may be anything up to -j-fxR. If we suppose

the torque acting on the screw is on the point of prevailing, then the

frictional force acts upwards on the portion of screw thread AB, as

shown in the figure.

Thus, for equilibrium, we have from the diagram by resolving hori-

zontally and vertically,

Palb—fiE cos a -f- A? sin a,

and Q— E cos a— fiE sin a.

Whence Pa=Qb taxi {a (i),

where P is the angle of friction.

Hence the ratio of Q to P^ usually called the mechanical ad-

vaptage, is

I

P^ b tan(a-f^)

But, since it is the essential property of a screw to produce or over-

come an axial resistance, the effort being a torque about that axis, it

would seem preferable to quote as the mechanical advantage the

ratio of (2 to G. We then have

G 3 tan (a -f-^)

The efficiency of the screw pair {i.e. nut and screw) is QbB tan ajPaO,

or

_Qb tana^ tana

(a).

(3 ).

(4).
tan(o4-/J)

when P is on the point of prevailing. If Q is on the point of prevail-

ing the sign of p must be reversed. We then find T/=tan (a—

/

9)/tan a.
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(5 ).

If the friction is negligible fi vanishes, the efficiency is, of course,

unity, and the mechanical advantage is given by

QlF=2iralgA
or QIG=2iclq J

as would be obtained at once by the principle of virtual work.
If for a given /?, a is at our disposal, we may choose it so as to

make rj a maximum.
Thus, differentiating r) to a by (4), we find that, for a maximum

efficiency, tan 2a= cot or (6).

As to the efficiency of any actual mechanism involving a screw and
nut, it should be noted that it will always be lower than the expression

(4), for that allows for friction only at the surfaces of the screw pair

itself (i\e. the helical surfaces of the screw threads), but there must be
friction also at the devices which prevent axial motion of the screw and
rotation of the nut Hence equation (4) is to be regarded as giving

an ideal efficiency which is approached when the friction of parts

other than the screw threads are almost negligible.

To take these other frictions into account, referring to Fig. 183,

we should need to introduce a horizontal resistance increasing along

AC, and also vertical resistances along the side of DE, thus reducing

the available portion of Q. Both these new terms would reduce both

the mechanical advantage and the efficiency. For approximate allow-

ances for these quantities and tables of efficiency when /a=o*i5, see

Goodman’s Mechanics Applied io Engtneerngy pp. 239-240 (London,

1908).

Examples—LXXV.

I. State in words and by equations the principle of virtual work as applied
to rigid bodies.

2 What do you mean by the terms mechanical advantage and efficiency

when aoplied *^0 simple machines? Give an actual illustration, and find

for It the value of each of the ratios mentioned.

3. ‘ Determine the mechanical advantage of a screw lifting jack, neglecting
friction.

‘ Calculate the tension in a stay which is tightened up by a force of P
pounds acting on a lever a inches long, which turns a double screw,

composed of a right-handed screw of vi threads to the inch and a^eft-

handed screw of n threads to the inch.’

(Lond. B a. and B Sc , Pass, Mixed Math., 1902, i 4.)

4. ‘ Enunciate the principle of virtual velocities, and mention the class of

mechanical problem to which it is applicable
* Prove that if a horse is assimilated to an articulated parallelogram, the

horizontal tractive force is

I -i- (tan a ~ tan B)

of his weight, when the legs make an angle a with a horizontal road
and the traces slope downwards at angle Bl

(Lond. B.Sc, Pass, Mixed Math, 1902, ii i.)

5.
* State the laws of friction between solid bodies, and describe the experi-

mental verification.
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‘ Prove that m lifting a body of weight with tongs of weight W\ they
must if vertical be grasped with a force

W
2/ ’

at a distance
W I

IV+ IV'*

of their length from the hinge, fx denoting the coefficient of friction of
the body and ft' of the hand on the surface of the tongs, both surfaces

of contact being on the point of slipping *

(Lond. bA. and B.Sc., Pass, Mixed Math., 1903, i. 2.)

6. ‘Mention the class of statical problem to which the principle of virtual

velocities is suitable for application.
‘ Prove that the virtual work of a couple is the product of its moment
and the angle in radians through which it works, and prove that the
balancing couples on the rods AC, BD of a jointed quadrilateral

ACDB pivoted at A and B are as

AqCE to BDjDE,
where E is the point of intersection ofAC and BE.'

(Lond. B.Sc., Pass, Mixed Math., 1903, ii. i.)

7. ‘Enunciate the principle of virtual work for the equilibrium of any given
system of connected bodies
'‘ABCD IS a square formed by four equal uniform bars, each of weight
Wy freely jointed together at A, B^ C, D

;
a strut of negligible weight

connects the joints B and Z>, so as to preserve the square figure when
the system is suspended vertically from A, Show by virtual work that

the pressure in the strut = 2

(Lond. B.Sc, Pass, Mixed Math
, 1904, ii. i.)

8. ‘A ladder AB rests on the ground at A and against a vertical wall at

B. U AB is inclined to the vertical at an angle less than the angle of
friction between the ladder and the ground, show geometrically that no
load, however great, suspended from any point on the ladder will cause
It to slip.’ (Lond. B.Sc., Pass, Applied Math., 1905, i. 3

)

9. ‘An effort P is applied at the end of an arm of length a to overcome a
load IV placed on top of a rough screw press. The radius of the

cylinder is r, the inclination of the thread of the screw to the horizon is

and X IS the angle of friction. Prove that

P = W~ tan {i+ X).

‘ If the radius of the cylinder is 2 inches, the effort arm i? inches, the

coefficient of friction ot, and there are 8 threads to the inch, find P,

Will this screw reverse if P is withdrawn ?’

(Lond B.Sc , Pass, Applied Math
, 1905, i. 4.)

10. ‘Prove that under a certain condition the altitude of the centre of
gravity of a system of bodies in equilibrium is stationary for small dis-

placements
‘Illustrate this by the case of a bar (not uniform) resting with Us
extremities on two smooth inclined planes which face one another.’

(Lond B Sc., Pass, Applied Math., 1906, i. 6.)

11. ‘A system of foices (A"„ Kj), (Xg, Fg), . .. act at the points (or^, j/j),

(^2> .^'2)’ • • • respectively of a plane lamina. If the lamina receives a
small displacement such that the component displacements of the origin

are (a, and the angle of rotation of the lamina is «, prove analytically

that the total work of the forces is

a.2(X) + /
3 .2 ( Y) + «.2(;r Y

‘ Deduce the principle of virtual work.’

(Lond. B.Sc., Pass, Applied Math., 1906, i. 10.)
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12. ‘State the principle of work as applied to a machine working uniformly
against resistance.

‘Apply it in the case of a screw press which is (i) smooth, (2) rough,

assuming all requisite data.’

(Lond. B.Sc., Pass, Applied Math., 1907, 1. 5 )

13. ‘A rod of weight w and length 2/ can revolve freely in a vertical plane

about one end which is fixed. At a vertical height h above the fixed

end is a smooth peg over which passes a string, one end of which is

attached to a smooth light ring which slides freely along the rod while
the other end carries a weight P, Apply the principle of virtual work
to find the position of equilibrium of the rod, explaining fully the argu-
ment on which the equation used is based.’

(Lond. B.Sc., Pass, Applied Math., 1910, i. 5.)

392 . Stability of Equilibrium.—Let us suppose a body to be in

equilibrium in any position A under the action of any forces. Let the

body be successively placed at rest in each of any two adjacent

positions B and C on opposite sides of A. Then the type of the

equilibiium at A may be defined as follows :

—

(1) Let the body remain at rest at B and at C; its equilibrium at

A is then said to be neutral.

(2) Let the body start moving towards A from both B and C; its

equilibrium at A is then said to be stable.

(3) Let the body when at B start moving away from A and when at

C start moving either from or to A
;

its equilibrium at A is

then said to be unstable^ for in either case it will finally move
away frohi A.

Let us now find the analytical conditions to which these various

types of equilibrium correspond. Suppose the body to be under the

action - of forces like gravity or the elastic reaction of a fnctionless

spring of constant properties. We then have the relations

y’-f- r= constant, . . . (i),

where T’and F denote respectively the kinetic and potential energies

of the body. But when a body starts to move from rest or increases

any speed it has Z'is increasing
;
thus, by (i), V must be decreasing.

In other words, a body moves spontaneously so as to diminish its

potential energy.

Thus for neutral equilibrium, since no motion occurs after a dis-

placement, we have

dT=o=dF ox F=a constant, Fo say . (2).

For stable equilibiium, since motion towards A occurs from either

side, the potential energy is a minimum there, Fi say, and its

increase in the neighbourhood is expressed by an even power of the

displacement (x say) multiplied by a positive coefficient. Or, in

symbols,

V=V,^a,x^ (3).

For unstable equilibrium, if the motion after either displacement is

always from A, we have by similar reasoning an even power of x
associated with a negative coefficient, or

(4),
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While for unstable equilibrium with motion from A at one side, to

A from the other and then through A and finally away, we have an odd
power of X involved, or

V^V,±a,x^ (5).

Fig. 184 PoTENTTAT Energy Graphs, showing Stariiity of Equiiibrium.

These results are collected in Table xiv. and illustrated by graphs

of the potential energy in Fig. 184.

Table XIV. Stability of Equilibrium.

Types of Equilibrium
AT Position A.

Increase of Potential
Energy at x from A

- V- Fo=

Neutral. Zero.

Stable.

Unstable.
f —a^x',
l ^ 1 ft

1, or

We may note here that the virtual work for any imagined friction-

less displacement is numerically equal to the corresponding change of

potential energy. Hence the principle of virtual work as a criterion of

equilibrium is equivalent to the statement that for equilibrium of any
type the first power of the displacement must vanish in the expression

for dW=l^Pdp^ the higher powers being regarded as negligibly small.

We now see that the determination of the type of equilibrium requires

retention of those higher powers and an examination of their indices

and coefficients.

Or, looking at the graphs for the potential energy Vin Fig. 184, we
may say that equilibrium of any type at A requires the slope to be zero

there, whereas the type of equilibrium at A depends upon the curva-

ture there or its rate of change.

But the slope, curvature, etc., near A depend respectively on the
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first, second, and higher powers of x in the expansion for F, which
may be written generally

V— + (6 ).

Thus the various views of the subject are harmonised.
Referring again to the graphs for the potential energy it is seen

that the positions of stable and unstable equilibrium may occur at

minima and maijima; thus, in the absence of cusps and points of

inflection in the curve, these two types may be expected to occur alter-

nately in the equilibrium of a body. Simple examples of such alterna-

tion occur in the case of a loaded sphere rolling on a table and in that

of a rod revolving about a horizontal or inclined axis near one end.

By bearing in mind the graphs of Fig. 184 we can often assert

immediately whether the equilibrium of a body or system is stable or

unstable.

393 , The Balance.—The ordinary balance affords a good example
of the lever, of equilibrium, of stability, and also of sensitiveness or

ratio of inclination to difference of loads. Leaving to practical

treatises the details of construction and manipulation, the essentials of

a delicate balance for our purpose are indicated in Fig. 185.

In this diagram the beam is suspended by a knife edge at S and,
from other knife e4ges at A and B, hang t^he similar scale pans £
and F.

Let the points A and B be joined by a straight line, and upon
it from S let fall the perpendicular SC, and produce to G the centre of

mass of the beam. Denote the arms of the balance CA and CB by a
and b respectively. Let SC =4^ and SG=^. Also let the beam have
weight the scale pans each have weight and when weights

P and Qaxe in the pans E and F, let the balance be ip equilibrium with

A Bat inclination 0 to the horizontal as shown.
Then, since the forces at A and B due to scale pans and contents
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are vertical, their arms are the horizontal projections of SA and SB or
A. A.

of SC“fCA and SC+CB respectively. Thus, taking moments about
S, we easily obtain the equation

(P-{-7v)(a cos sin <?)+ PV/t sin cos sin 6) (i).

Whence ta n ,9_ ( <2

+

«’)^-(P+w)a

<2+ 2w)c-{‘ Wh (2).

A good balance in correct adjustment possesses three important
properties, viz. the true zero position for equality of loads P and
stability, and sensitiveness, which we will notice in this order.

True Zero.—When the loads in the pans are equal the line AB
should be horizontal and the pointer indicate the centre of the scale.

For this we must have ^=0 for Q=P. On reference to (2) we
see that this is obtained by making which is aimed at in the

adjustment of the balance.

Stability of the equilibrium is obviously assured by providing that

G is below S, for then G describes round S the lower part of a circle,

and we have equation (3) of article 392 fulfilled. When the zero

position of the balance is disturbed, the loads being equal, it is obvious
that oscillations will occur. And, by the methods of Chapter xni.,

article 258, we may write foi the period of the oscillations (if ^=0)

T=2irJ'^m (3),

where K is the moment of inertia of the beam, pans, and load ;
these

being suspended at A and B, but without rotation, being reckoned as

particles of same masses placed at A and B. Hence to reduce the

period so as to facilitate quick working, we should have to dimmish A',

and therefore the arms but increase h. It is no use increasing IVj

for that equally increases A'.

Sensitiveness .—Reverting to equation (2), we see that on putting

b=:a as needed for the true zero, this may then be written

tan 0 _ a

P'^ (Pi- Q-}- 27v)c-{- Wh (4).

which then expresses the sensitiveness which may be measured by the

ratio of 6 or tan 6 to the difference of the loads. If we choose, this may
be put in the form of a differential coefficient. Thus writing

dQ^ and considering the increment ^(tan 6) to correspond to it, we
have for this increment dS— dB Hence (4) becomes

dQ 2{P+W)c+ Wh
Thus by either (4) or (5) the sensitiveness for a given load may be

increased by
(i) increasing a

)

(ii) decreasing r, or^ making it negative ;

fill) decreasing h ;

(iv) decreasing W and w.
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It will be noticed that some ot the ways ot securing great sensi-

tiveness clash with some of those for securing a small period. Hence
any actual good balance is one presenting the kind of compromise most
suitable for a certain purpose in view. By making c negative, that is,

bringing the point of suspension S below the line AB of the beam, the

sensitiveness may be very greatly increased.

It is seen that the sensitiveness as expressed by (4) and (5) varies

with the load F+ Q or 2P, although c and h are there supposed con-

stant. But in any actual balance the beam is not perfectly rigid.

Accordingly these very small quantities c and h may appreciably change
with the load, and thus cause an additional change in the sensitiveness.

To approximately allow for this we may write these quantities as linear

functions of the load. Thus let

C’=^c^-\-cP h— h^-\-h'

P

(6).

Then, substituting in (5), we have as a first approximation for the

sensitiveness of a balance with an elastic beam the equation

Examples—LXXVT.

1. Discuss the various types of equilibrium as to their stability, and obtain

curves and equations applicable to the various possibilities

2. Obtain expressions for the sensitiveness and period of oscillation of a
delicate balance, and discuss the design to be preferred where both
accuracy and quick working are needed

3. ‘Prove that the sum of the moments of a system of coplanar parallel

forces about any point is equal to the moment of their resultant.
‘ In a precision balance the addition of o’l gram in one scale pan makes
the pointer move over 6 mm. of its scale

,
find the depth of the C.G. of

the beam below the plane of the three knife edges, having given that

the distance of the extreme edges is 25 cm., the length of the pointer

18 cm., and the weight of the beam alone 200 grams.’

(Lond. B.A., Pass, Applied Math., 1906, i. 2.)

394. Graphical Statics.—The vectorial addition of forces has

already been noticed, both for their composition and as a criterion of

equilibrium (articles 314-315). In some cases it matters little whether
this vectorial addition is performed analytically or graphically. In

many simple cases the analysis is quicker, especially if drawing

materials are not at hand. But consider the case of a rigid frame in

equilibrium under the action of various forces ap])lied at different

points. Here we have a number of points in equilibrium, viz. each

place where the bars or members of the frame meet. Now, to treat

any one such point graphically requires a single force polygon. But
to treat a second adjacent point some one or more of the lines already

drawn will form part of the second polygon then needed. Moreover, in

dealing with roofs, girders, and other structural work approximate
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values, easily obtained by drawing, are often accurate enough for the

purpose, as ample strength is always provided in each member.
Further, engineering and architectural calculators have the necessary

drawing equipment and instruments at hand, and are expert in their use.

Consequently the geometrical method of dealing with such problems
has been highly developed, and now forms the very important branch
of mechanics called graphical statics^ a branch which no one studying

statics can afford to neglect.

395. Eeciprocal Figures.—The formal treatment of graphical

statics naturally begins with some notice of the properties of those
pairs of figures with parallel sides first completely pointed out by
Maxwell ‘ On Reciprocal Figures and Diagrams of Forces ^ Mag.^

1864; Edin, Trans,

^

vol. xxvi
, 1870, Scientific Papers, vol. i. pp. 514-

525, Cambridge, 1890). Following Routh, we note the fundamental
definitions and properties thus :

—

Two plane rectilinear figures are said to be reciprocal when
(i) they consist of an equal number of straight lines or edges such

that corresponding edges are parallel, and
(li) the edges which meet tn a point or corner ofeitherfigure corre-

spond to lines which form a closed polygon or face in the

otherfigure.

It is owing to this second property that the term reciprocal has been
given to these figures.

Any figure being given, it cannot have a reciprocal unless

i

iii) every corner has at least three edges meeting at it, and
iv) the figure can be resolved into faces such that each edge forms

a base for two faces and for two only.

Since a closed polygon must have at least three sides, it is evident

that to satisfy (11) and (iv) we must have
(v) at least three edges meeting at each corner of each figure.

The edges of a figure can sometimes be combined in various ways

so as to form different polygons. Only those polygons are to be

regarded as faces in one figure which correspond to corners in the

reciprocal figure. The figure is then said to be resolved into its

faces.

Any side of any face in one figure corresponds to a parallel edge

terminated at the corresponding corner of the reciprocal figure. Since

an edge can only have two ends, and each represents a face in the

other figure, it follows that

(vi) two faces and two only intersect in each edge.

396. Frame and its Force Polygon.—To illustrnte the above
properties, let us now take a very simple example of reciprocal figures

in which one figure is a loaded frame whose bars are supposed rigi^

and freely jointed
;
and the reciprocal figure is the corresponding

force polygon, which thus servo? to graphically determine the forces in

the bars or members of the frame. For, since the bars are supposed
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freely jointed, the force? in each bar are along its length. These are

shown by Figs. 186 and 187 respectively.

Since parallel lines in the two figures correspond, one obvious
method of lettering to express this correspondence would be to place

the same single letter on the middle of the parallel lines in each figure,

say capitals in one and small in the other (see article 398). But this

method suffers from the objection that lines may partly coincide.

Thus in Fig. 187 and Q do not coincide with R, and so may be
separately lettered. But if in Fig. 186 and R had been given
all vertical, it is evident that in Fig. 187 /^and Q would have been
end to end and R coincident with Again, if we indicate a
line by letters at each end in one figure, it is impossible to indicate

the corresponding line in the reciprocal figure by the same letters at

each end on account of the method of construction, which brings

different lines requiring different letters to meet at any given

point.

But since bv condition (ii) of article 395 the faces of one figure

correspond to tne points in its reciprocal, these faces in one figure and
corresponding points in the reciprocal may bear the same letters. This

constitutes Bow's notation (1873), which is adopted in the small letters

abed of Figs. 1 86 and 187, and will often be used in what follows for a

frame diagram and its force polygon.

Thus the bars of the frame in Fig. 186 may be called ad^ bd, and cd

respectively. And the forces in them are represented to scale by the

lengths in Fig. 187 of the lines ad^ bd^ and cd. In the force polygon

the letters here stand at the ends of any line called by them, whereas

in the frame diagram the letters stand on the faces divided by the
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line in question. But no difficulty arises from this, the line intended

being in each case quite definite Again, a point in the fiame diagram
IS called by the letters of the faces meeting there, acd say ; and, in

the force polygon, the same letters occur at the corners of the polygon,

which represent the forces ca^ ad, and dc by which that point acd is in

equilibrium. If desired, for further distinction, the letters may be
capitals in one figure and small in the other.

397 . Construction of Force Polygon and its Interpretation.

—

Referring still to Figs. i86 and 187, let us suppose we have given (1)

the frame, (ii) the magnitude and direction of the force jR applied at

abd, and (lii) the fact that the point acd rests on a roller so that the

force P must be vertical. Further, let it be required to find the forces

P and Q and the forces exerted by the members or bars of the frame at

their points of junction or joints.

We cannot determine P and Q directly by the force polygon of

Fig. 187, for it is evident that P may be drawn vertically of any
magnitude we please, and Q then follows accordingly. We may
therefore, by reference to Fig. 186, take moments of R and of P
about the point bed, and equate their magnitudes. This determines

P, so Q follows as the vector which joins R and P in Fig. 187. Then,
by the method of lettering which we have adopted, the vector Q in

Fig. 187 IS to be lettered be, since in Fig. i2>6 Q divides the faces b

and c
;
next, P must be lettered ca

;
then is already lettered ab it

should be. We next draw through the corners a, b, c of this triangle,

in Fig. 187, lines parallel to the bars ad, bd, and cd in Fig. 186. At
first these parallel lines may be produced both ways from the corners

till It is seen where they are likely to meet m the point d. The
figures may then be looked over and checked to make sure all is

right. It may be noted here that in the force polygon the point c

stands at the junction of P and Q, just as in the frame diagram the

face c intervenes between P and and soon all round. In Fig. 187

arrow heads are placed along the lines representing P, Q, and R just

as they are in Fig. 186, this is done because these directions are all

quite definite. But along the lines ad, bd, and cd in Fig. 187 no arrow

heads are shown, because each of these lines represents oppositely

directed but numerically equal forces, when in tuin it forms a side of

a different polygon. Thus, if we consider the force polygon acd, the

clue to the way round is afforded by the force P, and we have the

forces ca, ad, and dc respectively. But these are the forces which
maintain equilibrium at the point acd of Fig. 186. Hence the

member cd is pulling .0 the right at acd ; it is consequently in tension,

or is a tie, which fact is shown in Fig. 186 by leaving it as a thin line.

The bar ad, on the other hand, is seen to be pushing at the point

acd
;

It is therefore in compression, and is called a strut, and to express

this in the diagram it is shown by a thick line.

Thus, as the investigation of the forces in the frame proceeds by
the construction and interpretation of the force diagram (or stress

diagram as it is often called), the nature of the opposite forces (or
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stresses) exerted by each bar upon the joints at its ends is shown by
this thickening of the lines, where necessary, to denote struts in the

frame This double use of the lines in the force polygons for opposite

forces is seen if we now take the figure bed. Here the force Q gives

the clue as to direction, and it follows that we are to write the forces

bc^ cd^ and db. But this shows that the member cd is pulling to the

left at the point bed, whereas the same member was before found to

be pulling to the right at the point acd. This shows, as before con-

cluded, that it is a ite^ or in tension.

It IS also desirable to point out that the external forces applied to

the frame should be denoted on the frame diagram, as m Fig. 186, by
external lines so as not to cut into the spaces in theframe itself

We have thus, in this very simple case, found the supports or re-

actions Q applied to the frame under a given load Py and also the

magnitudes and natures of the stresses in each member of the frame.

Examples—LXXVI 1 .

1. ‘Alight framework of freely jointed rods m the form of aright-angled
isosceles triangle is suspended from the right angle. Weights w and
2w are suspended from the other two joints. Determine the stresses

in the rods.’

(Lond. B.Sc., Pass, Applied Math., 1907, i. 3.)

2. ‘Points Ay By Cy D are taken on a straight line, such that AB—\BC—
CD, On ABy BCy CD and on the same side of these are described equi-

lateral triangles AEB, BFCy CGD. A'i^and FG are joined The com-
pleted figure represents a system of freely jointed light rods in a vertical

plane with AD horizontal and lowest. Supports aie placed at A and
Dy and weights of 4 and 6 tons are hung on at B and C respectively.

Diaw a force diagram for the system. Thence determine the stresses

in the rods which meet at Fy indicating in each case which are tensions

and which are thrusts
’

(Lond. B.Sc
,
Pass, Applifd Math., 1907, i. 6.)

3. IS a straight line trisected at ^and C, and BCEF x':, a square. Let

AFy ABy BFy FEy BEy BDy ED be rods forming a freely jointed

framework, and let this framework be supported at A and D so that

AD \s horizontal and BF vertically upwards. Find, by graphical

construction, the thrusts or pulls m all the rods due to a weight W
placed at El

(Lond. B Sc., Pass, Applied Math
, 1908, i. 4.)

4. ‘Three equal light rods ABy AC, AD, each of length a loosely jointed at

Ay have their other ends joined by three strings each of length by and
rest with B, C, D on a. smooth horizontal plane so as to form a tripod.

From A is suspended a load IV. Show how to find the tensions in

the strings by a graphical construction or otherwise.’

(Lond B.Sc., Pass, Applied Math., 1909, i. 5 )

5. *ABCDy PBCQ are squares on opposite sides of BCy and E is the centre

of the latter square. A framework is made of weightless rods ABy
ADy DCy BCy DBy BEy CE freely jointed to one another. A is freely

pivoted to a smooth vertical wall, and D presses against the wall

below yi. A weight W\% hung from E. Calculate the stresses in all the

rods.’ (Lond. B.Sc
,
Pass, Applied Math

, 1910, i, 7.)
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398 . Fnnicalar Polygon for Besultant of Ooplanar Forces.—In the

example dealt with in articles 396-397 we had only a single force J?

applied above the frame, and found by calculation the cortesponding

values of the reactions or supports. But usually there are a number
of forces or loads applied on the upper side of the frame, and in this

and other cases it is often desirable to determine graphically the

magnitude, direction, and lint of action of the resultant of such a system

of coplanar forces. This may be done by what is termed thefunicular

polygon or link polygon.

The method of drawing such a polygon and the proof of its pro-

Fio. r88 Set of Coplanar Forces
AND Funicular Polygon.

parties may be seen from the following example :—Let the set of forces

/*, 5
,
7^ be given as shown in Fig. 188 and their resultant required.

The force polygon pqst in Fig. 189 determines the magnitude and
direction of the resultant R Which are equal to those of but the

line of action of R is still to be found.

Fto. 189. Force Polyoons prom which
TO DERIVE Funicular Polygon.

Construction.—To determine this proceed as follows ;

—

Rirst^ in the diagram, Fig. 189, take any convenient point O, called

the pole, and join it to the corners of the force polygon by the lines
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Second^ in the line of action of ^in Fig. i88 take any point A, and
from it draw the lines U and L parallel to u and / m Fig. 189. From
the intersection of L with Q draw M parallel to m. Continue in this

way, drawing next N and finally V intersecting U at K, thus com-
pleting the funicular jiolygon whose sides are ULMNV. Finally,

through K, in Fig 188, draw R equal in magnitude in direction to r,

m Fig. 189. Then K shall be a point on the line of action of the

resultant, which is thus truly represented by R,
Proof.—Referring to Fig. 189, we see thatP is represented by /, and

IS equivalent to the components u and / taken in the directions of the

arrows. Thus P in Fig. 188 may be replaced by forces of these

magnitudes along U and L mechng at A on the line of action of P.
Again, Q is represented by q or its components —I and w, or by
forces of these magnitudes along L and M meeting on the line of

action of Q. Thus the force along L is cancelled, being taken in turn

positively and negatively. In like manner, as we proceed along the

funicular polygon ULMNV^ all the intermediate forces /, and n
are cancelled, and only those along U and V equal to u and v are

left. But their resultant is r—Ry which must act through their inter-

section K as shown.
This line of thought may be expressed symbolically as follows, it

being understood that when the small letters are used the correspond-
ing forces are represented as to magnitude and direction only, the

large letters denoting in addition the correct line of action The sign
^ over the -f shows that the addition is vectorial

P^Q%S^Tr=p^q^s^t

=u-^v^r

= (« along 27) -f (7^ along V)

—R through K

It may easily be seen that, by shifting the point A, we change to a

second funicular polygon with sides respectively parallel to those of

the first. Whereas, if we shift O, we change to a second funicular

polygon with sides in general not parallel to those of the first. But,

in either case, K remains on the same line of action of Ry as shown
m Fig. 189A.

398a. Link Polygons with Different Poles.- -We may now estab-

lish the following important theorem on link polygons.

—

Enunciations.— The corresponding sides ofany two link polygonsfor
a given system offerees intersect on a straight hnCy which is parallel to

thatjoining the pole of the twofuniculars.
Referring to Figs. 189A and 189B, the system of forces is denoted

in the former by /’(2‘ST’ with resultant Ry and in the latter by the

force polygon /, j, / closed by r.
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In Fig. 189B the poles O and O' are taken, and the two sets of rays

w, /, w, V and u\ /, m\ n\ v* drawn. Corresponding to these we
have in Fig. 189A the two funicular polygons Z, N, V and
V\ L\ M\ N\ JP, Let the intersections of the sides UU\ ZZ', MM\
NIP, and W be A, A, B, C, and D respectively. Then shall ABCD
m Fig. 1 89A be a right line parallel to 00 ' (in Fig. 189B).

Proof by a Statical Method.—At the intersection of Z and M in

Fig. 189A, let the force Q act as shown. Also at the intersection of Z'
and M' let the foice act. Hence, with the component forces

along Z, M, Z', and M\ we shall have two sets of forces in equilibrium,

three in each set, giving in all six forces in equilibrium, viz.

+ Q, —/ along Z, -{-m along JZl . ^

— Qy + 1' along L\ —m' along M'j •
• • *

But since the two ^’s are equal and opposite along the same line,

they are in equilibrium, and consequently the other four are in equili-

brium. Hence any pair of these four will equilibrate the remaining
pair. Thus

— / along Z and +/' along Z', each applied at A,
will equilibrate — w' along M and +m along M, each applied at B.

Accordingly each pair must represent a force along AB.
But by Fig. 189B

— / and -i-T have a resultant of magnitude and direction

00,
whereas — w' and -\-m have a resultant of magnitude and direc-

tion 00'.

Therefore AB is parallel to 00 '. And in the same way the like

relation may be established for ACD.

399 . Graphical Conditions of Equilibrium.—We may now enun-
ciate from the graphical standpoint the conditions of equilibrium of a

rigid body under the action of coplanar forces. We recall that, as

stated analytically in (1) and (2) of article 367, these conditions are

equivalent to

(I) Resultants of forces parallel to or^ each equals zero.

(II) Resultant torque in plane of xy equals zero.

Referring to Figs. 188 and 189 of article 398, we see that if five

forces were given, viz. P, Q, S, T, and one of the magnitude of R but

opposite in direction, then the force polygon would show that the

resultant force is zero, thus fulfilling the first condition of equilibrium.

But if this reversed force R' say did not pass through the point K in

Fig. 188, but was parallel to the R there shown and at a perpen-

dicular distance r’ from it, the whole system would be equivalent

to a couple of magnitude RV. Moreover, on the line of action of

this force R', the sides Cl and V of the funicular polygon would

not intersect, but there would be two points where these sides Cl

and F would respectively meet the line of action of R'. This is de-

scribed by stating that the funicular polygon would not be closed.

But to make the resultant couple zero tt must be closed
;
that is, U
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and V must meet in the same point K on the hne of action of the

reversed R
Thus the formal graphical conditions for equilibrium of a rigid body

or system under coplanar forces are the following two :

—

(I) The force polygon must be closed , and
(II) Thefunicular polygon must be closed.

And these clearly correspond to the equations (i) and (2) of article

367 each to each.

Fig. 190. Coplanar Forces. Reactions, and Funicular Potygon.

400 . Reactions determined
by Funicular or Link Polygon.

—We have seen that the single

resultant of a system of coplanar

forces may be completely deter-

mined by the use of the funicu-

Q lar polygon, and that the equi-

librium of a rigid body requires

that the force polygon and the

funicular polygon should each
be closed We now pass to a

third application of the funicular

polygon, in which it is used to

determine each of the two re-

actions at the supports of a rigid

bar or frame which is loaded by
any set of coplanar forces. The

Flo tgt Force Polyoons for case in question is illustrated

Funicular. by Fig 190, where P„ P„
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denote the forces which constitute the load on some frame
(not shown m the diagram) ; the conditions as to the reactions at the

supports being that they occur at the points A and B, and that the

reaction at A is vertical because the frame rests on a roller there.

For the graphical determination of this problem we may proceed as

follows:—Of the force polygon draw the sides /sj/i (Fig.

1 91), and join the corners to a convenient point O chosen as pole by
the lines 2^2, w, /, We have now to find a suitable point in

Fig. 190 at which we may begin drawing the sides of the funicular

polygon parallel to the lines meeting at O. We cannot begin at A,
because that would leave it impossible to decide where a given side of

the funicular not passing through B would intersect the reaction

since its direction is not at first known. We therefore commence the

funicular polygon at B, the only point known in the reaction R^, We
then draw through B the lines and Q parallel respectively to and

q in Fig. 191. From the intersection of Q with produced if

necessary, we draw N parallel to and in like manner My Z, and Uy
meeting the known line of action of the reaction of the support at

A. We can then join this point of intersection to B by the line Vy

and parallel to V we draw v through O in Fig. 191 ;
this cuts the

vertical and enables us to complete the force polygon by drawing r,.

Then the reactions sought are represented by Zj and R^ acting at A
and B in Fig. 190 and parallel and equal to /-j and r^ in Fig. 19 1 each
to each.

It may be noticed that though has been drawn in Fig 190 it is

not required, since the forces it should join intersect at B.

401 . Roof with Asymmetrical Load.—Let us now suppose the set

of coplanar forces just dealt with to be the asymmetrical load due to

wind on a specified roof principal (or roof truss) as shown in Fig. 192.

We may then accept the reactions at the supports as found by the

funicular polygon in article 400, and ]>roceed to find the stresses in the

members of the frame by the force polygons of Fig. 193 on the

principles explained in articles 396 and 397. We may conveniently

deal with the points of the frame in the order of the numbers shown in

Fig. 192.

And the various applied forces or stresses in the bars at each
point may be taken in the order indicated bv the letters after each
number in the following scheme .

—

1. badc^

2 . C^y

3 -

4. e/gU,

5. khmiy

6 . hganty

7. nlma.

Thus It is well to begin at either i (or 7), because as there are only
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two unknown stresses here, the polygon is determinate. The point 2

is taken next in preference to 3, because the foimer has only two
unknown stresses, while the latter has three until that m ^has been
determined by dealing with point 2.

Fig. 193 Force Polygons i-or Roof

In the above scheme, where a pairoi letters is underlined it denotes

that It has just been found that the bar in question is a strut, t.e. is

under compression. In carrying out the work, the student at this

stage may well thicken the line which represents the strut in the frame
dis^gram.
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402. Evaluation of Stresses apparently Indeterminate.—Let us
now consider a frame, of a form often adopted for roofs, in which at a

Fig. 195. Force Polygons for above Frame.

certain stage the methods hitheito adopted for the stresses needs
supplementing by some other device. Thus, let the frame AMBL of
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Fig. 194 be given with the loads there shown, and let it be required to

find the reactions and the stresses in every member of the frame.

We attack this problem as in articles 400 and 401, finding the

reactions by the funicular polygon and then proceeding with the

stresses at each point Suppose we begin at B (marked also i in

Fig. 194), taking next in order the points 2 and 3. There is no
difficulty so far, as each point had only two unknown forces, so each
of the corresponding force polygons was determinate. But a difficulty

arises as to the next point to be taken. For point 4 has the three

unknowns ur^ ra, if taken before 5. While point 5 has the three

unknowns ef^ tUy uVy if taken before 4.

There are various ways of proceeding at this juncture. Perhaps for

our purpose the most convenient is that known as the Method of
Sections. Goodman, in his Mechanics Applied to Engineeringy p. 506
(London, 1908), states that this method, usually ascribed to Ritter, is

really due to Rankine
Adopting It in the present case, we take a section of the frame along,

say, the central vertical line KLMN (Fig. 194), and consider the

equilibrium of the right half of the frame under (1) the loads applied to

that half, (11) the reaction at B, and (111) the stress m the member ra

at M. Now only the last-named of these is unknown. Hence, taking

moments about L and equating to zero their algebraic sum, we deter-

mine by computation the magnitude and nature of the stress in ra.

There are then only two unknowns at point 4, which is accordingly

dealt with in the usual way. Thus, vu being found, point 5 has only

two unknowns, and is therefore determinate. The other points may
then follow in the order as numbered, and give no further difficulty

The whole procedure may now be summarised as follows, the

references being to the drawing of the force polygons in Fig. 195 .

—

I. ahcxa^

2 cdwxcy

3. axwva.
By method of sections find m,

4. ravury

5 detuvwdy

6. efstcy

7, tsruty

8 -

9- ghpqg,

10. qporqy

11. aronay

12. phimnopy

13 mijltHy

14. mlanniy

15. Ijkal.

As before, the pairs of letters in this scheme underlined are those

referring to members just found to be in compression. At each step



ART. 403] PLANE STATICS OF RIGID BODIES 401

they should accordingly be thickened in Fig. 194 to indicate a
strut

It may be mentioned here that the loads shown m the roofs hitherto

as applied at the joints are supposed to be usually derived from loads

really distributed between those joints. They are replaced by equivalent

forces at the joints, because wc are not here concerned with the bending
of the members which are imagined rigid

In the examples already noticed the reactions were usually needed
as a preliminary to the determination of the stresses, because there

were more than two unknowns where the loads were applied. But,

suppose the load is practically a single force, as in the case of some
forms of crane for lifting heavy weights. And let it be applied at a
point m which only two members meet. We may then begin at that

point in the evaluation of the stresses, the reactions at the supports

being determined by the force polygons simply, without any recourse

to the funicular polygon.

Examples—LXXVI 1

1

.

1. ‘ Show how to find the magnitude and line of action of the resultant of a
number of coplanar forces by means of a vector and a link polygon.

‘ If two different poles O and d be taken for the link polygon, prove
that the intersections of corresponding links all he on a straight line

parallel to 00'.'

(Lond. B.Sc., Pass, Applied Math
, 190Q, i 2.)

2, ‘ Translate and explain the following passage .— Die Grosse und Richtung
der Resultante eines ebenen Kraftesystemes ergiebt sich durch die

Schlusslinie des Kraftepolygones Es genugt aber zur Festleirung
der Resultante schon die Kentniss eines einzigen Punktes auf ihrer

Aktionslinie. Zur graphischen Bestimmung eines solchen wird ein

Seilpolygon gezeichnet. Somit setzt sich die Resultante des ganzen
Kraftesystemes aus den beiden Kraften zusammen, welche sich in den
aussersten Seiten des Seilpolygones ergeben, und geht durch deren
Schnittpunkt hindurch.'

(Lond. B Sc., Pass, Applied Math., 1908, i. 5.)

3 ‘Three concurrent foices are m equilibrium; show ab tniho that any
funicular triaiigle of the system is closed

‘ Also prove that if two funiculars be drawn, the intersections of corre-

sponding sides are collinear '

(Lond. B.Sc., Pass, Applied Math., 1906, i, 3.)

4. Draw a set of coplanar forces acting on a frame or beam, and find by the
stress and link polygons the reactions.

5. For a French truss roof under asymmetrical loads find the reactions at

the ends and stresses in all the members (See Fig. 194.)

403. Beactions at Joints.—In a jointed arrangement of rigid bars,

or bars and cords, it is often a matter of interest and importance to

find the reaction at some of the joints.

In attacking such problems the work may frequently be shortened

by keeping clearly in mind two principles pointed out by Routh as to

the direction of these reactions. These may be stated as follows :

—

(i) Let the body be hinged at two points A and B, and let it be
acted on by no other forces except the reactions at A and B. Since
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the body is in equilibrium under these two reactions, they must act along
the straight line joining the hinges and be equal and opposite.

(ii) Let the body and the external forces be both symmetrical about
some straight line through the hinge. Then the action and reaction

between the two bars must be
symmetricallysituated. But they
are also equal and opposite.

Hence, to fulfil both conditions,

the action and reaction must
each be perpendicular to the line

ofsymmetry.
The first of these principles

as to direction of reactions has
already been illustrated in deal-

ing with roofs by graphical

methods, and will be useful

again presently. Let us now
illustrate the second principle

by two examples of symmetrical
problems.

Take first the case of a camp
Fig. 196. Reaction at Joint of stool on a smooth floor loaded

Camp Stool by a smooth box of weight 4 IV
as shown in Fig. 196. Each

side of the stool consists of two inclined bars as illustrated, jointed at

their centre C, whose action and reaction are sought. Let the
tension in the cross straps at the top be 71 Then the bars and
forces being all symmetrical about a
vertical line through the hinge^ the re-

actions there are horizontaly and may
accordingly be denoted by X simply,

no vertical component Fbeing needed.
Call the height of the frame 2c and
its width 2by and consider a single in-

clined bar AB, Then the load at B
and the reaction at A are each vertical

and of magnitude W, Hence, taking

moments about B, we find

mb^XcyOX X=2mi£ . (i).

Then, resolving horizontally,

T=^Xz=2mic . . . (2).

. , , r
^97 * Riaction at Top

As a second example of a frame of Steps.
and forces all symmetrical consider

now the set of steps which in its simplified form makes the A shown
in Fig. 197, the floor being supposed smooth.

^t the load at the top be 2 IVy and let the reaction there and the
tension of the cord below be required. Denote by 2c the spread AB
of the legs, let the top C be at a height a above the ground and h above
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the cord, whose tension is T, Then, by the principle of symmetry, the

reaction at C is horizontal, and will be denoted by X, Also, because
the floor is smooth, the reactions at A and B are each vertical of value
R say. Resolving vertically shows that R=s JV; resolving horizontally

for either leg (AC say) gives 2==X Then finally, taking moments
about A, we have Xass JVc-^TXa—i).

Whence X=::mid==T (3),

thus giving the |pactions sought.

404. Separation of Bars.—To find the reactions at joints it is

sometimes a convenience to suppose a bar separated from the others,

and then represent the reactions it bears, and so determine them. This
method will be illustrated by the framework of seven members shown
in Fig. 198, one of the side pieces AG being considered detached to

show the forces more clearly, as represented on a larger scale in

Fig. 199.

Fig. 198. Reactions at Joints
A AND G.

Fig. 199. Bar AG separaibd
FROM Frame.

The frame AEBCFDGH is suspended at E, the middle point of
AB, and has a weight 2 fV attached at F, the middle point of CD.
Let It be required to find the reactions on the ends of one of the

inclined bars, AG say. We cannot treat this by the symmetrical
principle, because the line of symmetry does not pass through either of

our points. We may, however, apply the other principle of article 403
to show that the action S exerted at G by the brr GC must be along

GC, since this bar has forces at its ends only. The same principle

shows us that at A the action due to the bar AB is not solely along it,

for there is the force a ff^at E which is not a joint, AB and CD being

stiff bars with joints at their ends only. We thus obtain the view of

the forces on AG which is represented in Fig. 199, viz. that A has
the force JV vertically upwards and the thrust X horizontally to the

left, while G has the tension 7* horizontally to the right and S obliquely
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downwards in the direction of the bar GC in Fig 198, making an angle,

^ say, with the vertical. Let AC= 2dr, AB—GH= 2<5, the lengths of

each of the four inclined bars being c, Then sin ^=/^/^:and cos

We may now consider the equilibrium of the bar AG in the usual

way. Thus, resolving vertically gives IV= S cos 0=^ Safe

;

resolving

horizontally, X-^rSbjc^T'y and, taking moments about G, Xa=i Wb,

Wejay Ar= Wbla, and r= 2 Wbja . . (4),

showing that the resultant of W and X is along GA as^hould be.

Compounding S and T to give the resultant we find that

R^S, and is along AG (5),

as obviously should be the case, and so provides another check.
These relations might also have been obtained graphically.

405. Reactions inside Bodies.—We now pass to the consideration

of the reactions between two adjacent portions of the same continu-

ous body by which the equilibrium of each of those portions is main-
tained in spite of certain impressed forces or systems of forces. We
here confine our attention to the determination of these forces of

reaction and their variation with the circumstances of the case, because
at present we are dealing only with bodies supposed rigid.

The discussion of any changes in size or shape of the body con-
sequent upon the operation of these forces forms part of the theory of

elasticity and is accordingly deferred to Chapter xxi., which is devoted
to bodies exhibiting elastic properties.

We start with the following simple example:—Let a horizontal

beam be subject to a vertical force Pi
at Xi, and consider the reactions ^X
and 2F which must act horizontally

and vertically at x to maintain in

equilibrium the portion of the beam
between these two points (see Fig.

200). We suppose the beam to be
held in equilibrium by some forces

applied at or beyond Xy but with the

Fig. 200. Reactions in a Beam, exact nature of these forces we are not
now concerned.

Then, for the equilibrium of the part of the beam under considera-
tion, resolving vertically and horizontally, and taking moments about
the point of co-ordinates (Xy o), we find

(i),

2Y=oand2:(-X>')=i»,(a:-.-r.) .... (2).

The signs of '2iX and SF must be reversed if we wish to express

the actions of this portion of the beam upon that portion beyond x.

The vertical components of this action and reaction, acting parallel

to the vertical section at Xy constitute what is called the shearing stress

there, its magnitude force per unit area. We are here concerned
with the pair of totalforces of this stress, and shall denote them by Sy

whjch refers to the magnitude of either force, the positive sign being
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used for the present case, in which the positive force is experienced on
the positive side of the section in question.

The horizontal components have a distribution as yet undeter-

mined, but have a definite moment as given by (2), and their resultant is

equivalent to a pure couple, the possible force being zero. They con-

stitute what is called iht bending moment dXiho. section under considera-

tion. This moment will be denoted by J/, the positive sign being

used when the parts near the section in question tend to become
concave towards the positive direction oiy.

406. Two or more Forces.—Suppose that to the same beam,
in addition to Pi, other forces Pj, Pj, etc., are now applied at

etc., each such abscissa being less than x
^ and let it be required to

express the reactions at x.

Then, by the same reasoning which led to the former equations for

the single force, we find

Pi-fP,-fP,-f...=:2P=5 (3),

and ^{-‘Xy)= F^{x—Xy)-\-Pi{x—Xi)-\‘Ft{x—x^)-\rtXc. =M (4).

As before, 2A'=o. These expressions for the shearing forces and
the bending moments show that there is a simple relation between
them. For, on differentiating (4) with respect to Xy we have

...='^P=S (S).

Or, in words, though the absolute value of the bending moment
depends upon the positions as well as the magnitudes of the forces,

its rate of change along the beam at any place depends only on the

sum of all the forces up to that place, which is also the shearing force

at the place in question.

407 . Distributed Load.— It is obvious from (3), and the reasoning

which led to it, that, if the forces instead of being few and finite are very

many and correspondingly small so as to become practically a con-

tinuous or distributed load, still the sum of all the forces up to a point

expresses the shearing forces at that point, and we also see that this

stress will then be a continuous function of the abscissa. Hence, for

this case, we may again differentiate to Xy opeiating upon equation (5).

We thus find

dx^ dx
= (2 say • • (6),

where Q clearly denotes the total impressed force per unit length

at X.

408. Diagrams for Bending Moments and Shearing Forces in

Beams.—It is now desirable to consider how these reactions in beams
may be graphically represented. For the diagrams so formed illustrate

the relations just developed, and also lend themselves to the solution

of problems.

Take first the case of a horizontal beam held at or beyond x and
with vertical forces P^y P.>y I\ acting at x^y x^y jr, respectnely. And
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let us draw diagrams in which the abscissae represent lengths along
the beam, the ordinates representing m one diagram the bending
moments M and in the other the shearing forces The beam and
these diagrams are shown in Figs. 201, 202, and 203.

0 acje ar X

Fig. 203. Shearing Force Diagram

In the bending moment diagram the inclinations of the line are
denoted by and after the applications ofthe forces and
P^ respectively. And, since at the various parts in this diagram the
values of dMfdx are the tangents of the corresponding angles, we have
the general relations

tan (f)~dM/dx=^'2Ps::S (7).
^Ve may also represent the increase, of M between two



ART. 409] PLANE STA TICS OF RIGID BODIES 407

points, Xx and x say, as the areas of the shear diagram over that

range. For from (7) we have

Jxi

But, in using either (7) or (8), care is necessary as to the scales

used in the horizontal and vertical directions of the diagrams. Thus,
if the horizontal scale of the bending moment diagram were i inch to

the foot, and the vertical scale i inch to 10 foot-tons weight, a line

inclined at 45“ would have a tangent 10 when properly interpreted

instead of unity, as in ordinary geometry, where the scales are equal in

all directions.

The comparison of Figs. 202 and 203 shows instructively what
IS expressed by equations (6) and (7), namely, that the slope of the

bending moment diagram always equals the shearing force, and there-

fore any change in this slope equals the increase in the ordinates

of the shear diagram at the place in question. These changes in slope

occur abruptly because the loads afe discrete forces The next example
better illustrates equation (6).

409. Uniformly loaded Cantilever and Beam.—Let us now take

the case of a cantilever (or beam projecting from a wall into which it is

built) loaded uniformly along its length /, the forces being downwards
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and of distribution whose numerical value is 7 per unit length. Let
us draw the cantilever projecting to the right and take the origin of
co-ordinates at its free end with j upwards, as shown in Figs. 204, 205,

and 206, giving the beam itself and the two diagrams.

Then — 7, and by (6) 5= — 7^r . . ^ (9).

But by (5 ) dM= Sdx= ~ 7xdx.

Whence J/‘= — 7^*xdx= ^jx^l2= Qx*l2 . . (10).

Thus, since our abscissae are all negative S is by (9) positive, as

shown m Fig. 205 ; and Mis by (10) negative for any values of and
is accordingly shown negative in Fig. 206. We see from (10) that

the bending moment diagram is part of the parabola

(”)•

Hence its vertex is at the origin, its axis is vertical, and its branches
extend downwards.

If the length of the cantilever is /, we see that the maximum shear-

ing force at the root, where x~ — /, is given by — Also the

bending moment at the root, by (10) or (ii), on substitution of —•/ for

Xf is seen to be — 7/V2.

Uniform load

Fig. 209. Bending Moment Diagram,
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We may now very simply pass to the case of a beam supported at

each end with clear span of 2/ and a downward load of 7 per unit

length, i.e, as before Q= — 7. The diagrams for this case are given in

Figs. 207-209, and need little if any further explanation. It may
be noted that although the shear and bending moment diagrams seem
simply extended to twice the width by producing their lines, still in

the case of the latter (Fig. 209) the ordinates are all different, the

maximum moment being now at the place of zero shear instead of both
vanishing together as before.

In choosing the scale of ordinates for the bending moment diagram
it IS neither necessary nor in general convenient to represent by the

same height a moment J/=5xi, as was used in the shear diagram
to represent the shearing force S.

To avoid making the ordinates in the bending moment diagram
unduly large, 6'X one-third or half the length of the beam may be
represented by the same ordinate as .S itself in the shear diagram. See
also the next article.

410. Bending Moment Diagram a Particular Link Polygon.—It is

now desirable to note that the bending moment diagram as hitherto

drawn on a horizontal base is a particular form of the link polygon for

vertical forces.

To illustrate this, consider the case of a beam supported at the

ends and loaded at three points as shown in Fig. 210. From the data

there shown a force diagram is drawn as in Fig. 211, in which the

polygon closes to a single line BAG since all the forces are vertical.

Now let some point O be taken as pole and the rays OB, OWj,
OW„ OWg be drawn, and consider their slopes. Obviously, as we pass

from ray to ray, the change of tangent of the inclination is, on the

scales chosen, equal to the corresponding forces interposed between
those rays. Hence, if any one ray has the right slope for the corre-

sponding part of the bending moment diagram, they all have the right

slopes. Suppose is the reaction at the support at the origin in Fig.

210, and in Fig. 21 1 take AB=i?„ and let AO be perpendicular to AB.
Then, if ihe bending moment diagram begins with a slope parallel to

OB in Fig. 21 1, it is evidently right, on the understanding that the

scale of ordinates is such that a bending moment equal to (OAx AB) is

represented by AB simply. Then this first slope being right, the others

will be right if drawn parallel to OW,, OWg, and OW, respectively, the

junctions of the slopes corresponding to the points of application of

the loads W„ Wg, and W,.
Thus Rx being found, by calculation or a preliminary link polygon

with any pole O', and the pole O being taken as shown, the shear

diagram may be appropriately diawn, as in Fig 212, level with the

force polygon, the bending moment diagram being at foot as in Fig. 213.

If is determined by a link polygon with any pole O', that link

polygon may be retained as the bending moment diagram. But if O'
were not level with A in Fig. 211, as O is, then the bending moment
diagram so obtained would be on a sloping base parallel to O'A.

Oidmates could still be measured on it, as on the other, but it wquld



Fig. 213. Bending
MoMfeNT Diagram as

T.ink Foeygon, Q
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1

not be possible to apply to it the equations written for rectangular

co-ordinates and suppose them to be still valid as rectangular co-ordinate
equations.

The relation of the scales of the ordinates in the shear and bending
moment diagrams has been shown to depend upon the pole distance

OA. A full statement as to all the scales may be put as follows :

—

In all diagrams let i inch of abscissae represent a feet, and in the

shear diagram let i inch of ordinate represent a force of b lbs wt.

:

then, in the bending moment diagram, i inch of ordinate shall repre-

sent a bending moment of abc ft. lbs. wt. where c is the pole distance

OA, and the slopes of the bending moment diagram are parallel

to the corresponding rays from O.
For further information on these beam diagrams, such works as

Professor A. Morley’s Strength of Materials or D. A. Low’s Applied
Mechanics may be consulted.

Examples

—

LXXIX.
1. State how to find the reactions at joints of a frame, illustrating your

answer by a numerical example.
2. Explain the nature of the reaction between the two parts of a beam,

divided by an imaginary cross section, when one or more forces are

applied at places beyond this section.

3. Explain the terms shearing forces and bending moment as applied to a
beam under load, and obtain relations between the above quantities and
the load per unit length.

4. Make sheai and bending moment diagrams for a beam fixed in a wall

and loaded at two or more points.

5. Discuss the stresses in a beam resting on two supports and loaded
uniformly throughout its length Draw the diagrams for the shear and
for the bending moments, and obtain the equations of the curves.

6. ‘A bar AB equilibrium under the action of given forces
;
show bow

to find the resultant action exerted over the cross section at any point

P of the bar by the portion BP on the portion PA.
‘ In particular, if AB uniform bar resting on two supports at A and
^ in a horizontal line, what is the action between the two halves of the

bar ? Explain the result.'

(Lond. B.Sc., Pass, Applied Math., 1905, i 2 )

7. *A framework ABCD is formed of four similar uniform heavy rods freely

jointed at their extremities. The rod AB is of length 2a, the rod CD
of length and the rods AD., BC each of length a. If the framework
is suspended at the middle point of the rod AB., show th^ thejratio of

the reaction at an upper j'oint to that at a lower joint is • V43
’

(Lond. B Sc., Pass, Applied Math
, 1909, 1. 4.)

8. ‘ Explain the usual specification of stress across a section of a thin rod
subject to forces. How is the specification simplified in the case of a

flexible string ?

‘A girder 25 feet lon^ (whose weight may, for the present purpose, be
neglected), rests horizontally on smooth supports at its ends, and carries

loads of 4 tons, 10 tons, and 4 tons at distances of 7, 12, and 20 feet

respectively from one end. Make link and vector polygons for the

forces on the girder, indicate how the bending moment vanes from
point to point of the girder, and find its greatest value.'

(LoNp. 3,Sc., Pass, Appuep Math., 1910, i, 6

)
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CHAPTER XVIII

SOLID STATICS OF RIGID BODIES

411* Besnltants of any System of Forces acting on a Eigid Body.
Poinsot’s Method.—Let a typical force acting at (xx<, y\^ be denoted
by Px and have rectangular components Pi, and Zi, as shown in

Fig. 214.

Introduce at the origin the opposite forces OXj and OX'j, and at B
the opposite forces BXi, BX'j, all parallel to the axis of x and numeri-

cally equal to the X component
of Px. We have then five forces

which may be regarded as a

single one at the origin and two
couples. For the one at the

origin we must take OX, pre-

cisely like the X component of

Ply except for its point of appli-

cation. For the first couple take

the pair of forces CX, and BX'i,

which form the couple of mo-
ment -^XiZx in a plane parallel

to ZOX, so we may regard it as

having the axis OY. We have
now left the pair of forces BX,

and OX'i, which form the couple of moment — in the plane of xy

or about the axis OZ.
Thus any one component, applied away from all the axes, yields

an equal force at the origin along the axis to which it is parallel and
couples about the other two axes.

By introducing other pairs of forces equal to the Y component of

we can deal similarly with it, and then in like manner for the Z com-
ponent. Or, we may write these other values from those obtained by
symmetry alone.

We thus find that the Y component yields the force K, at the

origin, and the couoles Y^Xi about OZ and — YiZ^ about OX,
Similarly it is found that the Z component yields the force Z, at the

origin, and the couples about OX and — about OY.
Hence, summing up for the three components, we find that the

force Px yields forces X„ K,, and Z, at the origin along the axes OX,
OY, and OZ, together with the couples (Z,>'i— {XxZx—ZxXx)y and

( YxXx'^-Xyx) about the axes OX, OY, and OZ respectively. The same
would apply to the next force P^. with the necessary change of the sub-

scripts, and so on till all the forces of the system were dealt with. We

Fio. 214. Resultants of any Forces
ON Rigid Body.
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should accordingly have forces along the co-ordinate axes repre-

sented by +^,+^3+ . . . U
)

K.4-K3+y3+...=2r=FV . . . (i).

and 4.44. . . . =SZ= W]
The couples along the corresponding axes would have moments

l.{Zy-Yz)=L\
i:(Xz^Zx)^M\ (2 ).

l.{Yx~~Xy)^N]
The above three forces and three couples are called the six com-

ponetiis of the forces

We may then compound the forces Uy V, and ^Finto a single force

R acting at the origin and defined in magnitude by

(3)
and in direction by

U'~V^~W~'R
where /, and ft are the direction cosines of R.

Similarly the couples Z, M, and JV may be compounded into the

single couple (?, given m magnitude and axis by

(5 )

and ^=^=‘:=1 (6),LMNG ' '

where A, /a, and v are the direction cosines of the axis of G.

The processes of the foregoing reduction may be compactly
summarised as shown in Table xv. This at once forms an aid to the

memory, and offers a guide which it may be well to follow when dealing

with numerical examples.

Tabie XV. Reduction of Forces on a Rigid Body.

Forces
dealt

with.

Components of Forces
transferred to Origin

acting along

Co-ordinates of Points
of Application.

Moments of Couples about

OX OY oz X s OX OY OZ

A
y\ h

0

-yih
^lyi

- 1̂^1

0
- 2i.ri 0

A
A

A'l n
y. 2a

y\ »i

!?

”* Yt'Z^
1
1

%
H

y^a " x^^

sz ^
IIJ

SK 2Z ^{Zy- Vz)

= L
2{Xz-Zx)

rzM
S(yr-A»

R
Resultants.
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The force R is called the principal force at O, and the couple G is

called the principal couple at O. The components Z, JZ, iV" of are

called the moments of the forces about the axes. I'he legitimacy of the

term may seem almost obvious from the figure and the definition of

moments, but is further dealt with in article 414.

411a. Change of Base.—The base of reference O to which the

forces have been transferred has thus far been the origin of co-ordinates.

Suppose we wish to make the transference to some other point O' of

co-ordinates a^ bj and c.

We must then replace jr, and z in the previous expressions by
(x—a)^ (y—b)y and (z—c) respectively. But the expressions for the

components of R do not contain x, and z. Hence the principalforce

R is the same in magnitude and direction whatever base is chosen.

Let the components of the couple G for the new base be Z', M\
and N\ We then find

Z'=2{Z(y-/^)- K(^-^)}=Z~ Wb^- Vc
|

M' ^'l{x\z-c)--‘Z(x-a)\z=.M- Uc^ Wa\ . . ( 7 ).

N'^'l{Y{pc-a)-X(y--b)\^N-Va^Ub J

We accordingly see that the magnitude and axis of the principal

couple are in general different for different bases.

412 . Conditions of Equilibrium.—For equilibrium it is evident

that the resultants of the system of forces must vanish, i.e. for the

reduction already effected

^=oandG’=o (8).

But these involve the vanishing of each of the six components of

the forces, giving as the conditions

6^=0, F=o, fr=o (9),

and Z=o, M—o, N=o . . . (10).

Suppose the base is shifted to O', the principal force and couple

being now-^ and G We then have (9) as before, but (10) replaced by
Z'= o, J/'=o, and (ii).

But by
(7 ) we see that (ii) reduces to (10) when (9) is fulfilled.

Hence, for any base whatever, the conditions of (9) and (10) are

sufficient. It is not, however, necessary that the axes should be at right

angles. It may easily be seen that any oblique axes that are non-

coplanar will serve

It may be noted here that the six conditions of equilibrium

correspond to the absence of linear and angular accelerations of the

six possible modes open to a rigid body or in the six degrees of

freedom possessed by it.

418 . Components of a Force.—As seen from Table xv. of article

410, It is sometimes convenient, the sake of the possible addition^ to

consider as the six components of a force F the expressions

X, F, Z, Zy- Yz, Xz--Zx, and Yx--Xy . . . (12),

instead of regarding, as usual, its magnitude and the equations of its

line of action.
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To represent on this plan the line of action of the force apart from
its magnitude, we may temporarily write for the magnitude unity

Then, if (jr, v, z) are the co-ordinates of a point on the line and (/, n)

are its direction cosines, the six components of this unit force (or

co-ordinates of the line) are

/, w, k'=ny^mz^ii.=^lz—‘nXtV=mx--ly, . . . (13).

From which it is evident we have the relation

/A-f (14).

If the force along this line be -P instead of unity, it follows that its

six components are

FI, Pm, Fni FK />, Pi/ (15).

To compound several such forces we obviously have, using the

former notation,

U=^FI), F=2(P/«),fF=2(^«) .... (16),

Z=:^2{FX.),M^ 2{FfM), N=2{Fy) . . . .(17).

But it is clear that the relation

(18),

corresponding to (14), is not now necessarily true. It may be shown
later that when (18) holds then either (i) P=o, (li) (?=o, or (111) the

couple can be made zero by shifting P. (See ends of articles 415
and 420.)

414. Moment of a Force about a Line.—It was stated at the end
of article 41 1 that Z, M, iVare called the moments of the forces about
the axes. Let us now examine how this term agrees with the definition

of the moment of a vector with respect to a point. The latter was
defin'ed as the product of the vector and the perpendicular upon it

from the point (article 25(2). The same definition can obviously be
extended to the moment of a vector about a line, if that line passes

through the point previously named and is perpendicular to the plane
containing the point and the vector. Thus in dealing with coplanar

vectors we might speak indifferently of their moments about given

points in their common plane, or about axes through those points and
perpendicular to this common plane.

But, when the vectors and the axes are inclined, further definition

is needed. Thus, referring to Fig. 214 of article 41 1, what is the

moment about OZ of the force F of components X, Y, and Z applied

at the point {x, y, z) ? Let the moment of F about OZ be the algebraic

sum of the moments of its components about the same axis, and con-

sider as zero the moment of a vector about a parallel line. Thus the

moment of Z about OZ vanishes, and the moments of Yand X are

seen to be + Kr and —Py respectively. For these components lie

on the plane parallel to XOY and distant z from it, and this plane is

intersected at right angles at (o, o, a) by the axis OZ. Let two
inclined vectors Fx and P, be compounded and the moments be
taken about OZ of the separate vectors and of their resultant. Then
in each of the three cases the Z components give no moment and,

as already seen for the plane case, the moment of the resultant equals
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the algebraic sum of the moments of the components. Hence
adding the moments on this plan will correctly give that of their

resultant. And what holds for the axis OZ will apply to any other

axis.

Consider again the single force and let it make the angle with

OZ ;
then the resultant of X and Y will be the component of P parallel

to the xy plane, and will be jPsin
<l>.

Produce this line if necessary, and let fall upon it a perpendicular

of length p say, from the point (o, o, z) where the plane of the com-
ponents X and Y cuts OZ. Then obviously the moment of P about
OZ may be denoted by (Psm ; hence

Yx—Xy=:Pps\n<l> (19).

We may thus enunciate generally as follows :

—

Definition.

—

The product^ sin 4> is the jnoment about any straight

line AB of the vector P localised in a line inclined at the angle </> to

AB, the shortest distance between the lines being /.

The usual relation between rotation and translation is to be observed

in fixing the sign of the above product.

If the line in which the vector is localised is called CD, it is

obvious that the quantity p sin <l>
has reference to those lines only,

and that the numerical value of the moment is the same however P
acts along one line, the other being the axis of the moment. Thus the

product p sm
<f>
may be called the moment of either line about the other^

or thetr mutual moment.

Thus the principal couple of a system of forces, may be seen to

be the algebraic sum of the moments of all those forces about the line

which is the axis of G.

A more formal proof of this is as follows :—If we keep to the same
origin, R IS independent of the direction of the axes, for it is the

resultant of all the forces as if transferred to the origin. But if, by a

new set of axes with the same origin, we could obtain a different

couple G' say, then R and G' would be equivalent to R and G^ and
therefore R^ (r, —/?, and ^G' would form a system in equilibrium.

But this is impossible unless G'—G and their axes were coincident

or parallel. 'I'hat is, both in magnitude and direction G is indepen-

dent of the direction of the axes if the origin remains fixed. Thus,

since the direction of the axes is arbitrary, we may let the axis of

X coincide with that of G\ then Af=o, W=o, and G and Z are

identical. Hence G is the algebraic sura of the moments of all

the forces with respect to the straight line which is the axis of G,

Examples—LXXX.

1. Show how to reduce any system of forces acting on a rigid body to a

single force and single couple.

2. If, in the reduction of the former question, the base is changed, show
that the principal force is unaltered but that the principal couple usually

is alterei

3. State what is meant by the six components of a system of forces, and
express them in a second form.
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4. Explain carefully what js meant by the moment of a force about a line,

and show that the principal couple of a set of forces is the algebraic

sum of the moments of all the forces about that line which is the axis

of the couple.

415. Conditions for a Single Eesultant.—Having seen how to

reduce any system of forces acting on a rigid body to a force and a

couple, let us now examine the conditions for these to give a single

resultant, one force only.

Obviously one set of conditions would be

.^±oandG^=o\ , ^

or i7
,

r, and ff' not all zero, but Z= Ar=iV^=oj ' '

But a second set of conditions may be found. For, if both G and
R are finite btii at right angles^ as in article 364, they may be reduced
to an equal force shifted parallel to itself, as there shown.

The condition that G and R are at right angles is obviously that

the cosine of the angle 0 between them shall vaiiish. But

cos

_U L VM W

^

~ RG'^R G^R *

G'

Thus, the second set of conditions is analytically expressed by

LU’\-MV-\-NW^ 6
\ . ^

where F, and do not all vanish j

‘ ‘ ’ •

When (21) is satisfied the reduction to a single force proceeds as in

article 364. Thus the plane of the couple G is made to contain R and
to consist of a force opposite but numerically equal to R and applied

at the same point, and another force equal to R in magnitude and
direction but distant from it by the arm GjR, Hence the couple is

absorbed, R2X the original point is annulled, and we have left only the

equal force R transferred parallel to itself through the distance GjR,
We have now arrived at the proof alluded to after equation (18) at

the end of article 413. For, in (18) or the identical equation of (21),

(i) if we have U=. V= fF=o, then .^=0; (li) if Z=M=N=:Oj then

G=o ; and (hi) if neither (1) nor (11) is fulfilled, and G are each
finite but at right angles, and G may be absorbed by the shifting of R,
as just seen.

416. Line of Action of Single Eesultant.—Supposing there is a

single resultant for a system of forces acting on a rigid body, let it

he required to determine the equations of its line of action. We may
conveniently find these by shifting the origin to O', whose co-ordinates

are (a, by <r), writing the values for the corresponding moments
L\ M\ and iV", and then equating them to zero. For the single

resultant force acts through that new origin for which the couple
vanishes.

Thus, quoting (7) in article 4ii‘«i we have
Z'=X- Wb-\- Vc^o (32).

Wa^o (23).

(24).

2 D
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But, since there is a single resultant, we also have, as in (21),

LU^MV-^NW:=^o (25).

And this shows that the former three equations are not all inde-

pendent. For, if we eliminate c between (22) and (23), we obtain

LU-\-MV’\W{Va-~-Ub)^o (26),

and (25) and (26) give (24). We are thus confined to two of the

three equations of (22) to (24), sav (22) and (23), and these give two

relations for the three unknowns a, c, which accordingly may have

an infinite number of values subject to these conditions. That is,

(22) and (23) do not determine some one definite point O' of fixed

co-ordinates (a, b^ but define a locus of O'. Hence, writing the

current co-ordinates and z instead of a, by and Cy we have

Z— Wy-\- Vz—o\
M-Hzi‘fVx=oJ (27).

which are the equations of a straight line any point in which is an

origin O' for which the couple G vanishes. In other words, these

equations are those of the line of action of the single resultant force E
to which the system was reducible. They may be thrown into the

form
x^M/ lV_y-L/ W_ z

UjR ~ VjR WjR

showing that the line has direction cosines UlRy VjRy and WjRy as

we know should be the case, and also that it intersects the xy plane at

the point whose co-ordinates are
(— J// IVy Z/ IV).

417 . Reduction to Two Forces.—We have already seen that any
system of forces acting on a rigid body may be reduced to a force and
a couple, which, under certain conditions, may be a couple only, or

even a single force only. But we may now notice that though these

further reductions are particular, we may in all other eases reduce the

system to two forces. We may also make one of them act at an
assigned point and give to the other an assigned value.

Thus, suppose the system has been reduced to the force R and
couple G for the base or origin O. We may then consider the couple

to he composed of any two unlike parallel forces F and —Z’ distant

fr/Z apart, —Z acting at O, and both in the plane through O perpen-

dicular to the axis of G, These two forces may, of course, have any
orientation we choose provided they are in the above plane. We
may then compound R and —Z at the origin, giving the resultant

S say.

Thus the system has been reduced to two forces S and Z Further,

since the origin may be anywhere we choose, one of the forces S may
be made to pass through any assigned point.

Also, since the magnitude of Zwas arbitrary, we may choose it to

have any assigned value, though, of course, this choice modifies the

magnitude and direction of the S thereafter determined.
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418. Equilibrium of a Body with One or Two Points Fixed.

—

Take first the case of a rigid body acted on by any applied forces and
with one pointfixed^ which we will choose as the origin of co-ordinates.

Then these forces will produce on the fixed point a pressure whose
components may be denoted by X\ Y\ and Z’. Hence, using the

former notation, we have

U-X'^o, V- r=o. lV-Z'=o .... (i).

Z=o, M=Oy N=^o . . .... (2)

Thus, (i) gives the pressure components at the fixed point, and (2)

gives the three conditions of equilibrium, viz. that the moments of the

applied forces shall vanish with respect to any three rectangular axes

meeting in the fixed point. It is easily seen that these three conditions

correspond to the three degrees of freedom possessed by the body.

Take now the case in which two points are fixed. Let the axis of z

pass through both points, their distances fiom the origin being 21' and
z\ and the components of pressures being X\ Y\ Z\ and X'\ Z".

Then we have

C/^X'-X"=o, Y-r---r'=^o (3).

= o (4).

Z+K'2'+rV'= o, .If-A'V-ZV=o (5).

yV=o . . (6).

Hence the four equations (3) and (5) determine the components
X\ Y, X'\ Y" of the pressures on the fixed points, while (4) give->

the sum of Z' and Z", it being impossible to discriminate between
them for an ideally rigid body.

Finally, (6) gives the sole condition of equilibrium, viz. the vanish-

ing of the moment of the applied forces about the line through the two

fixed points, which obviously corresponds to the sole degree of freedom

left to the body.

419. Fquilibxium of a Body with Three Points on a Smooth
Plane.—Let the plane be that of xjiy the co-ordinates of the points of

contact being (x^y^ o), {x'\ y\ o), (x'\ y"\ o), the corresponding

pressures of the body on the points being Z\ and 7J'\ Then the

equations are

U^Oy V==o (7).

JV-Z'-Z"-Z'"=o (8).

z-zy- zy'- = o\
M^Zx'-hZ"x'yzv=^oj • ;

(9)-

N=zo (10).

Hence, of these six equations, the three contained in (8) and (9)

determine the pressures Z', Z", Z"' exerted by the body on the plane

;

while the other three numbered (7) and (10) form the conditions of

equilibrium corresponding to the three degrees of freedom still left to

the body.
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Examples—LXXXI.

1. If a set of forces applied to a rigid body have the components and
W parallel to the co-ordinate axes and the moments Z, M, and N about
them, show that they all reduce to a single force if Ll) MV+NIV
-o and Z, and iVare not all zero.

2. When a general system of forces may be reduced to a single resultant

force, hnd the equation to the line of action of that resultant.

3 Show that any system of forces in three dimensional space may be
reduced to two forces if not to one.

4 State the conditions of equilibrium of a rigid body with no points fixed,

and show to what these reduce if two points are fixed.

5. If a rigid body is constrained to have three points m contact with a

plane, obtain the piessures on these points under any set of applied

forces, and find also the conditions of equilibrium of the body.

420. Reduction of Forces to a Wrench.—Wc have already seen

(article 411) how to reduce a set of forces to their six components
Z, lY, C/y /Kand thence to a couple G and force It is

now desirable to note how they may be still further reduced to a single

force and a couple in a plane perpendicular to {t\e. with axis parallel to)

the direction of the force. Such a combination is known as a wrench^

this use of the word being due to Sir R. Ball.

Let the axis of G be inclined at the angle B to the direction of R as

shown in Fig. 215. Resolve G into its rectangular components OQ
= 6^cos^ and OS=G^sin0, with axes along and perpendicular to the

direction of R. Further, let the

component couple OS be repre-

sented by forces --R at O and
R* at O', each parallel and nu-

merically equal to /?. Then 00'
is obviously perpendicular to the

plane of R and the axis of G^
and its length is i^G sin 0)//?

Further, R and —R each applied

to O annul each other, so we
are left with R at O', equal and
parallel to the original i?, together

with the couple 0Q=6r cos

with Its axis parallel to the

original R.
Since the axis of a couple may be regarded as shifted to any

parallel line, we have thus a single force R at O' and a couple,

(9 cos 0=zV say, with axis coincident with the line of action of this force.

We have accoraingly reduced the forces to a wrench^ as was
desired.

The axis O'R', to which the force R has been transferred, is called

Poinsofs Central Axis. It is obviously constructed as the line through

O' parallel to R, where 00' is perpendicular both to R and to the axis

of Gi of length 00'=(6^sin 0)1 R.^ and of direction such that the couple
6^ sin 0 would carry O' in the direction of R\

Fig 215. Reduction to Wrench.
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And the wrench, to which we have reduced all the forces, is the

forced along this central axis, together with the couple r=6^cos^
about the central axis.

Since the cosine of the angle between two lines is the sum of the

products of their corresponding direction cosines, we have for the angle

0 between R and G
RV^RGc.o^e=^LU’\-MV^N\V^l . . . . (i),

where / is an invariant for the given forces. For, however the base
is changed, V, and remain unaltered. And if Z, AT, and jVare
changed to Z', M\ and JSI by shifting the base, it may be seen (from

equation (7) of article 411a) that the above sum of three products is

not changed thereby.

Thus for 7=0 we have either R=o or r=o, which is another
proof of the statement at the end of article 413.

To obtain the equations of the central axis, take any point (^, z)

on it and form the expressions Z', AT, IT for the moments of the forces

about parallel axes through this new origin (see equation (7) of article

41 la). Then, since the central axis is parallel to Ry these moments are

proportional to Uy Vy Wy the components of R. The symbolic ex-

pression of these relations gives the equations desired for the central

axis, viz.

X- Wy^ Vz_M-- Uz’h lVx__N-- Uy_ I /
^

U ~
~V ~ W ~

The final expression on the right is obtained by multiplying the

three on the left by tTy and respectively, adding, and remem-
bering (i).

If Uy Vy and W all vanish, (2) fails to give the equations sought.

But in this case R is zero, and any straight line parallel to the axis of

G is the central axis

We may now show that the couple of the wrench has the minimum
value for the principal couple.

Let any base be chosen, and denote by G' and Z', A/', N' the

corresponding principal couple and its components. Then we have
already seen that

LU-^-M'V^N'W^LU^-MV-^^NW^I . . (3).

We may also write

And, by using (3), this may be thrown into the form

= {N* F-M' ivy+ (z' IV- A''uy
-^{M'u-rvy+r (4).

But, as both R and / are invariants, the minimum value of G
obviously corresponds to the vanishing of each of the three bracketed

squares of (4).

Hence by (i)

R'Gl,, = or
(S).
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421. Tripod by Virtual Work.—Let us now apply the principle of

virtual work to the solution of a few problems of equilibrium of bodies

or systems in three dimensions.

Take first the case of a weight IV hanging
D from the freely jointed summit of a tripod ABCD,

Fig. 216, whose legs have each the length

/ and whose feet touch a smooth horizontal plane

/ I \ corners of an equilateral triangle of side

/ 1 \ s, and are there bound by a string whose tension

/ r.s to be found.

All being symmetrical, it is evident that the

vertical from D meets the triangle ABC at the

B point F, where AF is 2/3 of AE and E is the

Fig. 216. Tripod BY "Middle point of BC. Thus K'S.-s and

Virtual Work. Denote by .4 the height FD, then we
have

(i).

Hence, on differentiating, we obtain

^hdh-\-sds^o (2).

But, by the principle of virtual work, we have

Wdk+T{^ds)=^o (3)

Thus the comparison of coefficients in (2) and (3) gives

m^=^ 3 Tls,

T s ^

lV^gh~~g Ja^~-s*Js
’

* ’

Pile of Four Equal Spheres.—Let us now imagine three equal
smooth spheres in contact on a smooth plane and encompassed by a

fine thread in contact with them in the horizontal plane through their

centres, the thread having no tension until a fourth equal smooth sphere
of weight W is placed on the other three and in contact with them all.

It IS required to determine the tension T' of the thread.

This problem, so different in the form of the bodies composing the

system, is easily seen to be essentially the same as the tripod just

treated, except that now a= s.

Thus (4) yields for this case

T I

422. Biftlar Suspension by Virtual Work.—Let us now consider

the relation between the couple G about a vertical axis and the angle

Q of twist which it can maintain in a bifilar suspension^ whose equal

threads have length the distance between their fixed points of sup-

port being 2^, and the mass they carry being M. The bifilar suspen-

sion is shown in Figs. 2 17-2 19, the full lines representing the displaced

position and the dotted lines the equilibrium position.

When the bar of the bifilar is turned through the angle B about a

vertical axisj let its depth below the fixed points CD be decreased from
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a to h. Next imagine the virtual displacements dO and dh^ then we
have the relation

GdO-\-Mgdh^o (i),

which states for this case the principle of virtual work. It is accord-
ingly the only mechanical relation needed, the others required being

Fig. 217. Side Elevation. Fig. 218. Edge Elevation.

(C)

Three Views of Bifilar Suspension.
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obtainable from the geometrical conditions. In deriving these it is

convenient to use the angle </> with the vertical assumed by the threads

in their displaced positions. It should be noted that this angle is not

seen at its true value in either of the elevations, for in neither case

is its plane coincident with that of the diagram. In the figures, AB
denotes the equilibrium position of the bar, EF its position if raised

(a-^h) parallel to itself, PQ its position in the actual displacement in

which it turns through the angle 0 about the vertical through its centre

and at the same time rises vertically by (a— h), the threads swinging till

at the angle with the vertical in oblique planes.

Then by the plan, Fig. 219, we have

EP=FQ==2/^ sin 0/2,

and by it and the elevations we see that

EP=FQ=a sin </>.

Hence <2 sin <^=2^ sin 2 (2).

Again, by the elevations, we have

A=acos<f> . ... (3),

which completes the required geometrical equations. We must now
eliminate

<f>
between (2) and (3), differentiate the equation so obtained,

and use the result in (i).

We thus find in turn

and

sin*<^=a‘— sin“^/2,

0 0
2hdh^—/[b“ 2 sin — cos —

dh^-
sin d

sin

-,de .

And this in (i) gives the exact result

Mgb'^ sin 9

y/«*— 4^* sin*-^

(4)

( 5 ).

Whence, when 2b sin
2

is small compared with we have the

approximate result

^ Mgb^ sin 6
G-= —

—

a (6).

For the work done in twisting the bi filar through the angle P from

the equilibrium position, we have from (6) the approximate value

W-rr(^Gde=.^-{T.-COsP). . . ( 7 ).
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Lxamples—LXXXII.
1. Reduce any system of forces to a wrench^ and show that the couple then

involved is the minimum for the system in question
2. Apply the principle of Virtual Work to obtain the couple required to main-

tain any specified angular displacement of a bifilar suspension.
3. A horizontal bar of ladius of gyration k about a central vertical axis is

suspended by two parallel threads each of length a and at a distance ib
apart.

Show that if slightly disturbed the bar will oscillate in the period given
by

4. ‘ (i) A bar AB^ of weight IV, is guided by rings at its ends so that A can
move on a smooth horizontal rail OX, and on a smooth vertical rail

Oy, Employ the principle of Virtual Work to evaluate the horizontal
force at A necessary to maintain equilibrium when the angle OAB
is 6.

‘ (11) A nut of weight IV is mounted on a fixed smooth screw of pitch p,
whose axis is inclined to the vertical at an angle a

; what couple is

required to keep the nut from moving ?’

(Lond. B.Sc., Pass, Applied Math
, 1908, i 7.)

5. ‘Three equal spheres are lying in contact on a horizontal plane and are
held together by a string. A cube of weight W is placed with one
diagonal vertical so that its lower faces touch the spheres, and the cube
IS supported in this position by the spheres

,
show that the tension

in the stung is

iv/flf'’
(Lond. B.Sc., Pass, Applied Math., 1908, 1. 8.)

422a. Alternative Proof for Bifilar Suspension.—For threads of
length a sustaining a v/eight f^and at distances apart 2b at top and 2c
at bottom (or vice versa) let the inclinations of the threads to the
vertical be very small for the angle of twist 0. Also let the bottoms of
the threads be thereby displaced horizontally a distance r each, and let

/ be the perpendicular let fall from the centre of the cross-bar upon r.

Then the couple G may be written as follows —
Cr=2 (Horizontal component of thread tension) effective arm,

“"(t w
since pr and be sin 0 are alternative expressions for twice the area
of a triangle seen in the plan of the bifilar.
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PART V.—HYDROMECHANICS

CHAPTER XIX

HYDROSTATICS

423. Natures of Fluids, Liquids, and Gases.—In this, the fifth part of

the present work, we consider the rest and motion of fluids, forms of

matter offering only very small resistances to changes of shape how-
ever large, provided only that time enough is allowed in which those

changes may occur. This distinguishes them from rigid bodies which
are supposed to retain their exact shape under all circumstances, and
from elastic solids each of which exhibits a certain nearly constant ratio

between its almost instantaneous changes of shape and the external

actions to which those changes are ascribed.

If the resistance offered by a fluid to even a sudden change of

shape is quite negligible, the fluid is said to be very mobile or of

negligible viscosity, 'I'his last term denotes a property really possessed

by all fluids and which, in the case of sufficiently sluggish fluids, needs

taking into account according to a quantitative definition. It is obvious

that in the present chapter on the statics of fluids we are not concerned
with viscosity, for we examine the equilibrium state after sufficient tune

has been allowed for all motions to cease. And in the next chapter

on the motions of fluids we shall, for simplicity’s sake, exclude all

notions of viscosity (as being negligible) except where it is expressly

introduced.

We may now subdivide fluids, discriminating between liquids and
gases. Liquids are fluids whose volume per unit mass are practically

independent of the pressures to which they are subjected
,
m particular,

the specific volume is finite when the pressure is almost at zero. In

other words, the density of a given liquid is practically constant and
its specific volume always finite. Gases are fluids whose volumes per

unit mass may become as large as we please by our suitably diminish-

ing the pressure to which they are subjected In other words, the

density of any gas is a fairly simple function of the pressure such that

its specific volume has no finite limit. We may accordingly sum up
the chief points of distinction by the semi-popular remark that a solid

body has both size and shape, a given mass of liquid has size only,

while for a given mass of gas there is neither shape nor size. Hence a

solid body requires no vessel to hold it, a liquid requires no lid to the

vessel, but a gas needs both vessel and lid, or it would expand to fill all

the exterior space open to it.
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In the case of gases near the change of state called liquefaction, the

relations between pressure and volume are often much more compli-
cated than the ideal simple forms which ordinarily represent them with

sufficient accuracy. The fluid is then called a vapour. But with the

details of these complexities we are not here concerned. They must be
studied in physical rather than in mechanical text-books.

424. Hydrostatic Pressure Independent of Direction — In a fluid at

rest take a small triangular pyramid OABQ be unded by the three

rectangular co-ordinate planes and a base ABC of area A whose
perpendicular distance from the origin

has length h and direction cosines /, rriy n.

And consider the equilibrium of this

pyramid under the forces F, Z per

unit mass parallel to the axes, the normal
pressures Py Qy R on the mutually rect-

angular faces meeting at O, and N on
the oblique base, as shown in Fig 220.

It should be noticed that whether the

fluid has appreciable viscosity 01 not,

these pressures must be normal since

the fluid IS at rest ^
Then, by the geometry of the figure,

Hvorostaiic Pres-
the areas of the three mutually rect- s^re iNDEPENOENr of
angular faces are respectively /A, wA, Direction.
«A (since their inclinations with the

base are those between the axes and the normal h ) ,
also the mass

of fluid in the pyramid is J/oM where p denotes the density. Hence,
taking components parallel to the axes, we have

i^/A-yF/A+J/i/a'A=o (i)

and two similar equations

But when, to make the pressures P, Q, R, and iVall act at the same
point O, the pyramid is indefinitely reduced in size, its volume J/^A,

being of the third order of small linear quantities, vanishes in com-

paiison with A, which is of the second order only. Hence, each

eciuation reduces to us first two terms, and the set simplifies to

P=N\
<2=^

\
(*)•

Or, in words, the hydrostatic pressure of a fluid in equilibrium on

any small surface through a given point ac/x normally to that surface but

is otheiwise independent of its aspect. Or again, the normal of the

suiface IS the direction of the pressure, its magnitude remaining the

same for all orientations of that surface.

425. Fundamental Equations—Considei a small parallelepiped

of edges a, /?, and 7 parallel to the co-ordinate axes, and let it be occu-

pied by fluid of density p in equilibrium under the pressures and the

forces Xy K, and Z per unit mass I.et -^-p be the positive pressure
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on the /?7 face at the negative end of the element and — the

corresponding pressure on the opposite face. Then, taking all

components parallel to the x axis, we have the condition of equi-

librium

/^y-/Py+paPyX=o (3).

But p' —p-\-adpldx^ and accordingly p—p'=i—adpldx. Thus (3)
and the two similar relations for the other axes yield the set

"y-t- (4).

These are the fundamental equations of hydrostatics, and show that

the space rate of increase of pressure in any direction equals the applied

force per unit volume in the same direction.

426 . Pressure and Depth in a Liquid—For the case of a liquid of

constant density p in equilibrium under gravity only let us take the z

axis vertically upwards. Then we have

X=Y=o,Z=-g (5).

And these, put in (4) of the last article, give

(6\

(?)•

Equation (6) shows that the pressure is constant at all points in

any horizontal plane. It therefore agrees with the common statement

that ‘water finds its own level’; or the familiar experiment of Pascal’s

vases, in which the liquid reaches the same level in any limbs of a

complicated vessel of communicating parts of bulbous and other

forms.

Since the density p is supposed constant for our liquid under all

moderate pressures, equation (7) yields

j ‘ip=-pgl

or p-p<,=pg{zo-z)=pgh (8),

where p^ is the pressure at some standard height (say the free

surface of the liquid), h being the depth of z below Zq.

If either p or ^ vary, or both, (8) would need modifying by keeping

these variables under the sign of integration and dealing with them as

functions of z.

Since the pressure, or force per unit area, is quite independent of

the area, the ratio between forces on given movable surfaces in

contact with the same liquid may be magnified as much as we please

by correspondingly magnifying the ratio of the areas of those surfaces.
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Thus if the same pressure p is exerted by a liquid on the plunger of

a pump of radius a and on the ram of radius 6 in a. hydraulic press,

the corresponding forces being P and we have

FIQ=pa^lpP=a\fP . . ... (9).

Hence with ajd one hundredth, we have PjQ one ten thousandth.

Or one pound weight on the plunger gives a force of 10,000 lbs. wt

(or nearly four and a half tons weight) on the ram The fact that, by
means of an intervening fluid, a small force can be made to balance a
much larger one is often referred to as the ‘hydrostatic paradox.’

The above expression given in (9) is, of course, easily obtained on
the principle of virtual work by the kinematical relation between the

two corre')ponding displacements possible to the plunger and ram
connected by the liquid, supposed incompressible.

The principle of this article as contained in equation (8) has many
applications scientific, technical, and familiar. Thus the method of

determination of densities of liquids by balancing one against another
in a U-tube, the use of siphons and pumps, may be mentioned here,

but call for no detailed treatment.

427. Besultant Force on a Submerged Plane Area.

—

l ake the

axes of X and y in the upper surface of the

liquid and that of z vertically downwards
as shown in Fig 221, ABCD being the area

inclined at an angle 6 with the vertical.

Take a point E in the plane at a depth
FE=2 below the free surface of the liquid,

and through E take the horizontal line BD
in the plane. Take also in the plane a

parallel line at a depth z-\-dz so as to cut

off a slice of the plane of width ^s/cos 6.

Then, if the length of BL) is denoted by /,

we have, as the force due to the liquid

pressure on oce side of this element, the

expressions

<*>’

the pressure /o being that on the free surface of the liquid. To
obtain the resultant force on the whole surface due to the liquid we
have simply to integrate (i), because since the area in question is

plane, all the forces of the liquid pressures on it are parallel. We
thus find

where c and a are the limiting depths of the plane ABCD, S its area,

and h the depth, JG, of its centioid G below the level of the free

surface of the liquid of density p.

Where is zero or negligible the expression for R obviously

0

Fig 221. Fokcfs on a
Plane Area
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reduces to its last term, which gues the pressure due to the liquid only.

It IS worth noting that the magnitude of this term expresses the weight
of the column of liquid that would stand vertically on the area ABCD
if rotated into the horizontal plane through its centroid

;
the direction of

R IS, however, normal to the plane in its actual position as shown.
The vertical component of R is evidently

R sin d^p^S sin B-\-pgSh sin Q (2tf),

showing its value to be that of the weight of the vertical columns of

fluid standing on the area in question in its actual inclined position.

Examples

—

LXXXI 1 1.

I Discuss carefully the distinction between solids and fluids and that
between liquids and gases

2. Show that the hydiostatic pressure of a fluid at a point is independent of

the orientation of the suiface on which it presses.

3. Obtain the fundamental equations of a fluid in equilibrium under speci-

fied forces, and apply them to the state of a fluid at rest under the

action of gravity only.

4 Find the relation bet\/een pressure and depth from the fiee surface of a
heavy liquid

5. Obtain an expression for the resultant force on a plane area submeiged
m a heavy liquid and also one for the vertical component of this foice

6 ‘ Prove that the average thrust per unit aiea of a liquid on a plane aiea
immersed vertically is equal to the pressuie intensity at the centroid of

the area.

‘The water upon one side of a dock gate 15 feet wide is 10 feet deep and
upon the other side is 20 feet Taking the gate as rectangular, find the

resultant thrust of the water and its line of action ’

(Lond B Sc
,
Pass, Applied Math

, 1905, iii. 9.)

7. ‘ If at any point P in a perfect fluid a small plane area is imagined as

sepaiating fluid on one side from fluid on the other side of the area,

and if the direction of the force exerted over this area by the one part

of the fluid on the other is always normal to the area, whatever be the

aspect of the area at prove that the magititude of the force is constant
for all positions of the area

‘ A canal lock gate is 12 feet broad, and the depths of the wate’* at oppo-
site sides of the gate are 16 and 10 feet; find, in tons weight, the

magnitude of the resultant water pressure on the gate, assuming that a

cubic foot of walei has a mass of 62*5 lbs ’

(Lond BA, Pass, Applied Math
, 1906, ii i

)

423. Centre of Pressure.

—

We have just found the resultant force

of the liquid pressures on a plane area and know its direction. We
have now to find a point on the line of its action This point, if taken

in the plane itself, is called the centre of pressure. Obviously its

position sideways, or in the horizontal direction, is simply that of the

centroid of a lamina of the same shape as the plane area in question,

but of surface density proportional to the depth below the free surface

of the liquid. We arc therefore concerned now simply with the depth

z of the centre of pressure below the liquid surface. To find this we
consider moments of the horizontal components of the forces about

the surface of the liquid, which we still take as the xy plane, referring
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again to Fig. 221. Draw any vertical plane whose intersection with

ABCD is a horizontal line, then S cos 6 is the aiea of the pi ejection of

ABCD on this vertical plane, and our horizontal components will be
perpendicular to this vertical plane. We shall also need symbols for

the radii of gyration of this projection about horizontal lines m the

plane of projection. When this line or axis is in the free surface of

the liquid, or xy plane, let A' be the radius of g\ ration, k denoting the

corres})onding value for the parallel axis through the centroid of the
projection.

Then, writing II for the horizontal component of pressure on the

whole surface and M for its moment about the xy plane, we find

and

zidz=pgShcoh 6 . . . .

z^/dz— cos 6 .

Thus, for the depth of the centre of pressure, we have

(3).

• • (4).

li h h ~ •

The pressure, if any, on the free surface of the liquid is here
supposed negligible.

We accordingly find that the dejiths of the centroid and of the centre

of pressure of a plane area below the free surface of the liquid are

related to each other like the corresponding distances of the centroid

and centre of oscillation of a physical pendulum from the axis of sus-

pension (aiticle 258)

429 . Resultant Force on a Closed Surface —Consider any closed
surface S described in a liquid at rest 111 equilibrnm as shown m
Fig 222, in which the axes of x and y a,}

e

taken horizontally in the
free surface of the liquid and that of z vertically downwards. Take, in

the volume enclosed by S, any prism AB
with axis horizontal and of an infinitesimal

ciobs section. Let the pressure at this level

bepy and denote by dS the area of the inter-

section of the prism with the surface A at

A. Then the force on this base of the

prism due to the liquid pressure is pd^y

and, if Its normal is inclined 0 with the

horizontal, the horizontal component of

this force is pdS cos B. But dS cos 0 is the

area, d^r say, of the fiormal cross section of

the prism, so the horizontal component of

either cn6. force is the symmetiical expres-

sion pd(T. Hence the horizontal component
of the inward forces on .S at A is opposed by one of equal magnitude
at B, so that the resultant horizontal force on this prism is zero. And
as this applies to any honzontal prism parallel to the axes of x or v* or

0 EX

Fig. 222. Rfsultant on a
Closed Surface.
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oblique to them, and at any level, it is clear that the horizontal com-
ponent of the resultant force on the entire closed surlace S vanishes

Consider now, in the closed surface 6', any vertical prism CD, and
produce it to E in the free surface of the liquid.

Then, by what we found at the end of article 427, the vertical

components of the forces due to the liquid at C and D are each equal

to the weights of the columns of liquid which could stand on C and D.
Hence, taking these forces inwards on the closed surface 6’, we see that

they are in opposite senses, and have for their resultant a vertically

upward force equal to the weight of the column of the liquid CD
extending between the lower and upper limits of S along the vertical

prism in question And this is true whether there is one liquid only,

or two liquids, or more round the surface S
Accordingly, the resultant of all the inward forces on the closed

surface S, due to the pressure of the surrounding liquid (or liquids) at

rest in equilibrium, is a vertically upwardforce^ equal to the inei^ht of the

liquid {or liquids) occupying the interior of A, and acting through the

centre of gravity of the liquid {or Itqutdd) so contained. The centre of

gravity of the liquid (or liquids) thus contained by the closed surface

A is called the centre of buoyancy of S under the circumstances in

question.

Corollary i.— If the closed surface 5 be that of a solid body intro-

duced into the liquid, it is evident that the body will be subject to the

resultant force just described, which is now the weight of liquid (or

liquids) displaced by the body Usually some other force is required

to keep the solid in equilibrium beside that of the liquid pressures

This may be supplied by a thread attached above and from which the

body hangs, if it is denser than the liquid If, on the other hand, the

liquid IS denser than the body, then the latter may be tethered down
by a thread attached below, or the body may be held by a sinker or

cage of denser material suspended from above.

Such devices are used when finding the densities of bodies by the

hydrostatic balance Thus, a body first m air and then in water is

balanced each time by weights in air, and the difference in giams gives

its volume in c.c (nearly). Then the density is found as the quotient,

mass divided by volume.
Further, by taking into account the weight of the air displaced by

bodies and by the weights of the balance, the weighings may be reduced

to vacuo when extreme accuracy is desired.

Corollary 2 — If the closed surface S were at a great depth in an
incompressible liquid of small density, we might have a considerable

pressure, but differinp^ only very slightly at the upper and lower limits

of Sy the weight of the liquid displaced by A" being correspondingly

small. Hence, if the depth of S below the free surface were continually

increased while the density of the liquid were proportionally diminished,

we might maintain the pressure finite while the weight of liquid dis-

placed by S and the diffcience of pressures at top and bottom of S
each vanished. We may accordingly state that the resultant of any
uniform normal pressuie on any closed surface is zero.

Corollary 3.—Knowing the resultant force for a closed surface and
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for a plane surface we can deduce that for an unclosed surface, if

closabie by a plane; e.g the curved surface of a cone.

430 , Floating Bodies —Let a body float in equilibrium partly

immersed in one liquid, the upper portion of the body being in an-
other liquid or fluid, all in equilibrium as m
Fig 223.

Then the body is in equilibrium under
the action of two resultant forces — (i) its own
weight W acting vertically downwards through
G, the centre of gravity of the body, and (2)
the force R equal to the weight of fluids dis-

placed^ and acting vertically upwards through
the centre of buoyancy H. Hence we have
A^= ^ (i),

also

G and H are in the same vertical line (2),

as the conditions for equilibrium
;
for these

ensure that final resultant forces and torques

are each zero

If the upper fluid be air and the lower any liquid, it is often near
enough for practical requirements to neglect the part of R contributed

by the air. We then obtain the special forms of (i) and (2) known as

the Principle of Archimedes,^
The hydromfters of fixed or variable immersion are scientific

devices for obtaining the densities of solid and liquids by application

of this principle.

431 . Stability of Floating Bodies: Metacentre.—Having seen
what are the conditions for the equilibrium of floating bodies, it is now
desirable to examine the stability of that equilibrium and the circum-
stances on which it depends Any shift of a floating body can be
regarded as made up of translations and rotations The only translation

with whicii we can be concerned here is a vertical one, and foi this the

equilibrium is obviously stable We turn therefore to the question of

the stability of a floating body when slightly tilted but without change of

the volume V of liquid displaced, which may be called its displacement.

Let this tilt occur in the plane of the diagram Fig 224, which may
be regarded as a cross-sectional elevation of a boat. Fig. 225 shows a
sectional plan of the same boat at the water-line, AKBL being called

the surface of flotation, whose area we shall denote by A.

Instead of drawing the boat twice, in the equilibrium and tilted

positions, It is shown once only, viz. upright, the water-level being

shown horizontal by a full line AB, corresponding to the boat’s

equilibrium position, and again by the broken line A'B', inclined dO,

corresponding to the boat’s tilted position. Thus, since the volume
displaced by the boat is to be the same in each position, the wedge of

1 That IS, required to replace the body if remo\ed and yet preserve the interface of the

fluids unshifted
2 For further details see The Works ofArchimedes, etc., T. L. Heath (Canib.), 1897

;

or Mechanics of hluids, pp 95-96 (London), 1915.

Fig. 223 Floating
Body.
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K

Fig. 225. Sectional Plan of Boat.
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immersion FBB' must be equal in volume to the wedge of emersion
FAA'. This circumstance serves to define the position of F where the

wedges meet. For, take the origin at F, and let the positive direction

of X be from F towards B, and at the distance FP=a; take a small

vertical prism of horizontal cross section dS and extending from P to P',

the height {x tan dB) of the wedge of immersion at the place. Then
the volume of this prism will be tan dO.xdS And, when we pass to the

wedge of emersion, x will be negative and make the volume negative.

Hence, by integrating the above expression over the whole surface of

flotation (AKBL, Fig. 225) we obtain the addition to the displaced

volume V caused by the tilting. But this addition is zero, accordingly

we have
/•B

o= tan//^l xdS—i2iV\dB.Sx (i),

Ja

where x is the distance of the centroid of S from F. We thus see that

»= 0 (2),

or the centroid of S is on the line through F perpendicular to the plane

of Fig. 224. In other words, the wedges of immersion and emersion

meet on a line passing through the centroid of the surfaces of flotation.

We shall let F represent this centroid in each figure.

Let H and H' be the respective centres of buoyancy in the

equilibrium and slightly tilted positions, and let the verticals through

them in each case meet in M, then M is called the metactntn of the

body for the type of tilt in question, i.e.^ in the present case, for

rolling.

The metacentre must be located to determine the behaviour of the

body for the tilts under consideration, and its position depends only on
the form of that part of the body which is immersed. But to determine

the stability of the body, when loaded so as to sink to the given mark,

a knowledge of the position of G, the centre of gravity of the floating

body, IS also required. For, in the tilted position, we evidently have a

force equal to the weight W of the body acting down through G
parallel to MH', and an equal force Vpg acting up through H' along

H'M, and to the displacement of a volume V of liquid of density

p. These forces foim the restoring or righting couple, if G is below

M
;
the couple vanishes if G coincides with M, while the couple tilts

the body farther if G is above M.
To locate M we may conveniently find HM. To do this consider

the body in the tilted position and, about the axis of tilt through F,

take the moments of the buoyancy due to the liquid displaced. We
may write two expressions for this moment, one regarding the total

force Vpg acting through H', and another regarding the volume
displaced in the tilted position as made up of (1) the original volume in

the equilibrium position, (ii) minus the wedge of emersion FA A',

(ill) plus the wedge of immersion FBB\ But the wedge of emersion

has a negative moment about F, so taking this wedge away adds a term

to the moments, just as adding the wedge of immersion does (since its
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moment is positive). We thus obtain the following equation of

moments :

—

— FpgYi¥s\ndO-\-p^^t2iuId
I
x^dS-{-pgta.nId

I
— HF)siiv/^

Jx Jp
Whole displacement Wedge of Wedge of Whole displacement
m equilibimm position. emersion. immersion 111 tilted position.

rB

or tandOj x‘^{iS=VHMsmd0 (3)

Let us now denote by I the moment of inertia of the surface of

flotation AKBL about the axis of tilt KFL. Then

/=l'‘x’dS (4).

Hence using this in (3), and in the limit sinking the distinction

between tan d6 and sin dd, we obtain

hm=//f (5).

This distance HM is sometimes called the metacentnc height, but

it is to be noted that GM is the height upon which the stability

depends So it is perhaps safer to avoid the vague phrase meta-

centric height where any confusion might occur.

If HG IS known to be less than the value given by (5) for HM, 01

if HG can be adjusted so as to be less than HM, then G falls below M,
and stability is attained.

Since for any initial infinitesimal tilt H cannot vary in height, it is

evident that M is the intersection of consecutive normals to the locus

of H, which locus is called the surface of buoyancy. In other words,

the metacentre for any plane of tilt is the centre of curvature of the cor-

responding section at H of the surface of buoyancy

432 . Practical Determination of Metacentric Height.—On ships

the height GM may be found conveniently by shifting a weight across

the deck, or, what is practically the same thing, alternately filling with

water two boats at opposite sides of the deck. The consequent inclina-

tion IS found by observing the shift of a plumb bob on a string of

known length. With the movable weight at one side, let the floating

body be at rest in the symmetrical position
,
then its centroid is at G,

Fig. 224. Call the total weight IF, and let the inclination d0 be pro-

duced by shifting the weight </IF across through a distance a. Then
the centroid of the whole body floating must have shifted from G to

some point G' in MH', in order that the weight acting at G' and the

equal buoyancy at H' shall act along the same straight line. Hence
the change of moment of the floating body’s weight may be regarded in

either of two ways :

—

(1) dWa cos (ii) IFGM.sin dQ,

Hence, remembering that the cosine of a small angle may be written

unity and its sine assimilated to its circular measure, we have

GM= adW
WdO (6).



ART. 432] HYDROSTATICS 437

As an illustration of this method, we may take the following

numerical example :

—

Let W=sooo tons weight,

Then

dW=20 „ „
d:= 5o feet,

dO—iliQ.

=4feet.
5000 X 1/20

It should be borne in mind that the theoretical treatment obtains

the height IIM of the metacentre above the centte of buoyancy^ whereas
the practical method determines the height GM of the metacentre above
the centre oj gravity of the ship as then loaded.

Thus the former result holds for the given floating body every time

it IS sunk to the place in question, while the latter result varies also

according to the arrangement of the loading, but is the vital criterion

of stability for that loading.

Examples—LXXXIV.

1. Define centre of pressure of a plane area submerged in a heavy liquid,

and obtain an expression which locates this point

2. Show that if a closed surface be described in a liquid at rest under
gravity, the resultant of the inward pressures on this surface is numeri-
cally equal to the weight of the liquid inside that surface and acts

upwards along the same line as that weight
If such a surface is that of a solid, what follows.^

3 Obtain an expression for the height of the metacentre above the centre
of buoyancy of a floating body

4. ‘ State and prove the pimciple of buoyancy.
‘A solid cone is floating in water with its axis veitical and veitex down-
wards. To cause it to sink until 3/4 of its axis is immersed requires a
load of 50 giams on its base

; and to cause 4/5 of the axis to be
immersed requires a load of 96 grams Show that the specific gravity

of the body is vciy nearly o 324
’

(Lond B a., Pass, Applied Math
, 1906, ii. 3.)

5. ‘Two liquids which have different densities and do not mix aie poured
into a vessel. Provx that their surface of separation is a horizontal

plane.

‘A solid cylinder of specific giavity 07 floats with its axis veitical in a
vessel containing two liquids whose specific gravities are o 6 and 09,
the cylinder being completely submeiged

,
how much of its axis is in

the upper fluid }

‘Explain how the upper fluid contributes towards the upward force on
the body ’ (Lond B A

,
Pass, Applied Ma'IH., 1906, 11. 4 )

6 ‘Show how the depth of the centre of piessuie on any given plane area
in a liquid is calculated

‘A circular area of radius r whose plane is vertical has its highest
point m the surface of water, and its centre of piessure is at a depth
r/4 below the centre of the circle Prove this by considering the

separate equilibrium of the hemispheie of watei standing on the given
circulai area, having given that the centre of gravity of a homogeneous
hemisphere is 3r/8 from the centre ’

(Lond B Sc, Pass, Applied Maik, 1906, iii. 8 )
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7. * Define a inetacentre^ and establish the fovmula for its position m the
case of a solid of revolution floating with its axis vertical.

‘A solid right circular cone, of specific gravity floats in water with its

axis vertical and vertex downwards. If ns the radius of the base and
h the height, find the condition for stability

’

(Lond. B Sc., Pass, Applied Math., 1907, in. 7.)

8 ‘ Prove that the resultant of the pressure on a body immersed in a fluid

is an upward foice equal to the weight of the fluid displaced
‘ A thin rectangular board of specific gravity cr is hinged along one of its

shorter edges to the flat bottom of a tank. Find the position assumed
by the board when water is poured in to a depth and prove that the

vertical position is attained when //is Vo- times the length of the longer
edge of the boaid ’

(Lond. B.Sc., Pass, Applied Math., 1908, iii. 9.)

9. ‘ Prove that if a ship be displaced through a small angle about a longi-

tudinal axis in the section of flotation, then, appioximately. Righting
Couple = Displacement x metacentric height x sin (angle of heel).

‘A weight of 10 ton: is shifted through 22 feet across the deck of a ship
of 7000 tons The bob of a pendulum suspended fiom a height of 70
feet above the deck is found to move 5^ inches across the deck at the
same time. Calculate the metacentric height of the ship.’

(Lond. B Sc., Pass, Applied Math., 1909, in. 8.)

10. ‘Find formulae giving the position of the centre of piessure on a rect-

angular lamina, submerged with two sides horizontal.

*‘ABCD IS a square of side 2/z, and Z’, (?, R are the middle points of DA^
AB, BC. A lamina in the form of the pentagon PQRtD is submerged in

water so that Q is in the surface, DC is horizontal, and the plane of

the lamina makes an angle B with the vertical Compare the total

pressures on the portions FQR and PRCD
;
find the positions of the

corresponding centres of pressure. {N.B.—The atmospheric piessure is

to be neglected).’

(Lond BSc, Pass, Appi.ild Math, 1910, in 6)
II ^Discuss the relation between the stability of a floating body and its

metacentric height.
‘ The section ofa barge by the plane of flotation is a rectangle of 40 feet by
10 feet. Compare the couples required to produce a given small angular
displacement about the fore and aft line and about a perpendicular
horizontal line amidships ’

(Lond B Sc, Pass, Applied Math
, 1910, iii. 8.)

433 . Heights by Barometer.—In article 426 we treated the relation

between pressure and height in a liquid of constant density. We now
turn to the problem of the form that the relation assumes for a fluid

whose density is proportional to the pressure.

'Faking as before the axes of x andj horizontal and that of z verti-

cally upwards, we may quote equations (6) and (7) from article 426.

dp dp— = 0
dx dy

For a fluid like air we may now write the approximate relation

expressing the behaviour of an ideal gas, viz.

pjp^NBj or p=ip/E0 , ,

(9.

(9 -

(3)
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where is a constant for the gas m question and B is its absolute
temperature.

Then, putting (3) in (2), and integrating from the height at which
the pressure is /o> we have

<.)

Hence, provided g and 6 can be treated as constants, we find

log./-loge/o=

xd, /fi„\

Now using (3), and inserting numerical values for air at o'" C. and
standard pressure, we have

=
ptf o‘ooi 293 X 27 ^

' '

Hence, by (6) in (5), and transforming to common logarithms, we
obtain finally

76X i3-6x ^ , , /A\ > Va— ^o== ~ X 2 3026 xlogio(^ ) (7).0001293x273 ^ ° \p/

Since the height of the standard mercury barometer has been
written 76 cm. and the density of mercury has been put at 13*6 gm /c c

,

etc., etc
,
the difference of heights s— will be expressed in centi-

metres. It may be noted that for the A p in (7), since they form
a pure ratio, any units may be used provided they are the same for

each. Indeed, the values of p at each level could be put m (5) or (7)
instead of the /’s, since the p's are proportional to thep's

The fall of the mercury on ascending is roughly of the order i cm.

in 11,000 cm. or i inch per 1000 feet.

If the temperature varies considerably in a given ascent, equation

(7) may be applied to separate sections of the ascent, the mean
temperature being used for each such section.

Hence a barometer and thermometer give the data for a determina-

tion of th^ heights ascended on a mountain or in the air.^

For other refinements as to convective equilibrium and variation of

g the student may consult Webster’s Dynamics ofParticles and ofRigtd^

Elastic, and Fluid Bodies, p 466 (Leipzig, 1904).

434. Pressure on Curved Membrane of Uniform Tension.—As a

preliminary to a brief treatment of surface tension or capillary pheno-

mena, It will be convenient to find here the relation between the

difference of pressures on the two sides of a membrane or surface,

its radii of curvature, and its tension or force per unit length, supposed

the same in every direction.

The method followed is that used in the writer’s Text-Book of

1 The height of the atmosphere, xf throughout of the density at the earth’s surface, is

called the height of the homogeneous atmosphere It is seep to be given hy pipg—KQ\g, It

js of the order 8,000 metres.
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Sound (pp. 262-263, 1908), and consists of equating the work done by
the pressures for a small imaginary displacement of an element of the

surface to that done against the tensions. It is, in fact, an application

of the principle of Virtual Work.
The first expression for the work is obviously the normal foice into

normal displacement or excess of normal pressure on concave side into

volume described by the element of surface. The second expiession

for the work is the tension of the surface into the increment of area

acquired by the element m its normal displacement. Let the plane of

xy be tangential to the surface. And, at the point of contact, take as

the element an infinitesimal rectangle of sides a and P parallel to the

axes of X and y^ the corresponding radii of curvatures of the surface

being rj and r,. Then as we shall suppose these ladii large compared
with the sides of our element, its normal displacement at each point may
be written dz. Hence the work considered as pressure into volume is

dlV==papdz . . (i),

where p is the excess of the pressure on the concave side over that on
the convex side.

To obtain the increment of the area of the surface in consequence
of the normal displacement, we need an expression for the increase of

each side of the rectangle. Thus
a dci

~~ r-^-^dz~~ dz^

since each of these expressions is the circular measure of the angle

subtended by the side of length a at the centre of its curvature.

Hence

=—dz and similarly djl=^~dz
rx ^2

(2)-

Thu.s, if T is the uniform tension of the membrane, or whatever

occupies the surface, we have as our second expression for the work

dW=Td{aj3)= 7\liJa+ai/p)=T{--+-^a.lidz. . (3).

Accordingly, equating the right sides of (i) and (3), we obtain as

the relation sought

(4).

435. Soap Bubbles and Films.—It is known from experiments that

liquids behave as though their bounding surface in contact with air, etc
,

were a membrane under a tension which is constant for the given

materials meeting at tne interface and for a given temperature. For
a water-air surface this tension is of the order 74 32 dynes per cm.
(see P. O. Pederson's ‘Surface Tension by Jet Vibration,' Roy. Soc,

Phtl. Trans.

^

A. 207, pp. 341-392, December 20, 1907 ;
Science Abstracts^

No. 385, p. 138, March 1908) For the surface of a soap solution the

tension is of the order 27 dynes per cm.
Now, thin as a soap film may be when blowing a bubble or drawing

It out between wires^ etc., it has under ordinary circumstances two of
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the specialised portions or skins, each of which corresponds to the

surface tension usually denoted by T, Hence for a spherical bubble of

radius r cm. we have from (4) of last article

p-=z2T (5).

where p is the excess pressure of the interior in dynes per sq. cm. and
7^=27 dynes per cm. nearly.

If a cylindrical soap film of circular section and radius r be pro-

duced by separating two wire rings dipped in the solution, one of the

radii becomes infinite and its reciprocal disappears. Hence, again

using (4), we find for the excess of the interior pressure

P=^TIr (6).

Hence this state of things is only possible when the ends of the

cylinder are closed to preserve this difference of pressuies If the

ends are soap films of tension T and their radii r, we have by (5)
and (6)

Owing to the extreme thinness of the films in the above cases the

effect of gravity on the mass of liquid is neglected. For any curved
plates whose weights are negligible in comparison to the pressures the

above formulae may be applied, the T ox 2 7* being replaced by tension

of plate

436 . Capillary Ascent.—Let us now consider cases in which a
considerable body of liquid is held up or

depressed by surface tension phenomena.
First consider the case of a vertical lube
of small circular bore of radius r dipping
in a liquid of density p and surface tension

T (i.e. T is the tension of the liquid air

interface). Suppose now the liquid spon-
taneously ascends a height h in the tube,

the inclination of the liquid surface to

the wall *^he tube being <^, called the

angle of contact. It is required to find

the relation between h and r in terms of

the constants involved.

By corollary 2 of article 429 we may
replace the resultant of the normal forces

on the curved surface or meniscus ACB,
Fig. 226, by that of the same forces per

unit area on the plane AB Hence,
writing /o and p for the pressures above and below the meniscus and
resolving vertically, we have

(/o~/)^''^= 27rr7cos </) (8).

But by hydrostatic consideiations (see equation (8) of article 426)
we have

P^-P^pgh (9^.

Fig. 226 Capiilary
Ascent.



442 ANALYTICAL MECHANICS [ART. 437

Thus (9) in (8) gives

2 Tcos <l>=:pghr (10).

This shows that for a given liquid kr is a constant, or hoc x Jr. It

also expresses the product T cos in terms of readably observable
quantities.

The value of </>, the angle of contact, varies with the liquid and
solid concerned, and must be experimentally determined for any given
pair of substances. Since water wefs glass, the value of c/> is zero for

water in a glass tube. Thus, considering also p practically unity for water,

(10) simplifies to the approximate equation for water in a glass tube.

2T=ghr (ii).

It should be noticed that in dealing with the meniscus we were
concerned only with the radius of the tube at that place. Further,

equation (9), giving the relation between pressures and difference of

levels, is independent of the radius altogether. Hence the tube may be
of any section we please provided it is circular and of radius r at the

meniscus ABC and the equations (8), (9), and (10) are still valid. It

may, however, be observed that if the tube have a bulbous portion just

below ABC, the liquid would not spontaneously ascend past that bulb

but would need forcing or sucking up to ABC, and would then remain
in equilibrium there.

It is usually near enough to measure the height /i to the middle
point of the meniscus as shown in the figure.

If a liquid like mercury is used which does not wet glass and whose
meniscus is convex upwards in equilibrium, the values of cos </> and of

It become negative. In other words, the ascent is changed into a
depression.

437 . Ascent between Plates.—If we use parallel vertical plates

dipping into the liquid a distance a apart instead of a tube, equation

(8) of article 436 is replaced by

(p^—/>)/a=2/Tcos<l>. . ... (iifl),

a horizontal length / along the faces of the plates being considered.

Our previous equation (9) still holds, viz.

Hence, we obtain

2Tcos(l)=pg^a ........ (12),

showing that ha is constant, or hccila. Thus, if two vertical plates

are used very nearly touching at one vertical edge and quite so at the

other, the form of the upper surface of the liquid is an equilateral

hyperbola with the free liquid surface and the line of contact of the

plates as asymptotes.

Examples—LXXXV.

I. Establish the law that in an atmosphere of uniform temperature the

pressures dimmish in a geometrical progression as the corresponding

heights increase in an arithmetical progression.

If the tabular density of air is taken as o 00129 gm per c,c,, show that at
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15** C. a fall of the barometer from 76 to 75 cm. corresponds to an
ascent of 11,196 cm., and a fall from 30 to 29 inches to an ascent
of 940 feet. (Use seven figure logs )

3. Show that the resultant force of uniform normal pressures P all over the
convex surface of a hemisphere of radius a is Tvd^P perpendicular to the
base.

4. Find the relation between the excess pressure on the concave side of a
membrane, film, or other flexible sheet, and its curvature and tension

5. A long cylindrical glass tube of i cm. internal bore has an excess pressure
inside of 50 atmospheres, show that the circumferential tension is

25 X 10® dynes per cm. nearly
6. Obtain formulae for the suiface tension of a soap bubble of given size

and excess internal pressure, also for the tension per square inch in a
spherical steel shell subjected to high internal pressure,

7. Derive formulae for the capillary ascent of liquids in tubes and between
plates.

8. A lectangular frame of opposite wires of length c connected at their ends
by threads is dipped m soap solution, and one wire is fixed horizontally
the other supporting a weight W

,

the vertical height between the wires
is then found to be and the distance apart of the threads midway
between the wires is a. Show that the suiface tension 7* of the soap
solution is given by

438. Equilibrium Form of Large Drop.—Let us now consider the
form of a large drop of a liquid

upon a horizontal plate which it

does not wet, say mercury on clean

glass Take the origin of co-ordi-

nates at the centre of its upper sui-

face, the axis of z being vertically

downwards and that of x in the
plane of the diagram, see Fig. 227,
which shows a central vertical sec-

tion of the drop resting on the sur-

face cC. Let the pressure outside

the drop be practically the same
at all parts of it, the pressure inside

It at the level z being /. Then,
for the point P on the surface at this

Fig. 227. Equilibrium of
Large Drop.

level, we have from article 426, equa-
tion (8), and article 434, equation (4), the following expressions

—

(i),

/-A=r(^_4-i) (.).

Whence

T being the surface tension of the liquid air interface and r,, the
radii of curvature at P. Let r, denote the radius on a plane perpendi-
cular to that of the diagram, and passing (of course) through PK, the
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normal at P, to the surface of the drop. Then, as the drop is supposed
large, we see that will be large, and therefore its reciprocal may be
neglected in comparison to that of rj, which refers to the plane of the

diagram. Also, if ^ denote the angle between OX and the tangent at

P, and s IS distance along the curve, we have

ds dx

dx

^ds
=cos^

dxp

dx
• • (4).

But, in (3) and (4), we have still thiee variables, 2, and x. Let

us therefore eliminate the latter by use of the relation

d^ A /V
(s).

Then (4) and (5) in (3) give

or p^f zdz=Tf sin ^ dip.

Jo Jo

Whence, on integrating,

pgz"^= 2 T(i--cosip) (6 )

At the point H, where the vertical is tangential to the curve, let the

depth below the summit be h. Then, since at H, equation (6)

gives

pgh'=2T (7),

a formula which may be used in the expciimenlal determination of T
without the angle of contact being known.

Let the total thickness of the drop be c , then, as ^ at the depth c

IS equal to </>, equation (6) gives

= 2 cos</>) (8)

And from this
<t>
may be experimentally determined when T is known

from (7).

What is here only approximate for a drop of finite size (and therefore

of finite curvature in plan) would be rigidly true for the snape of the

liquid surface near a plane plate dipped into the liquid.

As sho^vn in Fig. 227, it would be right for a liquid not wetting the

plate, the surface, convex upwards, being accordingly depressed near the

plate, as mercury is near glass. If the curve of big. 227 were inverted

by rotation through 180“ about OX, it would then correctly represent

the liquid surface, concave upwards, and raised above the general free

surface OX, because it was near a plate which that liquid wets, as for

water and glass. In either case the curve would be valid from O to

P, H, etc., according to the inclination of the plate dipping into the

liquid and the angle of contact of that liquid with it.

Further, the investigation made and shown for a drop on the upper

surface of a plate applies also to an atr bubble blown in liquid on the

under surface of a plate.
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439. Relative Eamlibrium of a Liquid in an Accelerated Vessel.—
The pioblems uf liquids in motion belong, of coiiise, to the next chapter,

but the relative equilibrium of liquids m vessels whose acceleration is

uniform or follows a veiy simple law may be noticed here.

We have seen in articles 226-229 how gravity appears to be changed
in magnitude and direction by the acceleration of the chamber in which
a plumb bob or pendulum is hung And, since the free equilibrium

surface of a liquid is at right angles to gravity, we may at once deduce
the form of a liquid surface in relative e(|uilibrium m an accelerated

vessel. The relative or disturbed value of gravity^ at an angle ^ say

with the vertical is a normal to the surface of relative equilibrium of

the liquid in this chamber or vessel. This surface is accordingly

inclined at the angle ^ with the horizon-

tal, the vertical plane which cuts it at the

steepest angle being that which contains

the acceleration of the vessel.

Thus, in Fig. 228, let the vessel ABCl)
have horizontal acceleration Yb in the

plane of the diagram Then we may re-

gard this acceleration as vectorially sub-

tracted from the acceleration due to

gravity, thus leaving the effective or relative

gravity at an angle xp with the vertical

and in the plane of the diagram. Thus
the relative equilibrium surface of theliquid

IS A'PB' at the angle p with the horizontal in the plane of the diagram.

The quantities concerned are obviously connected by the

relations

tan (i),

(2).

If there is liquid in a chamber mov-
ing with acceleration down an incline

we should have horizontal and vertical

acceleiations, say b and a respectively.

Then they could be both vectorially

subiracted from the vertical gy leaving

the effective g^, which is a normal to

the surface of the liquid. (See articles

226-228 )

440. Uniform Rotation about a
Vertical Axis : Liquid Surface a Para-
bola—Let the vessel ABCD lotate

unifoi mlv at speed w about the vertical

axis OY, Fig. 229; and let it be re-

quired to find the form of the liquid

surface when it has settled to a steady

state and is rotating like a rigid solid.

Let AOPB represent this form, and consider the point P of co*

Y

Fig. 229. Surface of Rotat-
ing Liquid.

Fig 228. Liquid in
Acceleraikd Vessel.
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ordinates .r and y. At this point the acceleration of the liquid is

obviously expressed by

(3).

Thus, if the inclination of the surface to the horizontal is here

we have by (i) of article 439

tan tp=co‘^xlg (4).

But, by the geometry of the figure,

tanxj/^^dyldx (5 ),

Hence, equating and integrating, we have

Whence x^=~^y (6),

showing that the central vertical section of the surface is a parabola
of latus rectum 2g/(o\ with vertex at the origin and axis vertically

upwards
This problem is referred to later and dealt with in a more general

manner. (See article 447.)

Examples—LXXXVI.

1. Explain how the surface tension and angle of contact may be obtained
for a liquid like mercury by using a very large drop on a glass plate.

Derive any formulae that are needed.
2. Show how the surface of a liquid at rest relative to the containing vessel

depends upon the acceleration components of that vessel

3. Prove that the free surface of a liquid in a vessel rotating about a vertical

axis assumes the form of a paraboloid of revolution.

4. A tray containing liquid is placed upon a long plane inclined a to the
horizontal, the coefficient of friction between the tray and the plane
being tan (S, wheie /3 is less than a

Show that as the tray slides down the plane under gravity the inclination

of the fiee surface of the liquid (when steady) with the hurizontal is

(a - i
3 ), or, with the plane, /3 simply.
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CHAPTER XX

HYDROKINETICS

441. Equation of Continuity.—The general equations which apply to

fluids in motion are of three kinds, viz.

(i^ the so-called equation ofcontinuity ,

(2) the three equations of motion
,

(3) the relation between density and pressure We shall discuss

them in the above order.

The first equation is based on a property of matter so fundamental
as to be usually tacitly assumed as underlying all our notions of matter

and as being a conception so deeply ingrained as to need no formal

definition. The property referred to is the continuous existence and
constant physical value of a given portion of matter, or the utter

absence of its disappearance and
reappearance under any circum-

stances to which physical equations

apply. In other words, the quantity

and the inertia of the matter in a
given volume can change only by the

algebraic sum of the like quantities

passing into and out from that

volume through the closed surface

whichforms its boundary.

We now proceed to give this

principle mathematical expression.

Consider the fluid of density p oc- pio 230 Continuity Equation.
cupying thv. ^.*rallelepiped of edges
dx^ dy, and dz with centre at P, (a:, y, 2), the velocity components there

at time t being w, and w respectively (see Fig. 230).

Then the rate of change of quantity of matter in the volume
dxdydz is

^dxdydz (i).

For the flow through the boundary, take first the pair of opposite

faces parallel to the yz plane. Then the normal flows there are

Hence, the net flow inwards through this pair of faces is the

algebraic sum of the above expressions, taking the first (with the upper
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sign) as It stands and the second with the lower sign reversed,

gives

ax

This

(2)-

As to any variation of over the dydz faces, it should be noted
that u means volume passing per unit time per unit area. Thus, as

our volume is infinitesimal with centre at y, z, the meaning of u
there is the limit of the quotient (flow/area). Hence udydz expresses

the volume passing per unit time through the area in question at the

centre of the parallelepiped.

It IS obvious that for the whole net inward flow of fluid we need
two other expressions similar to (2) but for the other two pairs of

faces. Writing these, adding the three, equating the sum to (i), and
cancelling out the common factors, we obtain

I

4p'd
I

dt dx dy

which is the equation of continuity in its genera/ form.

To apply it to a liquid of practically constant density, the first term
disappears and /> cancels out from the others The equation accord-

ingly reduces to

du
,
dzi

,
djv

,‘i{pjp)_

dz
~ (3).

(33)-

which IS the equation of continuity for an tnconipressible liquid.

442 . Equations of Motion.—Still referring to Fig. 230, let p be
the pressure at the centre of the parallelepiped. Then the pressures on
the opposite dydz faces are

dp dx

dx 2

Hence the resultant force due to pressures acting on the fluid in

the parallelepiped in the positive direction of the axis of x is

—^dxdydz.
dx

Let the external forces have cartesian components A, T, and Zper
unit mass.

Then, for the total force components on the fluid in the parallele-

piped, we shall have

and two corresponding expressions for Y and Z.

But each such force may be equated to the product of the mass
concerned and its corresponding acceleration. For the x direction we
may write this product in the form

pdxdydz^^ (5),

where DjDt denotes particle difierentiation
;

i e. we are to follow in
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imagination an individual particle or set of particles in their course and
note their rate of increase of speed. Another and more usual method
IS to regard the velocity components v, and w each as a function of

X, and t and take partial differentiations. In other words, instead

of following any one particle in its course, we note the speeds at various

places at a particular instant of whatever particles may be there then,

and find the changes of those speeds with place and time.

Since the change of speed of an individual particle is made up of

the four possible changes due to change of t and of and -S’, we
may exhibit the relation of the two styles of differentiation as in the

following equation :

—

du du , ,du .du
dt-\--y~dx-\‘-y^dy-\- rdz.

dt dx dy dz

Passing from the particle (or total) differential to the particle

differentiation

y

the dx^ dy^ and dz on the right side become the corre-

sponding velocity components
Hence we obtain

Du du
,

du
,

du
.

du

Dt dt dx dv dz (6)

Thus, using (6) in (5), equating to (4), and writing the two similar

equations for y and we have

du
,

du
,

du . du

It dx dy

dv
,

dv
,

dv
,

dv

dt
+ «—

dx
-fz'-T-

dy

dw
,

div
,
d7V

,
d7V

dt dy

p dx

pdy

y
pdz

• (?)•

These are the equations of motion of a fluid.

The equation of continuity (equation (3) of article 441), together

with these equations of motion, are called Euler^sfundamental equations

of hydrodyn amics.

It must be always remembered in using the above that the differen-

tiations are paiCial. Thus, dujdt in (7) means the rate of increase with

time t of the speed u of whatever particles are passing the place in

question. Again, dujdx means the rate of increase with co-ordinate x
of the speed u of whatever particles are passing at these places at the

instant in question. In other words, we are dealing with the procession

or flow of particles at certain points or instants and are not following

individual particles.

443. Eelations between Pressure and Density.—In order to

express the five functions u, Vy Wy /, and p in terms of the four inde-

pendent variables Xy jy, z, and w-e need five equations. Equation (3)
is a kinematical one, the three of {7) are dynamical ones, the fifth now
required is a physical one expressing the relation between pressure and
density as experimentally found for different fluids or types of fluids.
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Thus, for liquids under ordinary pressures, we may write the

approximation

p=/jo=a constant nearly (Sa).

We should need to depart from this in the case of great depths in

the ocean, but it would be near enough for all ordinary cases of the

flow of liquids on the earth.

For gases well above their points of liquefaction, the ideal gaseous

law or characteristic equation of gases is a near approximation, viz.

PIp=zRO^

where R is R constant for the gas in question and 0 is the absolute

temperature, which is about (273+ /° C.)

Hence, for temperature constant, the above equation yields the

expression of Boyle’s law.

pocpj or p=plRO . (8^).

Again, if there is no communication of heat when expansion or

compression occurs, it is found that the temperature vanes in such

a way that

or

//p7= constant, )

pocp^l^ / (
8 .),

where y is the ratio of the specific heats of the gas at constant

pressure and constant volume respectively.

From the characteristic equation we easily see that the constant R
may be expressed by

jl-P ^ A 13 6X^81^
/>o273 P0X273

'

where is the standard atmosphere and the tabular density under

It at o” C.
Thus equations (3), (7), and the form of (8) appropriate to the case

give the five fundamental equations required for the motion of fluids.

444. Steady Motion under Gravity, etc. Bernoulli’s Theorem.

—

Let us now consider a fairly simple case of motion of great importance

and obtain integrals of the corresponding equations.

Suppose that the fluid is in what is called steady motion, i.e the

velocity components at each point remain of the same constant values

And further, let us suppose that the external forces are due to gravity,

or other causes, such that they are derivable from a potential.

Then we may write

du dv dw .

,

di^Tr-ir°

and
^__dj d_V

dx^ dy^^’' dz (»)

In steady motion it is clear that the lines of motion coincide with

the paths of the particles moving. We can accordingly draw curves,

called stream lines., such that a particle at any point Q has its resultant

velocity q along the tangent to the curve at that point of co-ordinate s.
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We may thus write

-u‘+v‘-\-w' . (12),

and u=q^, w=q- (,3),

We must now apply these new relations to the simplification of our
equations of motion (7) of article 442 Hence, introducing into

them (10) and (13), we obtain on the left side of the first

du dx
,

du dy
,

du dz du , ^

So that, on using (ii) also, we have for the complete set

du dV I

dx P

dv I

^~ds~~ dy P

d7V _dV I

^ ds dz P

Multiplying these three in order by dxjds^ dyjds, and dz/ds and
adding, we obtain

du
,

dv
.

d7v dV i dp ,

y — ~Tds ds ds ds p ds

Then, using (12) in the left side and putting for the force per
unit mass along a stream line on the right, we have

^ « //c
p ds

Now multiply either equation (16) or (17) by ds and integrate, this

integration being accordingly along a stream line.

We then find

where C is the integration constant for the particular stream line in

question ^^nt may be different for any other line. There are certain

circumstances possible in which the constant is the same for all the

lines.

If now the motion is occurring under the action of gravity simply

and we take the axis of z vertically upwards, we may write

V=ga ( 19)

Also if the pressures are all moderate and the fluid concerned a

liquid, we have approximately

p=poi a constant . . (20).

Then, substituting (19) and (20) in (18), we obtain the important

relation or theorem due to Daniel Bernoulli, viz.

=^ (21),
Po

in which E is now written for the new constant of integration It may
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be noted that it, like every other term of the equation, is of the nature

energyper unit mass Thus the physical interpretation of the formula
IS that the energy per unit mass of liquid along a stream line under
gravity is constant and may consist of three parts —

S
gz, Its potential energy m the gravitational field

;

//Po, Its potential energy in the pressure field (or the energy
required to pump it in against the pressure, but without
raising it or imparting velocity to it)

;

(3) kinetic energy of translation. Indeed, it was from
this standpoint and the principle of energy that Bernoulli’s

theorem was originally derived. See Lamb’s Hydrodynamics

(p. 23, 1895).

We may get another set of most useful conceptions, in connection

with this steady gravitational flow, by dividing the above equations

through by g. Thus

=// (22).

We have here written Hiot Ejg

;

it is therefore a constant for the

particular stream line in question. The interpretation of the terms is

now that each is a height

And the meaning of the whole equation is that for any one stream

line there is an associated height which is constant for all points in

that line Further, this height is made up of three parts •

—

(i) Zy the actual height of the point in question above the

origin j

(2)

//^po, the height or head corresponding to the pressure or

to which the pressure might be considered due, and called

the pressure head
^

(3)

I^hg^ height or head corresponding to the velocity or

to which the velocity may be considered due, and called

the velocity head.

Hence if from any point Q in the given stream line we raise a verti-

cal whose length is the sum of the pressure head and velocity head at

the point Q in question, we reach the same horizontalplane at a height

AT above the origin

From either (21) or (22) we see that along any one horizontal

stream line the places of greater velocity have smaller pressure, and
vice versa. This is often at first sight surprising, but a moment's
reflection shows that, apart from gravity, the liquid can only increase

Its speed when passing to a place of lower pressure.

Hence by causing water to flbw in a jet of diminishing cross

section, a lowering oi pressure is produced or a partial vacuum. And
this may be utilised to draw other fluids into this space, as is done in

jet pumps and aspirators.

445. Torricelli’s Theorem of Outflow Velocity.—Let us now con-

sider the velocity of flow of liquid from a small hole in the horizontal

base of a large vessel in which the liquid stands at a height hy practi-

cally constant for the short time in question.
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Take the z axis vertically upwards with the origin at the hole,

then (21) of article 444 will apply.

At a certain height z' from the base of the vessel let w=o practi-

cally, then the value of the pressure there is p<i-\-{h— ^)pQgi where /o is

the atmospheric pressure. Hence we have, from (21) for 2=2',

, . . (,3).
Pfi Pa

Again, for 2=0 we have the following approximate relations .

—

p=p^^ //=2/=o, and q^w. Thus the velocity w of outflow is given

by putting these values in (21) and substituting for E from (23), viz.

pa Pa

or uP= 2gh (24),

which is the approximate formula known as TorricellPs Theorem
It is seen that the velocity thus determined is the same as that

of a body falling from the level of the free liquid surface. The same
result might have been obtained by considerations of energy.

446. Vena Contracta —We must now examine the appioximate
relations used in obtaining Torricelli’s theorem and note how, for

strictness, they need modification.

In the first place, the stream lines above the orifice must be of a

converging character. Further, this convergence continues for a short

distance outside the orifice, as may easily be observed. Hence,
although at the surface of the issuing jet the pressure of the liquid may
be atmospheric only, within the jet itself the pressure is rather greater

than atmospheric. Accordingly, the velocity here is less than that

applicable to the surface as given by Torricelli’s theorem, which would
in consequence fail to give a correct estimate of the quantity of liquid

issuing from a given orifice.

Tlie exact behaviour of the liquid near the orifice presents great

theoretic difficulties which have been only partially overcome. But
experiments have shown that at a little distance from a simple orifice

the stream lines have all become parallel, and at this place, called

the vena contracta^ the cross section of the jet has a minimum value

Thus, over the cross section of the vena contracta, we may take the

velocity as uniform and the pressure practically atmospheric. Hence,
if we know experimentally the position and size of the vena contracta

for a given orifice, we may make an amended calculation of the total

outflow.

For a circular hole in a thin plate the ratio of the area S of the

vena contracta to that 6* of the orifice is approximately
S/S~o'62 (25).

This ratio is called the coefficient of contraction.

The distance of the vena contracta from the circular orifice may be
taken as between 0*39 and 0*5 of its diameter.

For practical details relating to a variety of openings the student

may refer to Goodman’s Mechanics Applied to Engineering (pp. 548-

563, 1908).
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447 . Liquid Eotating as Rigid Solid —Si’ppose a mass of liquid

of constant density to rotate as a rigid solid with velocity w about the

axis of which is taken vertically upwards.

Then we have

jr=o, y=o, z= -gi ^ ^

The equation of continuity is then satisfied, and these equations

(26) put in (7) of article 442 give

2 \ dp
'

p ax
I dp— (!> y=
p dy (27 ).

I dp\

Multiplying these in order by dx, dy^ and dz^ adding, and integrating,

we find

^{x'‘+y‘‘}-pz=^^+C (28).

Taking the origin at the surface, where the pressure is /o, the con-

stant of integration is

C=-P,Ip (29 )

Hence the equation of the surface is expressed by

<o^(x'+y'‘)=2gz (30),

which is a paraboloid of revolution with latus rectum 2g/a)^, as found
by other considerations in article 440.

Examples—LXXXVII.

1. Derive the equation of continuity for a compressible and for an incom-
pressible fluid

2. Obtain the equations of motion for a fluid.

3 State the various relations which hold under differe^.t circumstances
between the pressure and density of a fluid.

4. Assuming Euler’s fundamental hydrodynamical equations; obtain the
equation of steady motion along a stream line in the form

^ ds p ds

5. Obtain an equation which expresses Bernoulli’s theorem, and interpret

each term Can the equation be put in another useful form ?

6. Show that, with the assumption of certain approximate relations, the out-

flow velocity of a liquid is that due to a free fall through the pressure
head.

7 How IS the result of question 6 affected by the phenomenon known as

the vena contractal

448. Angular Velocities of Elements of a Fluid.—We have
hitherto expressed the motion of a fluid in terms of its linear velocity

components. Let us now introduce expressions for the angular

velocities of its elements and determine the relation between the two.
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Take the point P{x^ z) as one corner of a parallelepiped of

edges dx, dy, dz, and consider its change of shape parallel to the
xy plane m consequence of the

linear velocity components u, v, 7V

of the fluid occupying it (see Fig.

23l)*

Thus in time dt let the face

PACE change to the size and
shape PA'C'B', in which the corner

originally at P is shown as if brought
back there to simplify the figure.

Let the angles APA' and BPB'
be diji. and dl^. Then the mean
angular displacement about OZ of

the element of fluid in time dt may
be represented by \(do.— dl^)

Fig 231 Angular Velocities of
A Fluid.

But
dv

dadx= AA'

=

{v'— 7j)dt= -j^dxdt^

where v' is the velocity parallel to the^^ axis at A.

We thus have daA,
ax

and similarly
dy

Hence, for the angle of mean rotation in time dt about the z axis,

we have

(0 >

Thus, denoting by ^ and r; the angular velocities about the axes of

xa.T\dy respectively, and obtaining the corresponding expressions by
symmetry, we find

. dw dv 1

du dw
dz dx
dv du

dx dy
^

expressions which give the component angular velocities in terms of

the linear velocities as required.

449. Velocity Potential —When the three angular velocity com-
ponents all vanish, the fluid is devoid of rotation of its elements, and its

linear velocity components are then derivable as the space differentials

of a function of the space co-ordinates and time, and called the

velocity potential.

We then have w= — z;=: — . . . (2 ),dx dy dz

and (3 ).
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Thus the velocity potential stands in the same relation to the linear

velocity as the gravitational potential does to the field or attraction.

The introduction of the velocity potential accordingly effects a similar

simplification in certain cases.

450 . Angular Accelerations of Elements of a Liquid.—To obtain

the angular accelerations of the elements of a liquid, we must intro-

duce the expressions for the angular velocities into the equations of

motion. We may conveniently do this as follows :—By differentiation of

the square of the resultant linear velocity and its components, we have

1 i^/2i 2i 2\ du dv dw
i t\

Now take the right side of (4) from the left side of the first of the

equations of motion (7) of article 442, and we obtain

du (du dv\

di \dy dx) \az ax/ p i

Then, introducing in this the angular velocities from (i) of article

448, and writing the other two equations by symmetry, we find

dl

2 + >(<£-»./). .7 I ^
n dz' ^~dz

(
6).

Now differentiate with respect to y the third of equations (6), and
from the result subtract the second differentiated with respect to z.

Then the last two terms on the right disappear for constant p, and
the first on the left, interpreted by (i), gives 2d^ldl We accordingly

have

•
• (7 )-

Now, considering the liquid to be incompressible, we nay apply

the special equation of continuity, (3^) of article 441, viz.

du dv dw_ , .

But using (i), which defines the rotations, we find by differentiation

that

Then, by
following

dx^dy^dz (9).

aid ot (8) and (9), we may transform (7) into the

Ju
dt ^ dx ^ dy^ dz ^dx

du
(10).

iu du_./dZ^dY\
’'dy ^dz “ \dy dz )

'

We have hitherto used 77, and f to apply to whatever portions of

liquid occupied a given position at a specified instant. Let us now
change to some particular portion of liquid which at time / is at z)
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and is followed in imagination in its motion. Then, using as before

DjDt as the symbol of particle differentiation, we have

and similar equations for and ( just as we had for u, v, and w. See

(6) of article 442.
Hence, using (ii) in (10), it becomes the first of the following set,

the others being written by symmetry —
udu du jdu

, ifdZ 1

dv,Jv (dX dZ\
+%+^d-z+K'^-dx )

Drj_ ^dv

Dt~'^dx

Dt j,dw
,
dw

.
Aw

dy)

(12).

Now let the forces be derivable from a potential V so that

dVX=-^, F=-dV in),
y__dy

dx' ^ dy' dz
' ‘ '

then the component torques due to these forces are all zero, as seen

by the terms in round brackets at the right in (12).

If, in addition, we have also at any instant

^= »)= f=0 (14),

then the other angular accelerative terms on the right of (12) vanish.

Hence, for the case under consideration, no rotation beingpresent in

our ideal liquid^ it appears that none can be acquired?-

It should be noted that viscosity is supposed quite absent here

Its presence would change this conclusion

451 . Coaxial Circular Currents.— Let us now consider the case ol

the flow of an incompressible liquid m coaxial circles round the axu
of which IS taken vertically upwards. Within the cylinder of radius

r^, let the valu^ of the angular velocity of the elements be given by

a constant. But, outside this cylinder of radius ^o, let f=o. Ii

IS requir'^d to find the velocities of the particles and the velocity

potential, if any.

If 0) IS the angular velocity about OZ at r, the radius vector, we have

for the velocity and force components

X=o, Y=o, Z=-gf VIS)-

Then, remembering that r*=x'-\-y' and drjdy=yjr, we find bj

partial differentiation

and

du_ dia dr V* din 'j

dy~~
^ ^dr dy

dv __ .
dvi dr X^ diO

1

dx~~ dr dx

(16).

1 The proof in the text seems the easiest for elementary students Those desiring s

fuller investigation (with a better claim to rigour) should refer to modern classical treatises
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Whence, by definition, we have
.(dv du\ r

Thus, within the cylinder r—r^ we have

r=o,

f dta
,
C2dr

And, on integrating,

log (w_f„)-|-log r"=log A,

or <“= S)+p ('9).

where A is the integration constant.

But, to avoid an infinite value of a> at the axis where r=o, we see

that the integration constant A must be zero

Hence, for the whole interior of the cylinder of radius we have

‘“=^0 (20).

which means that this rotates as a rtgtd solid with angular velocity fo?

and that each part of it is therefore rotating at the same angular

velocity as specified at the outset.

We now deal with the outer part, for which the rotation of the

individual parts is zeio. Then, from (17), we have

r dm
f

.

a>d ^r= 0 (21).
2 ar ^ '

Whence, proceeding as before, we find

To avoid a discontinuity of velocities, we will make the w’s for the

inner cylinder and beyond it agree for the value Thus

fo=^. (23).

Accordingly the outer linear velocities in the circles are given by

And this expresses the grading of the velocities of flow with radius,

which correspond to the absence of rotation of the parts. We see that

in this region the angular momentum about the axis of 3 per unit mass
IS constant, for it is given by

= (25)-

Let us now find the velocity potential of this outer region. We
evidently have from (24)

= 0 and
rdv r

Thus, by the first of these does not contain r, and by the second

we have

</>=-fi)^^+C=C-fo2?tan-‘(9'/^) (27)-
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For the inner cylinder of radius there is no velocity potential,

since the condition for it, that f should all vanish, is not fulfilled.

Or, we may note direct fiom (15) that no velocity potential can

be assigned to this motion.

The free surfaces of a liquid rotating like this under gravity are

easily found. For the inner cylinder it is, of course, the paraboloid we
have dealt with before in (30) of article 447, viz. from r=o to

(28),

the origin being now at the level of the liquid at r^r^.
While for the outer part, using (24) for wr, whose square is pro-

portional to the change of level, we find the hyperboloid, for

2gz-Q{r%—ril>-') . (29)

Thus, the depression of the centre below the surface for r—co is

expressed by

c=CAIg- ... (30),

the level at r=rQ being equidistant from the levels at the centre and
at infinite radius

452. Steady Flow past Cylinder.—Let us now consider a plane

problem of the steady flow of an incompressible liquid parallel to the

circular base of a right cylinder of infinite length, which forms the

obstacle in the path of the stream, whose velocity far away from this

disturbance is «o) parallel to the x axis, that of z being the axis of the

cylinder of radius c.

Then everywhere we have m;=o, and far away from the cylinder

v=o also, but near the cylinder v is finite, and both it and u are

variables, being functions of r, where r^-=x^

Since the liquid is incompressible the simple form of the equation

of continuity applies, and, using the velocity potential (/>, we may put

(3a) of article 441 in the form

(!)•

But for ou*' case, since w= o, this reduces to

(
2 )-

This equation, together with the condition as to the undisturbed
velocity, is satisfied by

,
Ax

(3 ),

as may be seen by differentiation, remembering that drfdx^^xjr and
drldy ^yjr.

We have yet to introduce the boundary condition of no normal
velocity at the surface of the cylinder. This gives
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Let us write cosa—xjr, then (3) becomes

<^=“ cos a —rWo cos a (5).

And, by use of (4), we see that the constant A is given by
A~—u^

Hence, putting this in (3), we have

4>——u^x(i-\-cyr^)

Thus, differentiating for « and Vy we obtain

and
2Uf/:‘^xy

dy ~ A

(
6).

(7)

.

(
8

)

,

(9)-

Hence, for the resultant g at the surface ofthe cylinder, we have

(xo).

Then, introducing this value of q in equation (21) of article 444,
we find for the normal pressure on the cylindrical surface

(ii)

The pressure is accordingly just as great on the hinder part of the

cylinder, where the liquid is flowing away from it, as on the fore part,

where the liquid is meeting it. Hence the cylinder has no resultant

force from this ideal liquid flowing past it. Or, if the liquid is

conceived as at rest at all parts far from the cylinder, which is moving
through it at speed u^y then the cylinder would, under the ideal

conditions assumed, experience no resistance from the liquid.

The differences between this state of things and those obtaining in

any actual experiment are due to the presence of viscosity in all actual

liquids and of friction between the solid and the liquid, called skin

friction Further, one cannot in an experiment obtain the ideal

geometric relations here supposed.

453 . Water Waves.—Of the many kinds of waves possible in

liquids, theory recognises three chief classes —
(1) Long wavesy or tidal waves, in which the motions of the

particles are chiefly horizontal, and are equally great on the surface and
below, where the bottom is level.

(2) Ripples

y

or very small disturbances on the surface, in which
the restoring forces called into play are due to the surface tension, the

liquid skin tending to flatten itself and assume the form of minimum
area.

(3) The commonest class of all, and those most noticeable, which

are variously called oscillatory waves, surface waves, and gravity waves.

Their oscillatory character they have in common with the ripples, from

which, however, they are distinguished by the term gravity, which

refers to the nature of their restoring forces. The term surface dis-
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tinguishes them from the tidal waves, in that, unlike the tidal waves,

these are produced by surface disturbances and are confined to a

region near the surface, the amplitude of the disturbance diminishing

rapidly as we descend.

In the present article we now confine attention to this commonest
class of water waves, which we shall suppose to be propagated horizon-

tally along the axis of x, that of z being taken vertically upwards from
the level bottom of the vessel We have accordingly no motion
parallel to the^ axis, hence the equation of continuity reduces to the

two terms

du . dw \

dx ~dz ^
I

dx^ dz^

(i).

We next suppose the wave to be of the simplest harmonic form and
test the legitimacy of that assumption. Thus let

<I>=:jFcos k(x--at) (2),

where jF'is a function of z only Then, differentiating (2) and putting

in (i), we obtain

^i==-ji'‘Fcosk(x-at),

d‘<l> d^F
,,

dz'~ dz'
cos/i(jc at).

and

Whence

d'F= k^F (3).dz^

(4)

Now for the bottom of the liquid, where z=o^ we must have

w=o=d<l)jdz. But, by (2) and (4),

^z=k{Ae^^'—Be ^^)cosk{x—at) .

dz ( 5 )

Hence for s= o one of two alternatives must be chosen. Thus (1)

we may write B=zA in (5) and (4), which reduces (2) to the foim

<\i—A{€^'^-\-e~^^)Q,o^k{x—at') . .... (
6).

Or (ii) if the depth is great we might write i?=o and put A small, so

that A into the factor is considerable at the surface, although

practically zero long before the bottom is reached.

To obtain «, the velocity of propagation of the waves, we must use

the equations of motion (7) of article 442. In th^se, if we suppose the

amplitudes we deal with are small, we may neglect the products udujdx^

etc., which reduces the left side of each equation to its first term.

Hence, introducing the velocity potential, these become

d /d<j>\ __ dV j dp

dx\d(/^ dx p dcd

and two similar ones for y and 5, Hence multiplying them by
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dxy dy, dz respectively, adding, remembering the differentiations are

partial, and integrating, we obtain

dt (7 ),

gz being written for V, since it is supposed due to gravity only.

Further, since we suppose the amplitudes to be small, we may
consider the pressure everywhere independent of the time. Thus
differentiating (7), we find

dC

But

Hence (8) becomes
dz

(9)-

d*<jy dcf)

(10).

We have to obtain these terms from (6) and substitute them in (10).

Thus
^

— <2/) . .
(ii),

and g^=g^A{e^^^e~^^)cosk(x’—aI), . . . (12).

Whence, equating the sum to zero, we have

(13).

Thus to obtain the velocity of propagation of the waves at any
height above the bottom of the liquid, we put the corresponding value

of z=i/i say in (13) and find
pr ,kh p

We may now fitly introduce the wave length A, and so transform

(14) by aid of the relation derived from (6), etc
,
viz.

^/\= 27r, or Z’=27r/A (15).

Thus (14) may be written

If h is very great compared to A, then the exponential fraction in

(14), involving reduces to unity, and we have

a’=:~z=— nearly (17)
k 2 Tr

We thus see that the velocity of propagation in each case depends
on the wave length, varying directly as its square root

;
thus there is

in water waves an analogy to the phenomena of optical dispersion.

Further, again referring to the exponential fraction in (14), we see

that for small values of a reduction in h involves a reduction in a.

That is, the waves advance more slowly in shallower water.

If the depth of the water is great, we may now take the alternative
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to (6), viz. that B must be zero. We then write for the velocity

potential

(f)
= Ae^^cos^(x—a^) (18).

Thus for the velocities at z) we have

u— =.kA^^ smkix— at)
dx

and v=—^=:—kAe^^cosk(x—at)
dz

Hence the path of the particles at {x, z) is a circle, described with

angular velocity ak and of radius r, such that

rak=q= kAc^^y 1

or r^:d.gkz—j^^27rzjk
j

(^°)*

a a J

Thus the radii of these circles dimmish in geometrical progres-

sion as depth below the surface increases in arthmetical progression

And, at the depth of one wave length only, the ratio of diminution is

or 535 i nearly. Thus, as Tait mentions, an Atlantic roller ot

40 feet high from trough to crest (if such occur) and 300 feet long

would produce a disturbance from the mean position of only half an
inch or less at a depth of 300 feet.

For aerial waves, works on physics may be consulted, as, e.g

,

the

writer’s Text-Book on Sound (Macmillan, 1908), Chapter iv., articles

119-122, 125-127, 130-139, 145*146, and 149-155-

454. Steady Flow of Viscous Liquid tlirougli a Narrow Cylinder.

—

We have hitherto usually ignored viscosity but will now in conclusion

deal with one very simple case in which viscosity is paramount.

It is the problem of the steady flow under pressure and gravity (or

the former only) of a viscous liquid through a narrow cylindrical tube.

We suppose the velocity of the liquid to be zero at the wall of the tube
and to increase to a maximum which is reached only at the centre.

Thus, the liquid is sliding in concentric cylindrical layers, each inner

one urging the outer one along, which in turn is retarded by the next

outer layer, which moves slower than itself. The magnitude of this

effect for a given liquid is expressed by the coefficient of viscosity rj,

which may be defined by

dA = ±4̂ dzdx (i),
dy

where dA is the force parallel to the x axis on the elementary area

dzdXf when the velocity u in that direction changes as we pass along

the axis of^.

To fix our ideas, let us consider the anangement shown in Fig

232, in which liquid, kept at a constant depth c in the upper vessel,

flows through the fine tube of radius a and length I set obliquely so

that the difference of levels of its ends is h.

In the tube, consider an elementary cylindrical layer of liquid, of

radii r and r-\-dr^ in steady flow, the velocity u parallel to the axis
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and down the slope being a function of r only and the velocity

extremely small. Then the motion is executed and maintained con-

Fig. 232. Steady Viscous Flow.

stant by a zero force, which is the resultant of five separate forces falling

into three groups, viz.

(1) That due to gravity, which is

^•2Trrdr/p= 2Trpg/trdr (2)

(2) That due to pressures at ends

{{p<^+cpg)--p^) 27rrdr= 2Trpgcrdr (3),

where /o is the atmospheric pressure.

(3) That due to the tangential viscous forces on its inner and outer

surfaces.

The former is and acts downwards, that is, posi-

tively, dujdr being negative. The latter is numerically greater by the

differential of the former, whose variable part is rdujdr. Hence their

difference, the former minus the latter, is given by

and acts upwards. Now, equating the sum of these expressions to

zero, we find

27rpg{€-\- h)rdr-Y

frdr+ild(r^=o (S).

where =Pg(c+h)ll (6).
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Integrating (5) we obtain

2 dr

(7).
2 r

Hence, integrating again, we have

—^-r)u==dog r-i^Z?
(8 ),

4
Now for r=o, if u is not infinite, we have C=o. Again for y=a,

u=:o by hypothesis, so D=fa^l^.
Thus (8) becomes

u=f(a'—r‘)j^t\ (9)

To find the volume Q of liquid discharged per second, we have

2Y)

Hence integrating we obtain

or, putting in from (6) the value of/, we find

(ii)

These relations may be used for a practical determination of the

viscosity coefficient r; at any given temperature Of course, if the

tube be veitical h becomes /, while if it be placed horizontally h

vanishes.

In the present chapter much help has been derived from Professor

G. Jager’s excellent brief treatise on Theoietical Physics (Sammlung
Goschen, Leipzig, 1906),

Examples—LXXXVIII.

1. Obtain exp'-^ssions for the angular velocities of the elements of a fluid

If the angular velocity for any element is zero, does that element
necessarily behave like a rigid solid ? Take some actual example
of motion, and indicate how the element behaves although rotation

IS absent.

2. Assuming the fundamental equations, derive expressions for the angular
accelerations of the elements of a liquid. If at any instant, in an ideal

fluid under forces derived from a potential, the angular velocities of

the elements are all absent, what follows? Prove your assertion

3. All the liquid in a certain region is m coaxial circular motion about a
vertical axis, the portions inside a certain coaxial cylinder having lineai

velocities directly as the radii and the portions outside that cylinder

having linear velocities inversely as the radn, there being no discon-

tinuity of velocity anywhere
Show that the free surface is a paraboloid within the cylinder mentioned
and a hyperboloid outside it.
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Also show that the depression of the centre is double that of the

boundary of the cylinder, both being reckoned from the free surface

at infinity

Prove that the liquid outside the cylinder has no rotation of its elements,
but is not like a rigid body, while that within is like a rigid body and
has rotation of its elements.

4. Obtain the flow of an ideal liquid past an infinitely long right circular

cylinder in planes perpendicular to its axis. Plot curves showing the

stream lines, and mark the speeds at several points on one line.

5 Derive the differential equation of motion for gravity waves, and solve

It, showing that the motion of the particles is in circles which diminish
as we descend.

6 . Obtain an expression for the velocity of propagation of gravity waves, and
point out how It varies with depth and wave length.

7 . Derive a general formula for the steady flow of a viscous liquid through
a capillary tube, and adapt it to the cases where this tube is (i) horizontal

and (ii) vertical

8 For very small vibratory disturbances of a compressible fluid of negligible

weight obtain the equations of motion in the form

d^s\

dt^~^ \dx^^ dz^P
where s is defined by p= po(i + j).
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PART VL—ELASTICITY

CHAPTER XXI

STATICS OF ELASTIC SOLIDS

455. Nature of Elastic Bodies.—Elasticity may be regarded as that

property of matter in virtue of which a body (i) resists forces tending

to change its bulk or form or both
; (11) requires the continuance of

those forces for the unimpaired maintenance of those changes ; and
(in) recovers its original bulk and form when those forces are removed.
Adopting the woid strain to express the change in volume or form or

both combined, and the word stress to express that combination of

forces associated with the strain, we may say that the theory of elasticity

is that branch of mechanics which discusses the mutual relations of

stress and strain.

But before proceeding to this theory, even to that elementary

degree compatible with the plan of this work, we must note the general

significance of certain other terms applied to bodies in this connection,

and also give more formal and quantitative definitions of stress and
elasticity.

If, on the removal of the stress, the strain entirely disappears, the

body IS said to be perfectly elastic. If, however, on the removal of the

stress some part of the strain remains, that part is called the permanent
set^ and the body in question is said to be imperfectly elastic for such

stresses The condition at which a marked permanent set occurs is

called the dastic limit of a material. Very small stresses and strains

are found to be practically proportional. In other words, they satisfy

Hooke’s law ut tensio sic vis. The place at which this simple pro-

portionality ceases to hold is called the proportionality point on the

graph of stresses and strains. It is usually near the elastic limit. On
the removal of a stress, if practically none of the strain disappears,

the body is said to be plastic
\
and if only a small part of the strain

disappears, it is said to be ductile

If a stress, maintained constant, causes in a body a strain which
increases continually with the time, that material is said to be viscous.

When a continuous alteration in form is produced only by stresses

exceeding a certain value^ the material is called a solid.^ hotvever soft it

may be. But if the very smallest stresses, when continued long enough,

cause a constantly increasing change of form, the material must be
regarded as a viscous fluid, however hard it may be. (Maxwell’s Heat,

p. 303, London, 1894)



468 ANALYTICAL MECHANICS [art. 456

‘ A body IS called homogeneotts when any two equal, similar parts of

It, with corresp)onding lines parallel and turned towards the same parts,

are undistinguishable from one another by any difference in quality
’

(Kelvin and Tail’s NaturalPhilosophy
^ Part ii. p. 216, Cambridge, 1890).

If we push our scrutiny to the utmost conceivable limit perhaps no
material would survive the test and be held as homogeneous. But,

in the theory of elasticity, glass, continuous crystals, india-rubber, and
fluids are usually considered as homogeneous.

‘The substance of a homogeneous solid is called isotropic when
a spherical portion of it, tested by any physical agency, exhibits no
difference in quality however it is turned. Or, which amounts to the

same, a cubical portion cut from any position in an isotropic body
exhibits the same qualities relatively to each pair of parallel faces

’

{jbid. p. 217)
In what follows we shall restrict our attention to materials which

are both homogeneous and isotropic.

456. Stress and its Relation to Strain.—When the terms stress

and strain were introduced into the theory of elasticity in 1854 by
Rankine, he used stress to denote the equilibrating set of forces which
represents the elastic reaction of a strained body.

In the following year Kelvin adopted the term stress, but used it foi

the numerically equal but opposite set of forces, defining as follows •

—

‘ Definition,—A stress is an equilibrating application of force to a

body.
* Corollary,—The stress on any part of a body in equilibrium will

thus signify the force which it experiences from the matter touching

that part all round, whether entirely homogeneous with itself, or only

so across a part of its bounding surface.
‘ Definition,—A strain is any definite alteration of form or dimensions

experienced by a solid ’ {Encyclopaedia Britanmca^ ninth edition, vol. vii

p. 819).

It is well to note here that Kelvin’s use of the term stress brought

the mechanics of elasticity into line with that previously d^'veloped for

particles and rigid bodies. For just as

Force= Mass X Acceleration

and Torque= Moment of Inertia X Angular Acceleration,

so Stress— Elasticity X Strain

Or, in symbols, the three analogous relations may be written

G^Io. /
and S—Ns (2),

or Ar=S/s (3),

where S denotes stress in force per unit area, s strain as fractional

change, and N tiie elastic constant or elasticity concerned, it being
understood that the stresses and strains are kept below the elastic limit.

Thus (2) and (3) each give the symbolic quantitative definition of

elasticity.

But although the meaning attached by Kelvin to the word stress
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was probably the one whose need to be named was then most keenly

felt, experience showed that a word was required for another closely

allied conception, and for this also the same word stress became
generally adopted. We must accordingly be prepared to meet the

word in its more modern usage, which is indicated in the following

passages or quasi-definitions

When there is no tendency to relative motion between the parts of

a body, so that if cuts are made in it there is neither opening, closing,

nor sliding anywhere, the body is said to be in a state of ease. When,
however, on that test being made, it is found that there is tendency to

relative motion as shown by opening, closing, or sliding, the body is

said to have been in a state of stress.

Stress IS the pair offorces constituting the mutual interaction in or

across a p^ane, or the entire action and reaction, of which force is one-

half.

Stress is force per unit area, in or across a plane.

Some writers reserve the word stress for the interior of a body and
use load and reactions for the weight and supports applied externally.

Whereas by Kelvin’s definition the load and reactions would constitute

the stress on the whole body, and the force per unit area in any direction

at any place in it would be strictly a stress component on an element
there.

457 . We may further illustrate the different uses of the word stress

by diagrams Thus, in Fig. 233, eight

foices are shown, being four pairs at the

planes i to 4.

Then on Kelvin’s original definition

and strict usage A and H constitute the

stress on the whole body included be-

tween the planes i and 4, A and D the

stress on the part i to 2, and so forth.

On tne more modern method, A and H
would be called the load and reaction,

C and D, or either alone, the stress at the plane 2, and so on In

either case all the stresses arc called compressive, because they are

normal and tend to compress or crush the substance. Also, in either

usage the value of the stress is the quotient

force per unit area.

Again, in Fig. 234 is shown a cube about
to be subjected to a shearing stress, i,e. one
which produces the strain called a simple

shear.

Then, in the modem usage, any one of the

four tangential forces B, B\ Z>, or D\ reckoned
per unit area, would be called a shearing

stress, because it is a tangential force or a

force in the plane and not normal to it or

inclined. On Kelvin’s definition the whole
set of four forces is required to constitute an ‘ equilibrating application

Fig 234. Shearing
S'l RESS.

i1 2 3

B i eit

Fig 233 Compressive
Stresses.
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offeree’
;
and so nothing less is, by that definition, a shearing stress, the

separate forces being stress components merely.

It should be noted also that, m this respect, Kelvin’s definition is

strictly logical. For any one force only, say B, would produce linear

acceleration simply. A pair of forces, on opposite faces, as B and B'y

constitute a couple, and would accordingly, by themselves, produce
angular acceleration. There is no necessary production of strain until

we have completed the set of forces By B\ which, on a rigid body,

would be an equilibrating set, the strain then follows if the body is

elastic.

But however the word stress is used qualitatively to apply to one
force, two, or four, both usages are in accord quantitatively, as the

various forces in question are equal and any one is the gauge of the

rest. We may thus without confusion use the term stress in the various

recognised senses, as found convenient, generally leaving the context

to show the exact meaning intended in each case

458. General Homogeneous Stress and its Components.—Let us

now consider a general application of forces to a body, simplify it till

It forms a homogeneous equilibrating system or stress, and then specify

that stress by its rectangular components. Further, let us take as our

element which is the subject of this stress a cube, which may be the

whole of the body or may be in the interior of a larger body from which
It is separated in imagination only.

Whatever the forces applied to the faces may be, we can denote

them by their rectangular components, which are respectively normal
to the face and parallel to its edges.

We have thus three possible components for each face, and therefore

eighteen in all for the six faces of the cube. But to reduce these to an
equilibrating system we first make the normal components on opposite

faces numerically equal. This reduces the total number of differing

values from eighteen to fifteen.

We next make the parallel tangential components on opposite

faces equal and opposite so as to form a couple. Vhis reduces the

fifteen different components to nine, as there are two tangential forces

along each of the three pairs of opposite faces

But there is a still further reduction of these nine different com-
ponents to six; for, referring to Fig. 234, not only must B'= B and
ly=D already just provided for, but also B must equal D. For
B—B'—D—D' measures the simple shearing stress corresponding

to a simple shear in the plane of that diagram.

Hence the most general application of forces to the faces of a cube,

when reduced to an equilibrating system or stress, become a pair of

equal and opposite normal forces on a pair of opposite faces, a set of

four equal tangential forces parallel to the edges of these faces and
applied on the other four faces as in Fig. 234 ,

and then a similar set

for each of the other two pairs of opposite faces. Thus to specify

a stress we require only six different components in all, three normal
and three tangential.
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The subject may also be treated analytically. Thus, take the stage

at which the parallel forces on opposite faces have been made equal,

so that we have three forces to specify on each of three adjacent faces,

or nine in all. Then we may denote them by the following scheme of

symbols :

—

x,\

Yx. Yy, Y, (4),

in which the large letters denote the direction of the forces and the

subscripts give the normals to the faces on which those forces act.

Following now a notation analogous to that used for strains m
Table v. of article 179, we may express these nine components by the

first letters of the a]phal)et .

—

A, B, C
D, E, F
G.H,I

(5)

Comparing these two schemes, we see that the normal components
are denoted by A^ Ey /, the first three vowels, corresponding to the

three elongations, which were previously denoted by a, t.

VVe also see that our reduction from the nine to the final six com-
ponents will consist in the equations

Yx= Xyy Za;=Az, Z,/= Vz (6),

or the equivalent set

n^ByG=^CyH=F (7).

Hence our set ot six components which specify the stress are

Ay By C\
B,EyF\ (8 ),

CyFyl]
the full nine being retained to show the equalities. These correspond

to the general pure strain shown in

Table v of article 179.

The 1 elation of these six com-
ponents of a general stress will per-

haps be best understood by reference

to a diagram such as that 111 Fig. 235,

One force of each pair of equal ones

IS shown on the near face of the

cube, the equal and opposite one on
the hidden face being understood.

All the forces must be imagined dis-

tributed equally over the face to

which it is applied, the capital letters

must be taken as denoting the values

of the quotients force per U7iit areay

and the positive directions of the

components on the cube are those indicated in the figure.

Fig. 235 Six Components of
General Stress.
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Examples—LXXXIX.

1. Give an account of the nature of elastic bodies, carefully distinguishing
between the various special terms used in this connection.

2. Explain carefully the vatious meanings which have been assigned to the
word stress, indicating how we may still use the word quantitatively
without fear of confusion.

Illustrate your answer by concrete examples and sketches.

3. Consider the most general set of forces acting on the faces of a cube,
and show how, to represent the most general homogeneous stress, the

eighteen components reduce to six.

4. With the notation of article 458, specify a uniform hydrostatic stress and
two shearing stresses, showing by a diagram how the forces act. Also
prove that six components are sufficient to specify the most general
homogeneous stress

If the application of force weie such as to require more than six quan-
tities to specify it, what would happen to the body ^

Fig. 236. Stress at given Plane

459 . Stress across any Plane -- Let the stress to which a material

IS subjected be specified by its

SIX components A^ E, /, C, F,

referred to the co-ordinate planes,

and take any plane cutting the

axes at U, V, W, the direction

cosines of its normal being /, w, u

It IS required to find, on UVW, the

stress JV with direction cosines A,

/X, V and components P, (2, and E
parallel to the axes (see Fig. 236).

Let the area of the plane tri-

angle UVW be A, then those of

Its projections OVW, OWU, and
OUV will be respectively /A, wA,
and /zA Then, using the con-

ditions of equilibrium for the

portion of material OUVW, we have by resolving parallel to ^he axes

PA A/A+BmA -f- A,

and two similar equations. Thus, cancelling out the A's all through,

we find for the components and resultant

F=A/-\-Pm+Cn=NX]
Q—Bl-^hm-\-Fn~N\i\ (i),

R=Cl^-Fm-\-l7t^Nv J

A_a-Z.-L. f
(2)-

p q~r~n)
To embody this result in a geometrical form consider the ellip-

soid

S=Ax^-\-Ey^-\-Iz^’Y'^{Fyz-\-Czx-\‘Bxy)=^K

,

. (3),

and take on its surface a point defined by the co-ordinates

x==lr^ y—mr^ z—nr ... (4),

also

and
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then the line of length r to this point from the origin has the direction

of the normal to the plane UVW, whose stress is in question.

Now, differentiating (3), we find

‘^^^=2(Ax+By+Cz)

^=2{J3x-\-Ey-\-Pz)

^=2{Cx-\-Fy+Iz)

(S)

Thus, remembering (4) and (i), we have

^5 dS dS .

dx ' dy ' dz • (6V

which shows that the perpendicular (of length p say) from the origin to

the tangent plane at z has the same direction cosines as the resul-

tant stress i\7 across the plane UVW, whose normal has the same direc-

tion as the radius vector r to the point just named.
For, from (5) and (i) we may write

Nr\— Ax-^ By-\-Cz\
Ntii^Bx-\-Ey^Fz\ (7)

and Nrv=Cx^Fy-\-Iz j

Multiplying these equations by x^y, and 2 respectively, adding, and
using (3) and (6), we obtain

]Slr(}^X’\-iiy’^vz)'= K—IIrp . (8),

or N=^KIpr (9)

Thus, ‘ For any fully specified state of stress in a solid, a quadric

surface may always be determined, which shall represent the stress

graphically in the following manner —
‘ To find the direction and the amount per unit area of the force

acting across any plane in the solid, draw a radius perpendicular to

this plane from the centre of the quadric to its surface. The required

force will be equal’ (or proportienal^ unless W=i) ‘to the reciprocal ot

the product of the length of this radius into the perpendicular from the

centre to the .angent plane at the extremity of the radius, and will be

perpendicular to this tangent plane
‘ From this it follows that for any stress whatever there are three

determinate planes at right angles to one another such that the force

acting in the solid across each of them is precisely perpendicular to it.

These planes are called the prtnapal or nor^nal planes of the stress , the

forces upon them, per unit area, its principal or normal iradions
;
and

the lines perpendicular to them its principal or normal axeSy or

simply Its axes. The three principal semi diameters of the quadric

suiface are equal (or pioportional) to the reciprocals of the square

roots of the principal tractions. If, however, in any case each of the

three principal tractions is negative, it will be convenient to reckon

1 I he student not familiar with this may easily verify the corresponding relations foi

an ellipse, its tangent, and the perpendicular upon it from the centre.
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them rather as pressures
j
the reciprocals of the square roots of which

will be the semi-axes of a real stress ellipsoid representing the distribu-

tion of force in the manner explained above, with pressure substituted

throughout for traction ’ (Kelvin and Tail’s Natural Philosophy^

Part II. pp. 207-208, Cambridge, 1890)

460 . Composition of Stresses.—The composition of stresses may,
of course, be eifected by the algebraic addition of like components.
Thus, if several stresses are defined by /j, iq, Ci, and the

same with subscripts 2, 3, etc., the resultant stress has components
'SiA— Ai-^A^-jr •

^E=E,+ E,+ ..

2/=/i-f"^24" • •

— .

.

(10).

If all the stresses *^0 be compounded have their principal axes

coincident, each one reduces to its three principal tractions A, and /,

and the lesiiltant is, of course, given by the three terms ^A, 'IE, and 'SL

Finally, if the strains to be compounded are each a simple traction,

and all at right angles, we have them represented by A, o, o; o, E, o

,

and o, o, /, and their resultant by Ay Ey I

461 . Two Aspects of Shearing Stress.—In the chapter on strains

we considered a simple shear at first (article 165) as a combination
of an elongation and an equal rectangular contraction. We afterwards

saw (articles 170-174) that it could be viewed as a sliding of planes at 45“

to the above elongation and contraction, the amount of the shear, or

slides per unit distance apart, being double the elongation.

In referring to shearing stresses in the present chapter we have
taken first the tangential-force aspect of the

matter which corresponds to the sliding of

the planes, which in the strain was con-
sidered second. We now note the con-

version of the other form into .his, and
shall find that here no doubling nor halving

occurs in passing from one aspect to the

other.

Thus let the shearing stress be specified

by its principal tractions o, E, —E, and
take a plane at angles of 45® with the axes

of y and z, so that its normal lies in their

plane and between their positive directions,

as shown in Fig. 237.

Then, using the results in (i) and (2) of article 459 for the stress on
this inclined plane, we have

/>=o =Nl\

Fig. 237. Two Aspects of
Shearing Stress,

• ('*)
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Whence N—E^X=o^^=ilJ2= — v. , (12).

Thus, showing that the stress on the plane inclined at 45° to the

axes of traction and pressure has a tangential force of equal value per
unit area and directed as shown in the figure.

This result can also be found easily by elementary considerations

without the general formulae of article 459.

462. Elasticities and their Relations.—Let us now take symbols
for the chief elasticities, find expressions for them, and establish relations

between them.

Let the traction along the axis of x produce in an isotiopic material

the strain (a, — f, —/), or — cr^r, —-(ra) where tr is called Poisson's ratio.

The elasticity involving change of size only is called the volume
elasticity or bulk modulus It is measured by the quotient hydrostatic

pressure divided by fractional diminution of volume., or uniform normal
tractions divided by fractional increase of volume Thus denoting

this elasticitv by k, and using equations (2) of u,rticle (164) and (it) of

169, we find

8 id 3</(i~2(r)

The elasticity involving change of shape only is usually called

rigidity, and will be denoted by n It is measured by the quotient of

any one of the tangential forces per unit area of the shearing stress

divided by the amount of the corresponding shear.

Hence, using the result of article 172 and equation (12) of 169, we
obtain

P , V

X 2e 2«(i-f-(r)
' ' * • • \ /

From these two elasticities the behaviour of an isotropic material

is calculable since from the corresponding strains any homogeneous
strain may be built up as already seen in Chapter X.

But another so called elasticity is in general use, namely, Young’s

modulus, which is the quotient traction divided byfractional elongation,

the lateral contraction being lelt free to occur but not taken into account.

Denoting this constant by q, we may write, immediately from the

definition,

Let us now express q in terms of the pure elasticities k and n.

putting (3) in (i) and (2), we find

-“-51
and 2(i-fo-)=-^l

n J

Whence, by addition, we have the well-known relation

9^«

Thus,

(4)-
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For a given wire or rod, the product, Young’s modulus into area o
cross section, is sometimes called the modulus for the rod.

Again, by division of the equations (4), we eliminate and find

xk— 2n
or zzz —

6k-\-2n (6).

thus expressing Poisson’s ratio in terms of k and n. This shows tha

when «is negligibly small (as m some jellies) o- approaches the limitinj

value 1/2. If it exceeded this value, hydrostatic pressure would caus<

a dilatation, as seen by equation (i).

The other limit to the value of o- is zero, which (as Kelvin and Tai

point out) IS practically reached by cork.

We may next take the case of the elasticity in which a simple elon

gation occurs under traction, lateral contractions being prevented b;

other tractions. But just as the lateral contractions were omitted it

estimating the strain for Young’s modulus, we may now omit referenc(

to these lateral tractions in estimating the stress for this simple elonga

iional elasticity^ and measure it by the quotient traction H divided

corresponding fractional elongation e Thus, denoting it by anc

using equation (10) of article 169, we have

,-P-
(n\

^ e i^(l+o-)(i~2o-)'~(i+(r)(i — 2(r)
'

’

We can throw this expression into another convenient form h)

using equations (6), (5), and (4). We thus find

6A+2n

*

Introducing these values in (7) we obtain

j= k-ir\n . . .

(
8).

(9)

On referring again to equation (10) of article 169, we may write th(

lateral traction Q in terms of P by making them proportional to th(

corresponding axial strains as there shown.
Hence

0
0,%

or Q=P “ ......... (10).

Thus for (r=o, Q=o, but for a moderate value of o-=i/4 say

Q=^/3.
The chief results of this paragraph are collected in Table xvi. (Foi

a larger table on a similar plan see page 125 of the writer’s Text-Boot

on Sound, London, 1908 )
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Table XVI. Relations between Elastic Constants.

Elastic Constants. Expressed in terms of

Names. Symbols.
Stress and
Strain. q and o’. k and n.

Volume Elasticity. k
P
d 3 - 60-

k

Rigidity. n
P
X

_ I ^
2 -\- 2 cr

n

Young’s Modulus Q
P
a g

gbn

3b + n

Poisson's Ratio. cr

~ t

a
O’

3^ -

6b + 2n

Elongational Elasticity. J e (T-fo-Xl - 20-)
b + in

1

Examples

—

XC.

1. From the general components of a homogeneous stress find the direction

and magnitude of the stress across any given plane in the substance.

2. State and prove the relation between the stress inside a solid, the com-
ponents of the stress outside the body, and a certain ellipsoidal surface.

3. How may stresses be compounded? Using the symbols Ay Ey I to

denote the normal stresses, and Fy C, B for the tangential ones, which
set refers to shearing stresses ? Can a shearing stress be denoted by
any combination from the other set ;

if so, how do the two shearing
stresses differ from each other ?

4. Define volume elasticity, rigidity
y and Youngs moduluSy and obtain

exp.essions for each.

5. Obtain expressions for Poisson’s ratio and Young’s modulus in terms of

volume <.,lasticity and rigidity.

6. Express the simple elongational elasticity in terms of volume elasticity

and rigidity How could you find Poisson’s ratio from this elonga-

tional elasticity and Young’s modulus ^

463. The Work of Stress and Strain—Take a unit cube and let

the infinitesimal strain {day dcy dt, dfy dcy db) occur under the practically

constant stress {Ay Ey /, Fy C, B), Then the traction A for the

elongation da does work Aday and similar expressions hold for the

other normal tractions E and /.

Again, the tangential force A’ with the shear ^^docs work Fdf. And
this IS so, whether we regard the shear as a progressive sliding parallel

to y of the xy planes, or as a sliding parallel to s of the zx planes.

The simultaneous occurrence of both slidings simply obviates shift or

rotation of the whole, and does not introduce any additional shear or
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work, for each slide involves the other as regards the strain itself The
other tangential forces C and B involve the corresponding expressions.

Thus the element of work on the unit cube is given by

dlV,= Ada+ £deA-Idi-YFd/-\-Cdc-{-Bi3, . . (i).

If the side of the cube is s instead of unity, the displacements are

affected by the factor s and the corresponding forces by s^. Thus the

increment of work IV is given by

dlV=:is'dlVr or dWr^dWjs^ (2),

showing that the expression d is the increment of work per unit

volume.

Let us now consider a cube with unit edges when free from stress,

and let it be acted upon by a general stress increasing from zero till it

has the value (A.^ /, Ey C, B)y the strain then being (<2, /, f Cy b)

We can then write for the variable traction A the product ra where r

is a constant and a the instantaneous value of the corresponding strain

component. Thus the element of work for A and a would be given by

f Ada=rf ada= ^ra^=^Aa (3).
Jo Jo

Hence for the unit cube we have

W,=^=l{Aa+Ee+/i+F/+Cc+Bi) . . (4),

the capital letters in the brackets now denoting the fnal values of the

stress components, their average values being only half.

We have hitherto confined our attention to cases of homogeneous
strain We now notice a few very simple problems beyond this

limitation.

464. Bent Bar.—Let a bar, which is straight when in a state of

ease, be slightly bent in the plane of the

diagram, Fig 238. It is required to de-

termine the bending moment.
Clearly the outer parts of the bar are

slightly elongated and the inner ones com-
pressed. We may accordingly assume
that there is an intermediate part, as

shown by the broken line OAO', and called

the neutral surfaccy which is neither length-

ened nor shortened by the bending
Consider a small portion of the bar

OA of length x, and let the radius of curva-

ture there be OC=r, x subtending at C
the angle B. Thus a small filament PQ
of ordinate —j, which had an initial length

X, is lengthened by the bending to PQ'.

Hence AQ~ r~ y
'
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Thus the fractional elongation of the filament is

PQ ^
^ ^

Let the filament PQ have cross-sectional area dS^ and the bar be
of material for which the Young’s modulus is q. Then the force dl
on the filament satisfies the relation

dF r y ,,, . .q=——,ordF=q—dS (2).
^ dS y ^ r ^ '

The moment of this force about O is therefore

ydF=^y'dS . (3)

Hence the entire bending moment needed for the whole cross

section of area is given by

j\r=^lydS=^F (4),

where F is the moment of inertia of the cross section about its inter-

section with the neutral surface

But, as we are here only concerned with slight curvatures, we may
write the approximate relation

r dx'

SO that (4) then becomes

nearly (6).

This gives the solution of the preliminary problem stated at the outset

Now let us determine the form of a bar under the following simple

stress :—The bar is clamped with a length I projecting, and the free

Fig. 239. Bar with Terminal Force.

end has a perpendicular force R as shown in Fig. 239, the vreight of

the bar being negligible.

Then, at any point P of co-ordinates (x^ 7), the bending being so

small that x remains practically unaltered, the bending moment is

given by
N=R{l~x) (7).

Thus, equating (6) and (7), we have

R{l-x)^gK^, (8).
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Hence, multiplying by dx and integrating from the origin to P, we find

. . (,),

which gives the slope of the bar at any point x and may be utilised in

the experimental determination of q
Again multiplying by dx and integrating between O and P, we

obtain

which is the equation of the curve assumed by the bar under the stress

in question.

At the free end, where a:=/, let 7=1^, then equation (10) becomes

r)73

a formula which is oPen used in the laboratory exercise of finding q
for wood and metals. For symmetrical cross sections it is clear that

the neutral surface is central

Passing from the case of a clamped bar to that of one drooping b

at the middle under a central load the distance between the

supports being Z, we see that

/=Z/2 and R— IV/2 (12).

Thus writing these values in (ii), it transforms into

IV/J
(’ 3 ),

this arrangement being often more convenient than the former, to which

(i i) applies.

465 . Twisted Cylinder—Let us now consider a right circular

cylinder of radius a and length I with axis

along the axis of the base in the xy plane

held still while the opposite end is rotated

through the angle d in it? own plane, djl

being called the twist and denotea by t. It

is required to determine the stress needed to

maintain tWs twist.

It is almost self-evident that the stress in

question will consist of equal and opposite

couples in the planes of the ends of the

cylinder respectively. And further, it is

obvious that the strain will consist of a

progressive angular displacement of planes

parallel to xy, increasing uniformly with z

from zero at the base to 6 at the other end
where s=/, none of these planes being them-

selves distorted.

A little reflection shows that the mutual
interaction of any elements of the material meeting at these planes is the

Fig 240. Twisted
Cylinder.
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undiminished handing on of a force parallel to the xy plane and
perpendicular to the radius, such interaction being imposed by
the application at the ends of the cylinder of the forces constituting
the stress, which is a pair of equal but opposite couples about
the axis

Hence, referring to Fig 240, we may write the strain as follows :

—

x'—x~ —ryz \

y—y=-\-TXZ^r (l).

Z —Z~Q
I

Whence, with our ordinary notation, we may write

a—e=^i—o \
f=TXy c=—Ty^ b=oj *

* * (^)

Thus, for the stress components, we have

A=E=L=o
F—nrXy C~ —nryy B=o} • • • • (3).

where n is the rigidity of the material

All these equations show that the strain with which we have here
to do IS not of the type called homogeneous for the displacements now
involve the products of the variables instead of being a linear function

of them.
The components i^and C give a resultant (refer, if necessary, to

Fig 235, at end of article 458) tangential to circles about the axis of

z and of value expressed by

. T—nrr (4),

as shown at the top of the cylinder in Fig 240.

Hence for any ring of radii r and r-\-dr the force would be
2'irr{nrr)dry and its moment about the axis of z would be r times that

value. Thus, for the whole area, the torque G is given by

or by

G=2TrnT
j

r
. Tvnra
dr=

2

(5)

.

(6

)

.

An alternative method of obtaining this relation is given in the

writer’s Text-Book of Sound

y

pp 128-129, and is there followed by a

description of some methods for the determination of the rigidity of a

material.

If the rod is variable in radius we might write r (as a function of z)

instead of a. In this case the twist, angle per unit length, will also

vary along the axis from point to point. We mav accordingly write

ddjdz in place of t. Making these substitutions in (5), we find

d6^ 2Gd^
Trn r*

(6a).

2 H
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466 . Elongation of Helical Spring —To deal rigorously with the

problems of a helical spiing is beyond the scope of this work, but by

the simple device used in Perry’s Applied Mechanics^

pp 628-629 (London, 1898), we may calculate ap-

proximately the small elongations of a close helical

spring of ciicular wire.

In Fig. 241 IS shown the spring, made of wire of

radius r bent into coils of radius R to the centre of

the wire. It is fixed at A, and at the lower end B in

the axis a vertical force P is applied depressing that

point by the amount p say. Let the weight of the

Q spring be negligible in comparison with P,

At any point Q in the spring take a section by a

plane through the axis AB. Then, since the spring

lb a close one, this section is piactically a normal

section of the wire. Consider the equilibrium of the

portion BQ. The force P down the axis is balanced

by some forces at the section at Q. These must be

equivalent to a force P vertically upwards and a

1 B torque of magnitude PR acting on the upper end Q
’Ip of the portion BQ of the spring. And since Q is

Fig 241 Elon-
point, this force and torque remain constant

GAi ioN OF Hki I-
throughout the purely helical portions of the spring.

CAL Spring. The vertical force Z’ is a shear component of the

stress, and its effect may be neglected in com-
parison with the torsion.

The torque PR applied throughout the spring will produce the

corresponding uniform twist as found in equation (6) of article 465.

And this twist will give the depression p of the point B proper to its

final angle and the arm
Thus, writing L for the length of the wire bent into the helical

form and ^ for the total angle due to the twist, we have fiom (6)

2L
* (7),

and p=R6
(
8 ).

Whence, eliminating B between these equations,

P _ ^ nP
'J'~'Tlr^~'WR"

*

where N \% the number of turns in the helix, its slope being accounted
negligible.

For rigorous theories of helical springs the interested student may
consult Perry [ibid, pp. 633-638) and Gray, Physics^ vol. i. pp. 600-

609 (London, 1901).
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Examples

—

XCI.

1. Obtain expressions for the work per unit volume when an elastic body
IS strained from a state of ease to a specified finite strain.

What does this general expression reduce to in the case of a wire
stretched by an amount the final foice being P?

2. Prove that to bend a bar to radius r needs the application of bending
moments of the value gFjr, where q is the Young’s modulus of the bar
and K the moment of ineitia of the cross section about its intersection
with the neutral plane

3. Show that if a straight uniform bar is fixed at one end and very slightly

bent by a perpendicular force at the other, its equation may be written

y — Ax"^ - Bx\
and state the values of the constants A and B

4. Find the inclinations at the ends of a beam loaded in the middle and
supported at the ends, also the droop in the middle.

5. A beam of clear length L between its supports has a load IV uniformly
distributed along it

;
show that the droop in the middle is 5 lVL^I$2>4gK,

where q is the Young’s modulus of the material and K the moment of
ineitia of the cross section of the beam about the line where the neutral
surface cuts it.

6. Treat the problem of the pure torsion of aright ciicular cylinder ofradius
a and length /, and show that the couple per. radian of total angular
displacement of one end relatively to the other is -nna‘^l2l^ where n is

the rigidity of the material.

7. Assuming the lesult of the previous example, show that the torsional

oscillations of a cylinder or other body, of moment of ineitia / about
a central vertical axis, wheji suspended by a wire fixed at its top, may
be expressed by t = 2tt s!2lIlTrna^y whence the rigidity of the wire is

given by n —
8. Investigate the pure torsion of a frustum of a cone whose bases have the

slightly differing radii a and the length of the frustum being /, and
show that the total angle Q through which one base is turned relatively

to the other by the opposite couples of magnitude G is given by

n_2Gl a^-\-ab +

9. A filament of circular cross section fluctuates several times between the
radii a and b^ all parts of it being conical without any intervening
cylindrical portions

,
show' that, if one end is fixed, the couple per

radian displacement of the other end is expressed by
G _ -nhicFt^

J-—

»

where Vis the volume of the filament

10 Show that for a close helical spring of radius B, made of circular wire
of length L and of radius r, the relation between load and axial

elongation is that between load and displacement when the load is

applied to an arm of length R on the end of the s‘^raight wire of length
L and radius r of the same material as the spring.

II. A uniform beam is placed horizontally on two end supports, and the in-

tervening portion then beais a uniformly distributed load. Taking
the origin at centre of the beam, the axis of x hoiizontally parallel to

the original position of the beam before loading, and the axis of y
vertically upwards, show that the shearing force^ the bending moment^
the slope of the beam, and its ordinate are pioportional lespectively to

the firsts second^ thirds andfourth powers of the abscissa x.
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Examples

—

XCII. : Chiefly Kinematics.

1. ‘Show how to connect linear, angular, and areal velocity, period, and
revolutions per second m uniform motion in a circle

;
and calculate the

angular velocity of the hands of a clock.

‘Determine the revolutions per second of a bullet fired with velocity

2000 feet per second from a rifle, the grooves of the rifling making one
turn in 10 inches.’

(Lond B a. and B Sc., Pass, Mixed Math., 1902, i 5 )

2. ‘ Investigate the simple harmonic vibration of a weight suspended by a
vertical spiral spring, and determine the length of the simple pendulum
which will synchronise.

‘ Prove that a tiain on a perfectly straight railway, not curved to the

radius of the earth, will oscillate if unresisted on each side of the position

of equilibrium in the same period as a grazing satellite, about one-seven-

teenth of a day, or i h. 25 m.’

fLoND, B A. AND B Sc
,
Pass, Mixed Math

, 1902, i 9 )

3. ‘Wnte down formulas connecting angular velocity, linear velocity in

feet/second, revohu.ons/minute, and period of revolution in seconds.
‘ Prove that a bicycle geared up to D inches requires 336 SjD revolu-

tions/minute of the pediils for a speed of 5 miles/hour.’

(Lond B A. and B Sc, Pass, Mixed Math
, 1903, 1. 5.)

4. ‘ Explain the theory, units, and notation of the formulas

(1) Pt=— -, (11) Ps= (ill) v = 2- .

‘ Supposing that one in m is the steepest incline a train can crawl up with

uniform velocity, and one in n is the steepest incline on which the brakes
can hold the train, prove that the quickest run up an incline of one in p
from one station to stop at the next, a distance of a feet, can be made m

(-H-)
1

‘Calculate for m~^o^ n= loOj ^^ = 5280’
(Lond B A and B Sc

,
Pa^s, Mfxi- d Math

, 1903, i. 6 )

5. ‘Calculate the velocity at any point m a centrifugal 1 ailway and the

thrust on the rails of a car, where Us C. G. describes a vertical ciicle of
radius a feet, due to entering at the lowest point from an ir.clme with a
fall of h feet vertical.

‘ Prove that h should not fall short of 5<r/2, and the car Jiould be strong

enough to sustain the weight sixfold
’

(Lond. B A and B Sc., Pass, Mixed Math., 1903, i. 8 )

6 ‘Show that an angular velocity <b about any axis is equivalent to an
equal angulai velocity about a parallel axis, together with a velocity of
translation wa in a direction at right angles to the plane containing the
axes, the distance between which is a,

*A and C are given points in a plane, in which a bar AB is turning about
A with angular velocity co. AB is jointed at .5 to a bar BD^ which is

constrained to pass through C In any position of the linkwork, draw
AE to meet BI) at right angles in E

,
draw parallel to to meet

AC in B"

,

let v be the velocity of the point in BD which is passing
through C, and let cd' be the angular velocity of BD,

‘Show that , AE .

v==i<o.AEy »

(Lond B.Sc, Pass, Applied Math, 1905, 11. 6.)
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7. ‘ One end B ois. vodAB describes a circle, while the other end A is con-
Strained to move along a line which passes through the centre C of the

circle. Prove that the ratio of the speeds of A and B is equal to the

ratio of AM to AN^ where BN is the perpendicular from B upon AC
and AM IS that from A upon CB.

‘ If AB (or AB pioduced) meets the circle again in B\ show that the rate

of increase of AB' is to the speed ofA its 2AC is to AB.’
(Lond B Sc

,
Pass, Applied Math

, 1906, ii 6 )

8. * If a particle is projected from O, under the action of gravity, at an eleva-

tion a, with a velocity due to a height show that the equation of the

parabola described with reference to horizontal and vertical axes at O is

where w = tan a. Find the greatest height attained.’

(Lond B.A., Pass, Applied Math
, 1907, i 6

)

9. ‘A particle describes an ellipse under a centre of force m a focus which
produces an acceleration

;
prove the formula for the velocity

where a is the major semi-axis of the ellipse

*The maximum velocity of the earth in its orbit is 30,000 metres per
second, and the minimum velocity is 29,200 metres per second , deduce
the eccentricity of the earth’s orbit

’

(Lond. B A., Pass, Applied Math
, 1907, i 9

)

10. ‘ Obtain a formula for the velocity at any point of an elliptic orbit described
under a central force to one of the foci.

‘The greatest and the least velocities in such an orbit being no ft. per
sec and 90 ft. per sec respectively, and the periodic time being
20 min

,
calculate the eccentricity and (approximately) the length of

the major axis.’

* (Lond. B.Sc
,
Pass, Applied Math

, 1907, ii. 5

)

11. ‘A particle of unit mass moves in a straight line fiom rest under a constant

accelerating force ^ and a retarding force Show that afiei describ-

ing a distance .r its velocity is given by

(Lond. B Sc
,
Pass, Applied Math

, 1908, ii 7 )

12. ‘The aims AC, CB of a wire bent at light angles slide upon two fixed

circles in a plane. Show that the locus of the instantaneous centre in

space is a circle, and that its locus in the body is a circle of double the
radius of the space centrode.’

(Lond B Sc., Pass, Applied Math
, 1908, iii 2.)

13. ‘A particle is projected at right angles to the line joining it to a centre

of force attracting according to the law of the inveise square with a

velocity being the velocity from infinity. Find the eccentricity

of the orbit described, and show that the periodic time is 27r 7", 7being the

time taken to describe the major axis of the orbit with uniform velocity K’
(Lond. B.Sc, Pass, Applied Math., 1908, iii 3.)

14. ‘Explain the principle of relative velocities.

‘Two points /*„ describe coplanar concentric circles of radii and
^^2 with velocities and respectively

;
prove that the velocity of

relative to P,^ is m the direction PyP^ when PyP^ subtends an angle A
at the centre of the circles such that

- ay cos A) + Vi{ai - /Zg cos A)= o.’

(Lond. B.Sc., Pass, Applied Math
, 1910, ii. 2.)
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15. ‘If (r, B) be ihe polar co-ordinates of a point P moving in any manner in

a plane, show that the accelerations of P along and perpendicular to the

radius vector are

‘A smooth horizontal tube OA of length a is movable about a vertical

axis OB through the extremity O. A particle placed at the extremity A
IS suddenly projected towards O with velocity <200, while at the same
time the tube is made to revolve about OB with angular velocity o).

Show that the particle will have travelled half-way down the tube after a

time ~ loge2, and will not reach^O in any finite time.'
O)

(Lond. B Sc, Pass, Applied Maih, 1910, ii 3 )

16. ‘Translate.

—

‘ Les organes qui permettent de faire passer le mouvement, de la pi^ce

menante k la pi^ce menee, se nomment micamsmes Les mecamsmes
peuvent etre classes en deux categories ; la premiere categoiie comprend
les syst^mes articules dans lesqucls les angles vaiient, les distances des
articulations rcstant constants. La deuxitme categoric comprend les

systemcs constitues par une pi^ce Panimde d’un mouvement vl/qui, par

contact continu, imprime un mouvement M* k une autre pi^jce F '

(Lond BSc, Pass, Applied Math, 1910, ii 10)
17. ‘Prove that the orbit described by a particle under a force which tends

to a fixed centre, and varies inversely as the square of the distance from
the centre, is a conic

‘ Prove that, if P is the particle, 6 the centre of force, and N the foot of

the perpendicular from P on the axis of the conic, the velocity of A' is

greatest when it coincides with
(Lond. B Sc, Pass, Applied Math, 1910, iii i

)

18 ‘ Investigate the motion of a heavy particle allowed to fall from rest m a

medium which offers a resistance proportional to the velocity.
‘ Prove that the velocity constantly increases, but tends to a finite limit

'

(Lond B Sc., Pass, Applied Math., 1910, iii 4.)

19. ‘Translate the following passage .

—

‘Das Planetensystem erleidet allerdmgs im Laufe der Jahrtausende
bedeutcnde Umgestaltungen. Doch treffen sie diejemgen beiden
Elemente nicht, welche man mit vollstem Recht a’s die hauptsach-
lichsten bezeichnen kann, namhch die mittleren Entfernungen der
Planeten von der Sonne und ihre Umlaufszeiten um dieselbe. Hat man
die letzteren als Mittel von hunderten oder tausenden von beobachteten
U mldufen bestimmt, so 1st man sicher, dass dieses Mittel die unveran-
derhche Umlaufszeit genau darstellt’

(Lond. B.Sc, Pass, Applied Math., 1910, iii 10)
20. ‘ Prove that, at any point of the path of a moving particle, the normal

component of the acceleration is where v is the velocity and R the

curvature at the point. Deduce its expression in terms of and
(Board of Education, Theo Mech., Solids, Stage 3, 1908, 47 )

21. ‘ What is meant by the motion of a lamina in its own plane ?

‘ Show that a lamina can be moved in its own plane from any one posi-

tion to another by a rotation round a point in that plane. Point out any
case that presents an apparent exception.

‘ The motion of a body at any instant can be represented by two angular
velocities round parallel axes ; find a simpler mode of representing the

motion.'

(Board of Education, Theo, Mech., Solids, Stage 3, 1908, 48.)
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22. *Show that two equal and opposite rotations, effected successively

round two parallel axes A and are equivalent to a single motion of
translation.

‘Illustrate your answer with refeience to a carefully drawn diagram of

the following case .—Suppose that is a side of a square and that the

square is made to turn in its own plane round A through 6o“, and then,

in the opposite direction, round B through an angle of ; also, show
the direction of the translation.’

(Board of Educaiion, Theo Mfch
,
Solids, Stage 3, 1909, 46 )

23 ‘A motor starts from rest to go a distance S’, and the acceleration of its

velocity at time / is r being the time taken to acquire the
T

maximum velocity, which after that time is maintained
‘If 7" be the whole time for the distance, and T^ that of the same motor
with a flying start, prove that

’- = 3 ( 7
'- 7',).

/._2 ^ >

(IJOARD OF Education, Thf.o. Mf,ch
,
Solids, Si aol 3, 1909, 47.)

24. ‘Suppose that a square ABCD undergoes a veiy small elongation

parallel to the side AD caused by a uniform tension T\ also that it

undei^oes a very small compiession parallel to the side AB caused by
a uniform pressure T Show that the square is under a shear in the

direction A C, and find its magnitude.’
(Board of Education, Theo Mech

,
Honours, 1909, 62

)

25. ‘Explain what is meant by a rotation and by an axis of rotation Con-
sider a body which turns round an axis, and a straight line m the body
which IS m a plane at right angles to the axis of rotation. Show that,

at the end of the motion, the line makes with its initial position an angle
equal to that through which the body has been turned

* * AB, AC, AP three lines forming a solid angle at A, and AP \s

such that a rod coinciding with AB can be brought into the position

AC by a. rotation round AP. Supposing that AB and AC are fixed,

find the locus of AP. Find also the relation between the angle of

rotation and the angle BAC?
(Board of Educaiion, Theo. Mech., Solids, Si age 3, 1910, 48.)

Exa'ipi Fs—XCIIT • Chiefiy Part iCTE Kinetics.

* Prove that a jet of water of delivery P lb. per second, and velocity v
feet per second, impinging on a plane pallet fixed perpendicular to its

direction, will exert a thrust Pvfg pounds.
‘ If such a senes of pallets are mounted on the circumfeience of a wheel
moving with velocity u, the horse-power given out will be

ssqrl 4
a maximum 200^ when u = vl2 ;

and half the energy of the jet is

then utilised by the wheel.’

(Lond. B.A. and B Sc
,
Pass, Mixed Math

, 1902, i 7 )

‘A train of 200 tons acquires a speed of 20 miles an hour from rest in a
mile and a quarter. Find (in tons) the excess of tractive force over
resistance, assumed constant.’

(Lond B.A and B Sc., Pass, Mixi-d Math., 1904, 1. 2.)
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3. "A paiticle m describes in succession the sides of a regular polygon, each
with the same constant velocity v. Piove tiiat in order that it may do
this an impulse of amount r/iv^tjr must be applied to it at each corner,

where t is the time of describing a side and r is the radius of the circle

circumscribing the polygon *

(Lond B a and B Sc
,
Pass, Mixed Math., 1904, i 5

)

4. ‘A foice whose magnitude is at each instant completely given acts

always in <i given right line , show how to draw a diagram lepresenting
ill) the work done by the force in a given interval ;

(/;) the whole impulse of the force in this interval
‘ A ball whose mass is 4 ounces strikes normally a fixed plane with a
velocity of 50 f /s

, the coefficient of restitution is 2/5, and the time of

contact IS 1/256 second; taking ^=32, what is the mean pressure
between the ball and the plane in lbs weight ?

‘What IS, approximately, thc^^»'/r^i/Va/ picssure?’
(Lond B Sc , Pass, Mixed Maih , 1904, ii. 3 )

5. ‘At the top, /?, of a rough plane inclined to the hoiizon tan "*3/4 is fixed

a pulley ; a uniform chain having a mass of 5 lbs per foot lies on the plane
along the line of g»'eatest slope and passes over the pulley at B If

the coefficient of friction is 1/2, and 20 feet of chain he on the plane, find

the amount of work done against friction when the fiee end of the chain
is pulled until

{a) 10 feet of chain have come over
;

{b) 20 „
(Lond B Sc., Pass, Applied Math

, 1905, i 7.)

6 ‘A paiticle makes small abrasions on a horizontal straight line under the

influence of a spring of negligible mass attached to a fixed point. Dis-

cuss the motion, and prove that for different particles the time of

oscillation varies as the square root of the mass attached.’

(Lond B.Sc, Pass, Applied Math, 1905, iii. i

)

7 ‘Assuming that the attraction of the earth is directed towards the centre,

and is constant at all points of Us surface, prove that the deviation of the

direction of gravity fiom the ladius due to the rotation of the earth at a
place 111 latitude X v,tries as sin 2X, and that Us maximum value is 6'

approximately.’

(Lond, B.Sc., Pass, Applied Math
, 1905, iii. 2 )

8. ‘ Prove that the woik done by an impulse on a particle in the direction of

Its line of motion is measured by the product of the impulse and the

mean of the initial and final velocities of the particle
‘ Hence find the loss of kinetic energy m the direct impact of two given
inelastic spheres ’

(Lond. B Sc, Pass, Applied Math., 1905, iii 3.)

9. ‘ Discuss the motion of a heavy particle making complete revolutions

within a smooth circular tube which is fixed m a vertical plane.
‘ If the speed at the lowest point is n times the speed at the highest point,

prove that the picssure of the particle on the tube, when the particle is

moving vertically, bears to the pressure at the lowest point the ratio of

2(«*+ i)
: 5
«^- I.’

(Lond B Sc., Pass, Applied Math., 1905, iii 4 )

10.

‘A mass M strikes a mass fn which is at rest with velocity v\ prove
that the velocity communicated *0 m is always less than 2V.

‘ A hammer whose head weighs 3 lbs. strikes a steel ball weighing 5 02s.

with a velocity of 50 f.s. ; find the velocity communicated to the latter,

assuming that theie is no loss of energy m the impact.’

(Lond B.A, Pass, Applied Math., 1906, 1. 6.)



EXAMPLES- CHIEFL V PARTICLE KINETICS 489

II. ‘A number of equal particles of mass m are connected by string^s, each
of length c7, so as to form a regular polygon of n sides, and the whole
revolves about the centre, the velocity of each partude being i’. Find
the tension m each string.’

(I.OND 15 A
,
Pass, Applifd Ma ih

, 1906, i 8 )

12 ‘Define stviple harmonic motion^ and find the velocity in any given
phase, in terms of the period and the amplitude.

‘ A mass of 10 lbs. is evecuting a S H. motion of amplitude 3 ins
,
with

a frequency of 2\ complete vibrations per second. Find (in foot-lbs)
Its maximum kinetic energy.’

(Lond B A
,
Pass, Applied Math

, 1906, i 9 )

13. ‘Find in gravitation units the force w'hich must act along the normal
on a particle of weight w which is mc^ving in a curved path In what

along the normal must this force act ?

‘ A uniform c'hain AB of length I and w'cight Tc/per unit length rests on a
smooth horizontal table. If the chain levolves freely lound which is

fixed, with uniform angular velocity w, find the tension at a point distant

r from yf.’

(Lond H Sc
,
Pass, Applied Math , 1906, iii i )

14. ‘What is meant by a work diagram? A force acts in a fixed right line

OA^ Its point of application being P
^
the m.igiiitude of the foice is

directly pioportional to OP^ and has the value F when OP= a
,
draw the

diagram repiescntmg the work done by the force in displacing P from
the given position B to the position C along OA
‘A mass of 500 lbs. moves down too feet of a rough plane inclined at

sin “^005 to the horizon, fiictional resistance being 15 lbs. weight. By
a direct application of the principle of vvoik and eneig>, find the velocity

of the body when it reaches the foot of the incline
’

(Lond B A
,
Pass, Applii d Math,, 1907, i 3 )

15. ‘ If a particle of weight w is moving in a plane cun eel path whose radius

ot cunature at a given point is />, piove that thcie must act on the
paiticle a force equal to along the normal towards the concave
side of the path, being the velocity of the p, 11 tide at the point.

* If a paiticle of w'eight 7V\s suspended fiom the loof of a railway carriage

which is moving with a constant sjieed 73 piove that in the position

in which the particle is at rest 1 datively to the carnage the tension of
the cord is

7£/(l -p
’

(Lond B Sc,"Pass, Appt hd AIath., 1907, in i )

16. ‘A particle revolves m a circle about a spheiical body attracting accord-

ing to the ’aw of the invcise square Show that, if 7' be the time of a
complete revolution, the mass of the attracting body is given in

astronomic.U units by gTr-V '/ 7'^, r being the radius of the 01 bit described.
‘ Given that the time of 1 evolution of the Earth about the Sun is appioxi-

mately 13 times that of the Moon about the Earth, and the Sun’s distance

is 400 times the Moon’s distance,compare the masses of the Sun and Earth.’

(Lond. B Sc., Pass, Appi ied Math
, 1908, ii. 5 )

17. ‘A particle acted upon by gravity is projected with velocity and at an
inclination a in a unifoim medium of which the lesistance varies as the

velocity ;
find the altitude of the particle at a given time, and show it is

a maximum at time

— log(l + — ^/sma),

where k is the resistance per unit mass experienced by the body when
it IS moving with unit velocity.’

(Board of Education, Theo Mech
,
Solids, Stage 3, 1909, 45

)
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18. ‘A heavy particle hangs from a point O by a string of length a. It id

projected horizontally with velocity v such that

z/2= (2+ sJz)ga.^
‘ Show that the string becomes slack when it has desci ibed an angle

v^)-
and that the subsequent path of the particle passes through O.*

(Bo\rd of Education, Tiifo. Mfch., Solids, Si age 3, 1909, 48.)

19 ‘A heavy particle is placed at the highest point of a smooth vertical

circular disc
; it is connected by an inextensible string with an equally

heavy particle which is at the extremity of a horizontal radius. If

motion be allowed to ensue, prove that the upper particle will leave the
disc when at an angular distance from the highest point given by the
equation 2 cos B = i.

‘At that instant find the tension of the string and the velocity of the

system Find also an approximate value of BI

(Board of Education, Thlo Mech
,
Solids, Stage 3, 1910, 41.)

20 ‘Two particles, whose masses aie given, aie connected by an incx-

tensible string, and are projected in any way, but so as to move in a
vertical plane Define their motion, and find the tension of the string

at any instant during the motion ’

(Bo\rd of Education, Thfo Mech
,
Honours, 1910, 65 )

Examples

—

XCIV. : Chiefly Rigid Dynamics.

I. ‘Write down the radius of gyiation of a homogeneous billiard ball, and
prove that it will roll down a plane slope a with aci eleiation

‘ Prove that if rolled horizontally on the plane with velocity K, the ball

will proceed to describe a paiabola with latus rectum sm a.

(Galileo’s experiment.)’
(Lond B Sc , Pass, Mixed Math

, 1902, ii. 9.)

2 ‘ Investigate the harmonic vibration of the balance wheel of a chronometer
of moment of inertia / (lb. -ft 2), and prove that if the wheel swings
through W” from rest to rest m T seconds, the maximum couple exerted
by the balance spring must be

7i^/Nf36ogT^ (Ib.-ft.)’

(Lond B Sc, Pass, Mixed Math
, 1902, ii. 10)

3
‘ Define the centre of oscillation of a compound pendulum, and show that

It IS convertible with the centre of suspension
‘A uniform solid rectangular pai allelepiped has its edges 6, 9, and 12

inches long; what is the least time in which it can cicillate about a
horizontal axis, and how must the axis be fixed m the body?’

(Lond H Sc, Pass, Mixed Math., 1904, 11. 9)
4. * A uniform rod turns in a vertical plane about a point distant one-third

of Its length from one end. Find the centre of percussion.
‘ Determine also the impulse on the axis when the rod receives a given
horizontal impulse at a point distant c from the lower end,’

(Lond. B Sc., Pass, Applied Math., 1905, iii. 7.)

5. ‘A fly-wheel is movable m smooth bearings, about a horizontal axis, and
is set in motion by a descending mass of weight ' /*, which hangs from
one end of a cord coiled round the axle of radius r. This mass is found
to descend through A feet m n seconds

;
prove that the moment of

inertia of the wheel about its axis is

(Lond. B.Sc ,
Pass, Applied Math , 1906, in. 3.)

• I If P IS in weight, the answer is in lbs -ft 2
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6. ‘A uniform rod of leng^th / and weight w is held at an inclination a to the
vertical with its lower end in contact with a smooth horizontal plane,
and IS then let fall. Find its angular velocity and its pressure on the
plane, when it is inclined at & to the vertical.’

(Lond B Sc
,
Pass, Applied Math., 1907, iii 9.)

7. ‘ Obtain a formula for the period of the oscillations of a compound
pendulum.

‘ A uniform rod of length 2a is swinging as a pendulum about one of its

ends, Its greatest angular deviation from the downward vertical being
a. At an instant when the rod is vertical its fixed end is suddenly
released

;
find how far the centre of the rod descends before the rod is

again vertical.’

(Lond. B.Sc., Pass, Applied Math., 1908, iii 5.)

8. ‘ Define the principal axes of a rigid body
‘ If the body be a plane lamina, explain why one of the principal axes at

any point must be at right angles to the plane.
‘ If the lamina be an equilateral triangle of uniform density, find the
principal axes at one of the angular points Find also the principal

moments of inertia at that point.’

(Board of Educaiion, Thko. Mech., Solids, Stage 3, 1908, 49

)

9. ‘Find the period of a complete double oscillation of a compound pen-
dulum when the angular swing is small. How must the pendulum be
suspended to make the period a minimum?’
(Board of Education, Theo Mi ch

,
Solids, Stag^ 3, 1908, 50 )

10.

‘Find an expression for the kinetic energy of a body moving, m any
given way, in one plane.

'‘AH is an inclined plane and BC is the horizontal plane, through the

lowest point />, and both planes are smooth. A uniform rod is placed
on AB with one end at B^ and is allowed to slide dowm. Find its

angular velocity just before its upper end leaves the inclined plane ’

(Bo\rd of Educ\iion, Theo. Mech
,
Solids, Stage 3, 1908, 51 )

ii! ‘A uniform rod can tuin freely round one end. It is held in its highest

position, and is then allowed to fall On reaching its low'est position it

encounters a fixed obstacle at its lower end I'here is no rebound
‘Find the impact on the obstacle and that on the point of suspen-
sion.

‘The rod is 12 ft. long and w'eighs 10 lbs
,
compare the impacts with the

momentum of a body which weighs 5 lbs and has a velocity of 8 ft a

second.’

(Board of Education, Theo. Mfch
,
Solids, Stage 3, 1909, 49

)

12. ‘A uniform beam AB of length 2a hangs vertically from the end A^
which lies in a smooth horizontal groove

‘ If the end A be projected with velocity u along the groove, show that

the middle point of the beam will move with a velocity whose horizontal

component is

where k is the radius of gyration of the beam about its middle point
‘Find the equation which determines the angular velocity of the beam
at any time.’

(Board OF Education, Theo. Mech
,
Solids, Stage 3, 1909, 51.)

13. ‘Discuss the sensibility of a balance with ecjual arms.
‘ Show how to find the period of a small oscillation and, for a given load,

prove that it varies directly as the square root of the sensibility.’

(Board of Education, Theo. Mech., Honours, 1908, 62.)
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14 ‘A uniform rod ABXxgs on a smooth horizontal plane
;
C is a fixed point

vertically ovci B , a thread carries a weight 1\ and after passing over

C IS fastened to B\ the end B can move freely in a veitical guide or

groove coinciding with the vertical line BC. The weights of P and of

the rod arc equal. If P is allowed to fall, find {a) the angular velocity

of the rod in any assigned position, {b) the direction of the motion of

the centre of gravity, (l) the reaction of the groove on the end B,^

(Board oi- Education, Theo. Mech., Honours, 1908,68.)

15. ‘A beam of mass M and length a rotates about one extremity on a

smooth horizontal plane, there being no forces except the resistance of

the atmosphere. If the retarding effect of the resistance on a small

element of the beam be equal to A times the square of its velocity,

show that in time t the angular velocity will be reduced from Cl to »,

where

<0->=n->+ -,yU’
4/u/c^

(Board of Educvhon, Theo Mi ch
,
Honours, 1909, 66

)

16 ‘A uniform rod is placed very nearly upright on a smooth horizontal

floor and against a smooth vertical wall, and it slides down in a plane

at right angles to both wall and floor. Find its position at the instant

of Its leaving the wall
;
find also how it is moving at that instant, and

the pressure on the floor
’

(Board of Education, Theo. Mech
,
Honours, 1909, 67

)

17. ‘A cone 8 inches high, radius of base 4 inches, weighs 5 lbs. Deter-

tcrmine its moment of inertia about an axis through its centre of gravity

parallel to its base ’

(Board of Education, Theo Mfxh
,
Solids, Stage 3, 1910, 47

)

18 ‘In a compound pendulum form the equations of motion to determine
the horizontal and vertical components, X and K, of the force acting at

the point of suspension at any instant

‘Let IV be the weight, r the distance of the centie of gravity fiom the

point of suspension, and L the ladius of gyration about the same point.

Suppose that the pendulum is allowed to fall from the position in which
the centre of gravity and the point of suspension are in the same
horizontal line ,

show that, when the pendulum is inclined at an angle

of 45^" to the vertical,

(Board of Education, Thfo Mech., Solids, Stage 3, 1910, 50.)

19 ‘Find, in the motion of a ballistic pendulum, the relation between the

centre of percussion and the axis of spontaneous rotation.’

(Board of Education, Theo. Mech
,
Solids, .Stage 3, 1910, 51.)

20. ‘ Show how to find the moment of inertia of a hemisphere (of uniform
density) about an axis drawn through its centre of gravity and parallel

to Its base, assuming that the moment of inertia of a sphere about a
diameter is 2mAI^,
‘A hemisphere rests with its curved surface in contact with a rough
horizontal plane. It is slightly disturbed from its position of equilibrium ;

find the time of a small oscillation
’

(Board of ICducation, Theo. Mech., Solids, Stage 3, 1910, 52.)
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Examples

—

XCV. : Chiefly Statics.

1. ‘ Define the angle of friction 0 ,
and by means of it determine graphi-

cally where jamming begins when a drawer is pulled out by a handle
to one side.

‘ Prove that a sash window of height counterbalanced by weights,
cannot be raised or lowered by a vertical force unless it is applied
within a middle distance a cot cf) ,

and piove that if the cord of a counter-
balance breaks, the window will fall unless the width is greater than
a cot </).’

(Lond. B a. and B.Sc
,
Pass, Mixed Math

, 1902, 1. 2.)

2. ‘Discuss the conditions of equilibrium of three forces. Determine
graphically the stress in each bar of a jointed triangular fiamework,
strained by three forces acting at the angles.’

(Lon I) B.A. AND B.Sc, Pass, Mixed Math
, 1903, i i.)

3. ‘ Determine the force to be exeited by the hand at the end of each arm a
feet long of a copying press to set up a thiust of P pounds, the screw
being smooth and cut with n threads to the foot.

‘ Sketch in plan the forces which act on the press and the man to

maintain equilibrium.’

(Lond B A. and B Sc
,
Pass, Mixed M\th

, 1903, i 4 )

4. *A uniform bar is bent into the shape of a V with equal arms, and hangs
freely from one end. Prove that a plumbhne suspended from tins end
will cut the lower aim at a distance of one-third its length from the

angle ’

(Lond B A. and B Sc, Pass, Mixed Maih., 1904, i 9.;

5. ABCD IS a rectangle; AP= 12 inches, AV= S , at /f, By Q D are
placed particles whose masses are propoitional to 8, 10, 6, 16 icspec-

tively Find the position of the centre of mass
{a) by the theorem of mass moments

,

\b) by means of funicular polygons.’

(Lond B Sc., Pass, Applied Math., 1905, i 5 )

6. ‘A uniform square plate is divided into two poitions by a straight line

joining a corner to the middle point of a side. Prove that the line

joining the mass centres of the two portions is perpendicular to the

dividing line.’

(Lond B.A., Pass, Appi ii d Math
, 1906, i i )

7. ‘ Four equal light bars aie jointed freely so as to form a rhombus ABCJ\
and the corners Ay C are connected by a light chain. The whole hangs
from Ay winch is uppermost

;
and two equal weights IV are suspended

from ^and Find (graphically or otherwise) the tension in tlie chain.’

(Lond B A, Pass, Applied Math
, 1906, i 4 )

8. ‘A uniform ladder, of length I and weight lYy rests with its foot on the

giound (rough) and its upper end against a smooth wall, the inclina-

tion to the vertical being a A force 7’ is applied horizontally to the

ladder at a point distant c from the foot so as to make the foot appioach
the wall Prove that P must exceed

(J'^C(^ + itana),

where fx is the coefficient of friction at the foot.’

(Lond. B Sc., Pass, Appt itd Math., 1906, i 2.)

g. ‘Assuming the position of the centie of gravity of a tiiangular pyramid,
deduce the position of the centre of gravity of a homogeneous solid

right circular cone.
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* The radii of the bases of a frustum of such a cone are 6 feet and 3
feet, and the thickness of the frustum is 9 feet ; find the position of its

centre of gravity.’

(Lond. BA, Pass, Applied Math,, 1907, i 7.)

la ‘A uniform bar, AB^ rests with its end A on 2. rough horizontal plane,

for which the angle of friction is X ; the bar is to be kept at a given

inclination to the horizon by means of a cord attached to B. Exhibit

in the figure the extreme directions of the cord which will allow of

equilibrium.’

(Lond B Sc, Pass, Applied Math., 1907, i 4.)

11. ‘Es ist zu beweisen dass die an einem starren Korper angieifenden
Krafte, falls sie m einer Ebene hegen, im ailgememen einer einzigen

resultierenden Kraft statisch aquivalent sind, welche auch in ein

Poinsot’sches Kraftepaar iibergeben kann. Wie setzt man die Krafte
graphisch zusammen

(T.ond B Sc
,
Pass, Applied Math

, 1907, i 10)

12. ‘ Two equally rough pegs A and B are a distance 2a apart m a straight

line inclined at an angle 6 to the vertical. A rod passes over the peg
A and under the peg i?, and is just kept from sliding down by friction

at the pegs Prove that the centre of gravity of the rod must be at a
distance from the upper peg A equal to

aicoteifx- 1),

where ^ is the coefficient of fnction between the rod and the pegs.’

(Lond B.Sc, Pass, Applied Math., 1908, 1. 6)
13. ‘Show how to reduce a system of coplanar forces to a single force and

a couple,

‘Forces of magnitudes i, 2, 3, 4, 5, 6 act m the order named round the

sides of a regular hexagon, the senses of the forces in adjacent sides

being either both towards, or both away from, the corresponding vei tcx.

Find the single force at the centre of the hexagon and the couple to

which the system reduces.’

(Lond B Sc., Pass, Applied Math
, 1909, i 3.)

14. ‘A heavy uniform bar rests with one end on the giound and the other

end against the vertical face of a rectangular block, which also rests on
the ground. The vertical plane through the bar is perpendicular to the

given face, and passes through the centre of gravity of the block. The
coefficient of friction for the contact of the bar, both with the ground
and with the block, is /x, and the weight of the block is four times that

of the bar. Show that if the bar is on the point of slipping and the
block on the point of overturning, the ratio of the lengtU of the bar to

the width of the block is (i +/x2)(2 + 3/w^)/p(i -/m*).’

(Lond B Sc., Pass, Applied Math, 1910, i 4)
15. A sphere is composed of a solid homogeneous hemisphere and a very

thin hemispherical shell of equal mass.

Show that the composite body cannot rest in equilibrium upon a rough
plane if its inclination with the horizontal exceeds the angle whose sine

IS o'o625.

16. ''ABCDE IS a frame of five equal bars, kept in the form of a regular

pentagon by two bars AC^ AD. The frame is hung up by the point A^
and carries equal weights (IF) at B and E. Find the stresses in the

bars, putting out of the question the weight of the bars and the friction

of the joints.

‘Explain how the results would be altered if the weights were hung at

C and D instead of at B and E^
(Board of Education, Theo Mfch

,
Solids, Stage 3, 1908, 41.)
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17. ‘Show that any systenm of forces, acting on a rigid body, can be replaced
by a single resulting force acting at any chosen point and a couple.

‘Give further information concerning this force.

‘Define Poinsot’s central axis, and show how to construct it for any
given system of forces

’

(Board of Education, Theo. Mech
,
Solids, Stage 3, 1908, 43 )

18. ‘A particle of weight w rests against the ciicumference of a circular

plate, whose plane is vertical ; a cord attached to the particle passes
over a pulley placed vertically above the highest point of the circle at

a distance from the circle equal to the radius and carries a weight^;
show that the particle will rest at an angular distance Q from the highest
point of the circle where cosd = (5/4--/>-^/w^).

‘ Prove also that the pressure on the circle is independent of the magni-
tude of

(Board of Education, Thko. Mech., Honours, 1908, 61

)

19. ‘ 1 he end of a cylinder is pressed against a rough plane by a force which
is equally distributed over the area of contact The cylinder could
move freely round its axis were it not for the fiiction. Find the force

applied along a tangent of the base which wiM just make the cylinder

turn.’

(Board of Education, Thro Mech
,
Solids, Stage 3, 1909, 44 ^

20 ‘A system of concurrent forces in space are given in magnitude and line

of action
‘ Show how from the plans and elevations of these forces to draw the

plan and elevation of the resultant foice.

‘A horizontal triangle has sides 10', 10', and 5' respectively, from the

three corners hang three ropes, e.ich 6' long, they are joined at their

extremities and support a weight of i cwt
; find the pull on each

rope.’

(Board of Education, Theo. Mech
,
Honours, 1910, 61

)

Examples

—

XCVI. : Chiefly Attractions.

1. ‘Find the attraction at any point in the substance of a solid sphere of

given uniform density

‘A thick shell of uniform density is bounded by spherical surfaces

which are not concentric
;
piove that the attraction in the internal

cavity is uniform in magnitude and direction ’

(Lond B Sc., Pass, Applied Maih
, 1905, 11. 9)

2. ‘ Ddmontrer que lorsqu’on passe au travers d’une couche de densitd super-

ficielle (T I’lntensite de la force d’attraction dans la direction perpen-

diculaire k la surface rei^oit un accioisscment subit de 47170-.’

(Lond B Sc , Pass, Appi hd Math
, 1907, ii 9.)

3. ‘ Show that the attraction of a solid homogeneous sphere at any point

outside It is the same as if its mass were collected at the centre.
‘ Prove that if the earth were homogeneous throughout, the decrease in

gravitational attraction as one rose through a certain height in a balloon

would be approximately twice the decrease as one descended an equal

depth into a mine.’

. (Lond B Sc., Pass, Applied Math., 1910, ii 6)
4. In a homogeneous sphere, of radius a and density p, is drilled to the

centre a cylindrical hole of very small radius A Show that the attrac-

tion of the sphere on a plug of same density filling the hole is

5. ‘ Investigate the attraction of a thin homogeneous circular plate of radius
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a a.t SL point which is at a perpendicular distance c from the centre of

the plate.
‘ Remark upon the cases •

—

(1) a infinite, c finite ;

(2) a finite, c ipfinitesimal.’

(Board of Educaiion, Theo. Mech
,
Solids, Siage 3, 1908, 44.)

6. ‘ Define the potential of a system of attracting or repelling masses at any
point.

‘Mass, attracting according to the law of nature, is uniformly distri-

buted on the circumference of a circle. Prove that the chord of contact

of tangents drawn from an exteinal point divides the mass into two
parts having equal potentials at the point.’

(Board of Education, Theo Much., Solids, Stage 3, 1908, 46 )

7. ‘Define the potential of a single particle and of a given distribution of

matter at an assigned point, and state what is its physical meaning m
the case of gravity

‘Find the potential of a sphciical shell of uniform density at an assigned
external point.’

(Bo\RD 07 Education, Thro Mech
,
Honours, 1909, 61.)

8 ‘Consider a cylindrical surface of gnven length and radius and of uniform
surface density

,
find the attraction at one end, of the axis

’

(Board of Education, Theo Mech
,
Solids, Stage 3, 1910, 42.)

9 ‘Find the attraction of a plane, of uniform surface density and of in-

definite extent, at a point outside it.

‘ Let A /? be a diameter of a spherical surface of uniform surface density

Show how to draw a plane at right angles to AB^ which will divide the

surface into two parts, such that their attractions at A shall be equal ’

(Board of Educaiion, Theo Mech
,
Honours, 1910, 63 )

Examples

—

XCVII : Chiefly Hydrostatics.

r. ‘ Show how to determine the specific gravity ( S'. C7.) of a solid or liquid

by the Hydrostatic Balance, and investigate the formula
‘ Prove that a brass pound weight made to equilibrate the standard pound
of platinum in air is too great by the fraction

(4 -#)/(‘-4 >
where A^ V?, P denote the 6" G, of air, brass, and platinum.’

(Lond. B Sc., Pass, Mixi d Math., 1902, ii. 3.)

2. ‘ State the principle of Pascal for the transmission of fluid pressure.

‘A rectangular area is immersed vertically m water with one side hori-

zontal at a depth of 9 feet and the opposite side at a depth of 15 feet

;

show that the centre of pressure is 3 inches below the middle point of

the rectangle.’

(Lond B Sc., Pass, Mixed Math., 1904, ii 7 )

3. '‘ABC IS a triangular area immersed vertically in water with C in the
surface and horizontal

;
show how to divide the area by a horizontal

line PQ into two portions on which the pressures are equal, P and Q,

being points m ACa.nd BC respectively
‘ If ^ IS the length of the perpendicular from C on AB^ prove that the
height above AB of the centre of pressure on the aiea APQB in the

above case is

-1(3X4''’

-

4).’

(Lond. B A , Pass, Applied Math., 1906, ii. 2.)
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4. ‘ Obtain an expression foi the total pressure exerted by water on a plane
area occupying any position

‘A icctangular aiea And) has the side AB in the surface of water, the
side AJ) {10 feet long) being vertical and submerged

;
divide the area by

horizontal lines into thice parts on each of which the piessuic is the same.’
(LOxNd BSc, Pass, Applied Maih., 190^ iii 7.)

5. ‘A hollow cone consisting of a curved surface closed by a circular base,
both made of thin sheet metal, is 12 inches high and has a radius of 5
inches. The cone is to rest completely submerged in water with its

vertex fixed and its axis horizontal ; find the necessary weight of metal
per squaie inch of surface, assuming that a cubic foot of water has a
mass of looo ounces ’

(Lond B Sc., Pass, Apptjed Math
, 1906, iii. 9 )

6. ‘A rectangular tank is divided into two compartments by a vertical

diaphragm The two compartments are then filled to heights /t, k with
liquids of densities p, <r respectively Show how to choose h and k so
that the resultant of tlie piessurcs on the diaphragm shall reduce to a
couple, and find the magnitude of this couple per unit breadth of the
tank.’

(Lond BA, Pass, Applied Math, 190:, ii i )

7. ‘ State the conditions for equilibrium and for stability of a body floating

freely m water
‘A solid sphere of radius r, weight and specific giavity .c lies in the
bottom of a cylindrical vessel of radius a and height //, which contains
water just up to the top. Pro\c that the work required to raise the
sphere just clear of the water is

w{k-K-Mh-r-K\\'
I yi- s \ yr / J

(Lond. B Sc., Pass, Applied Math., 1907, iii 5 )

8 ‘A rectangular area is immersed vertically in water with one side hon-
, zontal, and at a depth x, the opposite side being at a depth //+ , show
that the distance of the centre of pressure from the upper side is

3 zx^h
‘Show that if the area is divided by a horizontal line into two parts on
which the water pressures are the same, the depth of this line below the

suiface of the water must be {x'^ + /n‘ -hWy 'V

(Lond B Sc, Pass, Applied Math., 1907, iii. 6)
9. ‘ A thin hollow vessel in the shape of a paraboloid of revolution floats in

water with .ts axis vertical and vertex downwaids If the weight of the

vessel Itself be neglected, find approximately to what height it must be
filled with mercury (specific gi.uity 136) in Older that its vertex may be
18 inches below the fiee suiface of the water,’

(Lond B Sc, Pa^s, Applied Math
, 1908, iii. 10.)

10 ‘ State and prove the principle of Aichimcdes.
‘ A vessel contains two liquids that do not mix, and a cylinder floating

with axis vertical
;
the lighter liquid is 5 in. deep and its sp gr. is o 8 ,

the sp. gr. of the heavier liquid is i 15, and li in of the height of the

cylinder is above the upper liquid If the sp. gr. of the cylinder is 075,
what is its height ?

’

(Lond B.Sc, P\ss, Applied Math., 1909, iii. 7)
II. ‘A uniform lead pipe, 16 feet long and closed at one end, is bent so as

to form three quarters of the circumference of a circle, and is held in a

vertical plane, so that the closed end is the highest point of the circle.

Liquid IS then poured in, and, when it is just on the point of overflowing,
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the imprisoned air is found to occupy half the lengtli of the pipe. Find
the specific gravity of the liquid, assuming the water barometer to stand

at 33 feet
’

(Lond B.Sc, P\ss, AppLihD Math, 1909, iii 9)
12. ‘A circular hole, of radius 111 the plane vertical side of a cistern is

exactly filled by a solid wooden sphere of specific gravity rr, which is

free to turn about a fixed smooth horizontal axle which is diametral to

both the circle and the sphere The cistern is filled with water of

density w to a height //, greater than r?, above the centre of the sphere.

Evaluate the action between the sphci e and the axle.

‘What couple, if any, is required to keep the sphere from rotating?’

(Lond B Sc., Pass, Applied Math, 1910, iii 7 )

13. A casting is to be made by running molten metal (of density 1/4 Ib. to

the cubic inch) into a sand mould consisting of top and bottom parts

The casting is a rectangular table 12 feet by 5 feet with legs 3 feet high

The pattern is moulded face down and legs up, the joint between top

and bottom parts being at the junction of the legs and the rectangular
face or table. Show that, to hold the top part of the mould down at the

instant of casting, a distributed load of nearly 35 tons is needed, with

almost an additional ton for eveiy inch of accidental excess height in

the legs when pouring the metal in.

14. ‘Explain a general method for dctei mining the position of the centre of

pressure of a plane suif.ice immeised in any manner in a fluid.

‘A plate in the foim of a quadrant of a circle is immersed vertically

m water with one edge in the surface Find the distance of the

centre of pressure from the horizontal and vertical edges respectively.’

(Boxrd 01- EDtJCAiiON, Theo Mech, Fluids, Siage 3, 1908, 43)
15. ‘A cylindrical vessel, radius contains water, and a cylindrical body (of

the same height), whose radius is l\ is lowered into the vessel until it

Stands upright on the bottom
,
none of the water is spilt. .Show that

the r^tio of the increase of the potential energy of the water to its original

potential energy is

(Board oi- Educaiion, Thfo. Mech
,
Fluids, Sr\GE 3, 1908, 47 )

16 ‘Define the capillary curve. Find an expression for its radius of

curvature at any point of its length ’

(Hoard of Edt cation, Thko Mech, Fiuids, Siage 3, 1908, 5? )

17 ‘ Find the centre of pressure in the case of an equilateral triangle, com-
pletely immersed with one edge horizontal, and its plane inclined at a
given angle to the horizon
‘A vessel has the form of a legular tetrahedion. It is filled with water
and made watertight. It is held with one face horizv^ntal Find the

resultant pressures on the scveial faces {a) when the vertex is below the

horizontal face, (/») when it is above that face
’

(Board or Education, T hpo. Mech
,
Fluids, Stage 3, 1909, 44.)

18 ‘Find the least value of the specific gravity of a cube of uniform density
that the conditions of equilibrium may be satisfied when it has no more
than one angular point out of water. Also show that, when its specific

gravity exceeds that value, the parts above water of tlic edges meeting
in that point are equal.

‘ Consider the case when the specific gravity is 47 ~ 48.’

(Bo\rd of Educaiion, Theo. Mpch., Honours, 1909, 70.)

19 ‘ Investigate the height to which a liquid rises in a capillary tube of any
cross section.

‘ Show that It rises as high in a cylindrical tube of diameter d as in one
having for cross section a square of side c/.'

(Board of Education, Theo. Mech., Fluids, Stage 3, 1910, 50.)
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20. ‘ If p be the density of air at the earth’s surface, show that at

the density is

‘What assumptions have been made in obtaining this result?

k ? Determine it in foot-second units from the data
height of barometer = 30 in.,

specific gravity of mercury= 13*596,

^=32*2,
specific gravity of air =0*0013.’

(Board of Education, Theo. Mech
,
Fluids, Stage 3,

height h

What IS

1910, 52)

Examples—XCVIII : Chiefly Hydrokinetics.

r. ‘ Discuss the flow of a fluid m a tube of non-iiniform cross section, showing
how the pressure vanes.

‘Will the fluid tend to push the tube before it?’

(Board of Educaiion, Theo Mlch
,
Honours, 1908, 72.)

2 ‘ If water be flowing steadily through an inclined pipe of varying section,

show that

3 -

p—
-H— + r = constant,

'ig w
where at any section

« = velocity in feet per second,

p — pressure in lb. per sq ft,

7^; = weight of a cubic foot of water,
<3r = height of section in feet above a fixed horizontal plane

* Show that for steady motion u cannot exceed a certain limiting value.’

(Board of Educai ion, Theo Mlch
,
Honours, 1909, 72 )

‘State tlie physical fact expressed by the “equation of continuity” m the

motion of fluids

^ Establish that equation in the form

dKp dKpv

and show how to express it in terms of rectangular co-ordinates.’

(Board of Education, Thlo. Mlch, Honours, 1910, 69)
4. ‘A vessel of water discharges through a large pipe of variable section. If

the flow be steady, investigate the relation oetween velocity, piessure,

and height aoove datum level at any section of the pipe.
* If the vessel supply a stream running in a channel of any size, either

closed or rpen, and is undisturbed by frictional lesistances, show that

the total energy of all parts of the water is the same.’

(Board of Education, Thlo Mlch., Honours, 1910, 70)
5. ‘A vessel symmetrical about a vertical axis contains a gas If it be

rotated uniformly about the axis, investigate the pressure at any point

of the gas, assuming it to move in relative equilibrium with the vessel.

‘Apply to the case in which the vessel, a cylinder of radius a and height

contains a weight W of gas ’

(Board of Education, Theo Mech
,
Honours 1910, 71.)

.Examples

—

XCIX : Chiefly Elasticity.

I. * State the law (Hooke’s) connecting the tension of an elastic cord with its

extension.

‘A uniform india-rubber cord has a length of 26 inches under a tension

of 2^ pounds weight, and a length of 20 under a tension of i pound
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weight
;
cak ulate the amount of work done in stretching it from Its

natural length to a length of 30 inches, and draw a work diagram.’

(Lond B.Sc, Pass, Applied Math., 1907, t 8)
2. ‘ f’rove that the potential energy stoi ed up in a stretched elastic string is

half the product of the tension and the extension

‘A uniform bar 6 feet long, weighing 20 lbs, lies on perfectly rough
horizontal ground. Evaluate the work done in raising one end from the

ground to a height of 3 feet, by means of a vertical string attached to

that end, (i) when the string is inelastic
; (11) when the string is elastic,

2 feet long, and such that its length would be doubled by a pull of

30 lbs weight’

(Lond. R Sc., Pass, Applied Maih., 1908, i 10)

3
* A beam length <2, width depth //, coefficient of elasticity is held by
one end in a horizontal position so as to be bent simply by its own
weight, which is w per unit of length , show that the curvatuie at a

distance x from the fixed end is

67if(a-xy

Ebd^
'

‘ Find also the deflection of the other end of the beam.’
(Board ok Educaiion, Theo Mech

,
Honours, 1908, 65.)

4 ‘ A rod, naturally straight, is slightly bent by forces at right angles to its

length in one plane. Show that the radius of curvature at any point of

Us length IS given by the formula

(Bending Moment),

and explain the notation
‘ A rod of uniform cross section is supported horizontally on three points,

viz. one at each end and one in the middle, so that there is no droop at

the middle. Show that the greatest droops are very nearly at one-fifih

of the length from each end. (\/33 = 57446.)*
(Board ok Education, Theo. Mech

,
Honours, 1908, 66)

5 ‘An iron bar, 2 inches m diameter, for which Young’s modulus is

29,000,000, IS bent into an arc of a circle 400 feet in diameter. Find the

maximum stress at any point of the transverse section.
‘ Show further that if the stress be limited to 4 tons per square inch, the

diameter of the circle must not be less than 540 feet.’

(Board ot Education, Theo. Mech., Honours, 1909, 63

)

6. ‘ A uniform horizontal beam is supported in any manner. Establish the

equation

d'^y _ M
dx^~ El

of the deflection curve.
‘ If the beam be supported at the ends and centre, show that there is no
bending moment at points which are at a distance from an end equal to

3/8 of the length of the beam.’
(Board of Education, Theo Mech

,
Honours, 1909, 64)

7.
* A uniformly loaded beam is supported at the ends, the supports being in

the same horizonLd line and propped in the middle.
‘ If the centre prop is at the same level as the supports, find the points of

zero bending moment
‘ If now the centre prop be raised a distance equal to 1/4 of the deflection

li the centre when the prop is wholly removed, prove that it sustains a
pressure equal to 25/32 of the whole load.’

(Board of Education, Theo Mech., Honours, 1910, 62.)
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Examples—C. : Miscellaneous.

1. State an analogy, pointed out by Poinsot, between kinematics and
statics, and give a dynamical illustration which links up the apparently
conflicting elements in the analogy

2. * Determine the position of equilibrium of a body movable about a fixed

point, having one or more spherical cavities in which a sphere or some
liquid can roll about.

‘Prove that a tilting basin, of thin metal m the form of a segment of a
spherical surface, movable about a diameter of the base, will not upset
when water is poured into it, if the weight of the basin exceeds

(ladius of base/height of basm)^- i

times the weight of water.’

(Lond. B.A and B.Sc., Pass, Mixed Math
, 1902, i. 3

)

3. ‘ Prove that if W'" tons is conveyed s feet in t seconds, being moved from
rest by a force of P, tons up to velocity v feet per second, and then
brought to rest by a force of 1\ tons,

IV PP
TT + IFT>

‘ With a coefficient of adhesion /q a motor car actuated and braked on the

hind axle can get up a speed v in x feet, or be brought to rest again in

y feet, given by

7/- / I // \ 7/2/1 /I \

'-jiT-ah +

a denoting the distance between the axles and /t the height of the C. G
(midway between the wheels) from the ground ’

(Lond B A and B.Sc., Pass, Mixed Math., 1902, i. 6)
4 'Prove that the line joining the centre of giavity and the centre of

buoyancy of a floating body is vertical in a position of equilibrium, and
normal to the curve or surface of buoyancy ;

and show how the stability

IS detci mined.
‘Find where a cylindrical wooden pile of given S. G. will begin to leave

the vertical position when lowered into water by a chain fastened to

the top.’

(Lond. B Sc, Pass, Mixed Math., 1902, ii. 4.)

5
‘ On the experimental law that the resistance of similar steamers is pro-

portional uO the wetted surface and the sqiiaie of the velocity, prove
that if a 6-foot model of 001 ton displacement tun at a speed of 2 knots

in an experimimtal tank experiences a resistance of o*2 pound, a similar

6oo-foot io,ooo-ton steamer at 20 knots would experience a resistance

equivalent to an incline of one in 112, and require over 12,000 effective

horse-power.
‘Show that for the Atlantic passage an increase of 1% in speed re-

quires 6% increase in displacement tonnage and 7% increase in horse-

power.’

(Lond B.Sc., Pass, Mixed Math, 1902, ii 5.)

6. ‘ Prove that the bursting rim velocity of a circular wire ring is

where h is the breaking length of the wire when straight and hung up
vertically.

‘ Determine the greatest velocity in miles an hour possible with wheel
tires of density 1 cwt./ft.^ and tensile strength 2 cwt./in.^’

(Lond B.Sc., Pass, Mixed Math., 1902, ii. 7.)
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7. ‘ Prove that as the C. G. of a part of a body of weight P is moved about
in a curve, the C. G of the whole body of weight W will describe a
similar curve, reduced in the linear scale of

Pto W.
‘A rectangular block of stone is slung by two equal parallel chains

fastened to points in its upper face, and suspended from the ends of a
uniform beam supported by a fulcrum. Prove that the block can be
tilted from the horizontal to any desiicd inclination 6 by moving the

fulcrum support through a distance

(i-/7 /P>tan<9
,

where Ji is the depth of the C. G. of the block below the upper face, W
the total weight, and P that of the beam and chains.’

(Lond. B a and B.Sc, Pass, Mixed Mmh
, 1903, i. 3.)

8 ‘ Prove that if a body is resisted by a force proportional to its displace-

ment, the body is m a position of stable equilibrium, about which it will

perform harmonic oscillation in an invariable period
;
and mention

some familiar illustrations
‘ Prove that the free oscillation of the mercury of a baiometer in a U tube

of unifoirn section will synchronise with a pendulum of half the length

of the mercury column.’
(Lond. B.A. and B Sc., Pass, Mixed Math

, 1903, i 7.)

9 * Prove that if a chain ABC fastened at A is led over a pulley L\ so as to

rest on a smooth inclined plane BC\ the part AB will assume a catenary
curve in which the tension at any point /* will be the same as at Q at

the same level on BC

;

and deduce the analytical properties of the

catenary.
‘ Prove that if the plane is rough the length of the chain BC may be
altered without affecting AB^ within the limits

BCsin a cos 0 cosec (« ±
a denoting the slope of BC and <f>

its limiting angle of friction
’

(Lond B Sc, Pass, Mixed Mai h , 1903, 11. 2 )

10. ‘ Define the metacentre
,
and prove that the metacentric height of a ship

of fFtons displacement is mbPlW^ if a moment of bP foot-tons obtained
by moving P tons transversely b feet gives tlic sHip a heel of one in in

‘Assuming the experimental laws that the normal pressuic of the wind
and the tangential friction of the water per square foot are proportional

to the square of the velocity, prove that a ship and its model are heeled
over to the same angle by a wand proportional to the square 1 oot of the

length or the sixth root of the tonnage, and move through the water at

a proportional speed ’

(Lond BSc, Pass, Mixed Math., 1903, ii 3.)

11. ‘On the experimental law of the last question, prove that steamers
geometrically similar, propelled at speed proportional to the sixth root

of the tonnage, will experience the same resistance expressed in pounds
per ton or equivalent incline, and will bum the same coal per ton-mile

;

but the horse-power (H.P.) per ton and the period of revolution of the

screw will be proportional to the speed, and the steam pressure to the

square of the speed.

‘Taking the H P./ton as 1/16 (speed in knots), piove that this implies a
resistance of about 20 lbs. per ton, or an equivalent mchne of one in

1 12; and with a coal consumption of 2 lbs. per II. P. -hour, the coal

capacity required for a voyage of 3000 miles is about one-sixth of the

tonnage.
‘ Calculate for a steamer of 26,000 tons at a speed of 23*5 knots.’

(Lond. B Sc, Pass, Mixed Math. 1903, ii. 4.)
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12 ‘Determine the motion of a circular hoop of radius a feet, whirling in a
vertical plane on a round horizontal stick, if released when the centre is

moving with velocity V f /s. at an angle a with the horizon , and prove
that It will make 'I'najV revs./sec. in the air

‘ Prove that the tension in the hoop will be the weight of a length
feet of the rim (the tension length).’

(Lond 11 Sc, Pass, Mixf.d Maipi
, 1903, ii 6)

13. ‘ Piove that about the diameter of a homogeneous sphere
(radius of gyration)*^ = 0 i (diameter)^

;

and show how this may be verified experimentally by allowing the

sphere to roll down a slit of unifoim breadth m an inrlined plane.

‘Explain why the cushion of a billiard table is ni.ide to receive the

impact at a height o 7 of the diameter of the billiard ball.’

(Lond B Sc, Pass, Mixio) Math, 1903, ii 7 )

14 ‘Investigate the torsional vibration of a body suspended by a vertical

wire in which the restoring couple is proportional to the angle turned
through from the position of ecjuilibnum.

‘Prove that the angulai velocity is 27r/(period) times the G. M. of the

angulai distance in radi.ins from the two ends of the swing ’

(Lond B.Sc
,
P\ss, Mim-ji Math, 1903, ii 8)

15. ‘A rectangular tray with vertical sides is made of thin sheet metal. If

Its length be 3 feet, its breadth 2 feet, and its depih 4 inches, find the

height of the centre of gravity above its base.’

‘Also find approximately how much the ccntie of gravity will be raised

if the tiay is filled with water
,
the density of the metal being eight times

that of water, and its thickness one-sixteenth of an inch ’

(Lond B A and B Sc
,
Pass, Mixed M aih

, 1904, i 8 )

16 ‘A light bar AB can turn ficely about the end y/, which is fixed, and is

suppoited in a horizontal position by a string 6V>\ 6' being a fixed point

vcitically above A. If a weight IF be suspended fiom any point P of

the bar, find geometrically the direction and magnitude of the reaction
*

3it A ,
also the tension of thestiing. Woik out numcnc.ill) the tension

of the string when 11 = 10 lbs
,
Aj}=iZ in

,
AP—12 in., ylC—g in.’

(Lond BA \nd BSc, Pass, Mixi^d Mmh, 1904, i 10)

17 ‘ If tw’o systems of mass lying in a plane ha\e the same centre of mass
and the same radii of gyration about thiee diffcicnt lines m the plane,

prove that they have the same i.idii of gyiation about every line

‘ Hence pro'^e that when calculating the radius of gyiation of a tnangular
area ^or uniform plate), we may replace the tiiaiigle by three equal

particles at the middle points of the sides.’

(Lond B Sc, Pass, Mixed Math., 1904, 11 10)
18. ‘An unclosed curved surface of given shape is immersed m a given

position in water; show how to find the veitical component of the

pressure exerted over one side of the surface

‘A hollow cone of innei radius 4 feet and inner height 10 feet, and not

closed by a base, is placed with its rim on a horizontal plane
;
the cone

is filled with water through a small hole at the veit^x and the water
does not flow out. Find the foice, m tons weight, with which the water
tends to lift the cone, assuming the mass of water per cubic foot to be
62

'5 lbs
’

, (Lond B Sc, Pass, Mixid Math, 1904, it 6)
19. ^A By BCy and CP arc three bais in a horizontal plane, ficcly jointed at

B and C, and movable about fixed pins at A and D. At a given point,

/’, in BC is applied perpendicularly to BC a given force F ; and the bars
are to be kept in a given conhgiuation by means of a couple applied to

the bar AB, Assuming all necessary data, calculate the magnitude of
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this couple, and exhibit the lines of action of the stresses at the points

A, B, c, d:
(Lond B Sc

,
Pass, Applied Math., 1905, i. 8.)

2a ‘A rod of length / and weight IV lests against a rough horizontal rail

with its lower end on a smooth horizontal plane. The height of the

rail above this plane is //, and the angle of fiiction between the rail and
the rod is X. Find tlie gicatest possible inclination of the rod to the

\ertical, and the concsponding pressuie on the horizontal plane.

[Assume that /:> J/sin X ]
’

(Lond B A
,
Pass, Applied Mmh

, 1906, i. 3.)

Examples

—

CL : Miscellaneous.

1. ‘Show that a unifoim rod, mass ;//, is kinelirally equivalent to three

particles rigidly connected and situated one at each end of the lod .md
one at its middle point, the masses of the particles being f///, f///, rjn,

‘A rod consists of two parts of equal length which are unifoiin but of

different densities Find thiee particles which situated respectively at

the ends and the middle point of the rod form a system kinetically

equivalent to the rod. IfM andJ/' are the masses of the two portions

of the rod, pio\e that this is always possible with actual particles, if

MjM' lies between 5 and 1/5
’

(Lond. B Sc
,
Pass, Applied Math

, 1905, iii 5

)

2. ‘ Prove that the moment of momentum of a rigid body moving in two
dimensions about an axis through the mass centre perpendicular to the

plane of motion is MU^ca,

‘A uniform heavy sphere, whose mass is i lb and radius 3 inches, is

suspended by a wire from a fixed point, and the toision couple of the

wire IS proportional to the angle through which the sphere is turned
from the position of equilibrium. If the period of an oscillation is

2 secs
,
find the couple which will hold the sphere in equilibrium in a

position in which it is turned through four right angles fiom the
equilibrium position

'

(Lond. B Sc., Pass, Applied Math., 1905, iii. 8.)

3. ‘Eine zylmdrische Taucherglocke von dcr Hohe a wird in Wasser
getaucht, bis ihre oberste Spiize in eincr Tiefe b unter '^er Wasserflache
1st. Bestimmen Sie wie weit die Luft komprimirt wird, wenn das
Wasserbarometer auf h steht

‘Wenn die Glocke mit einer gleichmassigen Geschwindigkcit 7' smkt,
so bestimmen Sie die Gcschwmdigkeit, mit welcher man Luft mit
atmospharischem Druck in die Glocke pumpen muss, um kein Wasser
in dieselbe zu bekommen ’

(Lond B Sc
,
Pass, Applied Math

, 1905, iii. 10.)

4. ‘Four bars are loosely jointed so as to form a plane quadrilateral ;

and It IS in equilibrium under the action of four forces /i*, S',

applied to the jo nts A^ C^ D respectively. The lines of action of
P, Q meet m it, and those of P, S meet in F. Prove that EF pro-
duced will pass through the intersection ofA PC’

(Lond. B Sc., Pass, Appf.ied Maih., 1906, i. 4.)

5. ‘If a particle is acted upon by a force always directed towards a fixed

point and varying inversely as the square of the distance, obtain the
conditions to be s.itisfied when the particle is initially piojected so that
the path of the particle may be (i) a circle, (2) a parabola.’

(Lond h Sc, Pass, Applied Ma'ih
,
1906, in 2.)
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6. ‘ Wnte down the general equation for the transformation of a given mass
of gas whose volume, temperature, and intensity of pressure are

alteied.
‘ Calculate the height to which the water will rise in a cylindrical diving
bell, 12 feet high, when its top is lowered to a depth of 60 feet, being
given that the temperature of air at the surface is 80“ F

,
height of

water barometer at surface 33 feet, and temperature of water 40'’ F.’

(Lond B Sc, Pass, Applied Math, 1906, iii. 10.)

7. ‘ State the necessary and sufficient conditions of equilibrium to be satisfied

by a system of forces acting in one plane on a rigid body.
‘ IS a uniform ladder 37 feet long resting at A on the ground, where
the coefficient of friction is 1/2, and at B against a vertical wall, where
the coefficient is 5/12; the distance of A from the wall is 12 feet; a
hoiizontal force is applied at A to move the ladder towards the wall

;

find the magnitude of the requisite force in terms of the weight, IV^ of

the ladder.’

(Lond BA, Pass, Appijld Math, 1907, i i )

8. ‘ Two uniform bars, AB and A C, are rigidly attached together at A^ so

that the angle BAC is 120", and are fieely movable in a vertical plane
about A^ which is fixed , find the inclination ofAB to the horizon in the

position of equilibrium, being given length of AB = 6 feet, mass of

AB—io lbs., length of AC=Sy mass of AC=S.'
(Lond. B A

,
Pass, Applied Math., 1907, i. 2 )

9 ‘ What IS meant by unavailable energy ? A mass B placed on a smooth
horizontal table is connected by a light slack cord with a mass Q lying

on the ground Show that, if B is projected along the table with a
velocity Pj the energy available for raising Q is

B BV^
J>+Q‘ 2-’

and write down the energy which has become unavailable.’

(Lond B A
,
Pass, Applied Math

, 1907, i 4 )

10 ‘Give a pi oof thi^thc time of a small semi-oscillalion of a simple

pendulum is tt s/7/j,^

‘ If the bob of the pendulum is drawn out from the vertical to a devia-
tion a such that the tension in the vertical position exceeds the weight
of the bob by i/io of the weight, show that a must be 18’ iiV

(Lond B A
,
Pass, Appi.ied Math

, 1907, i 5 )

11. ‘Two peifectly elastic particles impinge diicctly on each other
;
piove

that the product of the sum of their masses and the amount of energy
transfcried from one to the other is equal to the product of their total

momentum and the momentum transfcired,

‘Find the ratio of the momentum transferred to the total momentum in

the case of two impel fectly elastic spheres of masses 6 and 10, with co-

efficient of restitution 3/4, when the smallei one moving with velocity

8 impinges directly on the larger one moving with velocity 3 in the

same sense.’

(Lond B.A, Pass, Applied Math
, 1907, i 8 )

12. ‘To one end of the cord of an Atw'ood’s machine a mass of no grammes
is attached

;
to the other end is attached a smooth pulley whose mass is

40 grammes, and over which passes a cord with masses of 35 giammes
and 25 grammes hanging at its ends. Find the acceleration of each
mass.’

(Lond. B A
, Pass Applied Math

, 1907, i 10.)

13. An ordinary gauge consists of a U tube of umfoim bote and open to

the atmosphere at the outci limb, the ini^icase of piessuie m the inner
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limb being read by the depression there of the surface of the liquid of
density A occupying the lower portions of each limb.

A special gauge has the uppei parts, of each limb of the U tube,

enlarged in cross-sectional area to n times that of the lower parts, and
IS charged with two liquids as follows *—A liquid of density p meets the

atmosphere m the large upper portion of the outer limb, and extends
round the bend of the U, finishing at some level P in the thin tube of

the inner limb. Above P in the inner limb there extends a second
liquid of density cr, not mixing with the former, but reaching to the

upper enlarged portion of the tube where it is exposed to the pressure

to be determined The gauge is read by the position of the inteiface P
of the two liquids

Show that the ratio of the sensibility of this special gauge to that of

the ordinary one first mentioned may be expressed by

2//A

p(;/ + l)’

14. ‘Two reservoiis, 10,000 square feet in area, with vertical walls, contain
the one salt and the other fresh water. They arc both filled to the same
absolute level If the reservoirs are connected by a pipe 50 feet below
the free suiface of either, find how much salt watci has passed into the

fresh water reservoir before equilibrium is established, the specific

gra\ity of the salt water being 1026, assuming that any salt water

which enters the fresh water reservoii sinks below the level of the jiipe
’

(Lond. B a
,
P vss, AnPLiKD Ma 1 k

, 1907, ii 2.)

15. ‘ State the conditions of equilibrium of bodies wholly or partly immersed
in a fluid

‘A cylinder of radius r floats in liquid of density (t inside a cylindiical

vessel of radius a. Show that if a mass W\s^ placed on the floating

cylinder, it will sink by an amount

TTOrV /

(Lond B.A
,
Pass, Applied Math

, 1907, ii 4

)

16 ‘A thin rod of length 2a and density a floats in a sloping position in a
liquid of density p, the end out of the liquid being suspended by a
string. Find the propoilion of the length of the rod iminei bed, and show
that It IS independent of the inclination of the rod. Find also the tension

of the string
’

(Lond B A., Pass, Applied Math
, 1907 11 3

)

1 7. ‘ Prove that, if r, B be the polar co-ordinates of a point moving in a

plane, the radial component of acceleiation is r-?BK
‘ A particle P of unit mass, free to slide on a straight smooth wire, is

attracted towaids a point O of the wire with a force \i.>OP, If the wire

be made to re\olve about in a horizontal plane with constant angular
velocity <u, show that the rnotion of P on the wire is a simple harmonic

motion of period 27r/ and that when a)'^ = p/2 the path ofP in space
IS a circle.’

(Lond B Sc
,
Pass, Applied Math

, 1907, ii. 4

)

18. ‘Two equal particles are connected by an mexlensible stiing of length

Z7-I-/;, which passes through a hole in a smooth table, so that one particle

hangs freely and the otln r is on the table. At an instant when the

system is at rest, and a hngth a of the string is horizontal, the paiticle

on the table is suddenly made to move perpendicularly to the string

with velocity Employ the pnnciples of energy and angular
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momentum to show that the hanging particle will not rise to the level of

the table unless

b<c-‘a+ Jc{2a-vc)\

and find with what velocity the particle arrives at the hole if this

inequality is satisfied.’

(Lond B Sc
,
Pass, Applied Math

, 1907, ii 6 )

19. *A uniform bar, AB^ is oscillating in a vertical plane about a smooth
horizontal axis fixed at A ; find in any position of the bar the magnitudes
of the forces on the axis m the directions along and perpendicular to

the bar.

‘If at any point P of the bar we consider a tiansverse section of it, the

stress on this section consists of tians\cise and longitudinal forces

together with a bending moment Indicate the method of calculating

these

’

(Lond B Sc ,
Pass, Applied Math

, 1907, iii 3 )

20 ‘Eine zylindnsche Glasrohre, vvclche 125 cm. lang und mit zwei Hahnen
veisehen 1st, steht senkrecht. Dcr unteie Hahn wird gcschlosscn, in

die Rohre eine Wassersaulc von 90 cm. Hohe und uber dicselbe cine Lage
01 von 20 cm. Ilohe gebracht. Das spccifischc Gewicht des Ols 1st

075. Der iibrige Tcil dcr Rohic 1st mit Luft angefullt unter dem
atmosphanschen Druck 75 cm Nun wird dcr obeie Hahn geschlossen
und der untere tcilwcise geoffnet, so dass das Wasser tropfcnweise
ausfliessen kann, bis Glcichgewicht eintntt Um wie viel muss die

('Iberfldche des Ols sinken ? Spec. Gew. Qiiccksilvers 13 6
’

(Lond B.Sc
,
Pa^s, Applied Math

, 1907, iii 8 )

Examples—CII. Miscellaneous.

I.

2.

3 -

4

‘A bead is free to slide on a smooth circular wire of ladius which is

made to rotate about a vcitical diameter with angular velocity o>. Show
that, if the bead will be in stable equilibiium at the lowest point
of the wire, and will, if disturbed, peiform small oscillations about this

position of cqiiilibiium in a period

(Lond R Sc
,
Pass, Appi ied Maui , 1908, ii 6

)

‘ExpUin how the etTect of a vciy large force acting for a very short time
IS estimated
‘A sleigh iveighing 5 tons is travelling along a hoiizontal road. As it

passes under a bridge a load of rubbish weighing i ton is shot into it

from a height of 9 feet. If the sleigh was moving at 4 miles an hour at

the time, find its speed immediately afterwards, the coefficient of

impulsive fiiction between the ground and sleigh being 1/5.’

(Lond. B Sc., Pass, Applied Math., 1908, iii. i.)

‘ State the laws of Boyle and Charles.

‘Bubbles of air rise through water from a depth of 18 feet. In what
ratio will the diameter of a bubble have altered when it arrives at the

surface ? (Assume that the height of the merciiiy barometer is 30 inches

and that the specific gravity of meicury is 13 6.)’

(Lond B Sc, Pass, Applied Math., 1908, ni ii.)

‘A rectangular thin board ABCD is hinged along a horizontal axis AB^
lying in a fixed plane inclined at an angle a to the horizon. A smooth
heavy sphere of radius r is introduced between the inclined plane and
the board above the hinge. If / be the length of the side BC of the
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board, and the weight of the sphere be half the weight of the board,
find what condition must be satisfied if the sphere is not to be forced out’

(Lond. B Sc., Pass, Applied Math., 1909, i. 6.)

5 ‘Translate:

—

‘ Les Anglais enseignent la mecanique comme une science expdrimentale ;

sur le continent on I’expose toujours plus ou moins comme une science
ddductive et dpnori. Ce sont les Anglais qui ont raison, cela va sans
dire ; mais comment a-t-on pu persev^rer si longtemps dans d’autrcs

errements? Pourquoi les savants contincntaux c^ui ont cherch6 k
^chapper aux habitudes de leurs devanciers, n’ont-ils pas pu le plus

souvent s’en affranchir complttement ?

‘ D’autre part, si les principes de la mecanique n’ont d’autre source (jue

rexpt^nence, ne sont-ils done qu’approch^s et provisoires ? Des experi-

ences nouvelles ne pourront-elles un jour nous conduire h les modifier ou
meme a les abandonner?’

(Lond B.Sc, Pass, Applied Math., 1909, i. 10.)

6 ‘Translate —
‘Ueberhaupt findet zwischen der Statik und der Geometric ein sehr
inniger Zusammenhrng statt, indem nicht allein erstere Wissenschaft
der Hulfe der letztern unumganglich bedarf, sondern weil auch umgekehrt,
gleichsam zum Lohne fur die geleistete liulfe die Statik der Geometrie
neue Sat/e zufuhrt, Satze die nicht selten wiederum zum Vortheile der
Statik verwendet werden konnen.’

(Lond B Sc
,
Pass, Applied Math., 1909, 11 10.)

7
‘ A light clastic string carries a mass m attached to a point of tnsecUon.
It is stretched between two points A and ^ of a smooth fixed table, the

distance AB being times the natural length / of the stung If the

weight of a mass be required to stretch the string to twice its natural

length, find the period of small oscillations when the mass vi is displaced

longitudinally.’

(Lond B Sc., Pass, Applied Math., 1909, iii. 2,)

8 ‘A body describing a parabolic orbit, about a centre of force attracting

according to the inverse square law, is at one extremity of the latus

rectum of its orbit when it collides with a body of equal mass, describing

a circle about the same centre of force, but 1 evolving about this centre

in the opposite sense. The two bodies coalesce after collision. Show
that they must ultimately fall into the centre of force.’

(Lond. B Sc, Pass, Applied Math
, 1909, iii. 4.)

9. ‘ An open cubical cistern, 2-foot edge, has one of its sides hinged to the

bottom and kept from falling outwards by a rope connecting the middle
point of its upper edge to the corresponding point of th^ opposite side.

Find the tension in this rope when the cistern is half filled; and find

how the tension is altered by tilting the cistern through 45° about the

edge containing the hinges. It may be assumed that i cubic foot of

water weighs 62^ lbs., and that the weight of a side of the cistern is

10 lbs.’

(Lond. B Sc, Pass, Applied Math., 1909, iii. 6.)

10. ‘Translate the following passage .

—

‘ Die Thatsache, dass Luft eine Flussigkeit ist, die auf andere Korper
durch Druck wirkt, scheint zuerst von Torricelli und Otto von Guericke
bemerkt worden zu sein. Die Beziehung zwischen dem Druck m einer

Luftmasse und dem Volumen, das sie einnimmt, wurde zuerst von Boyle
untersucht. Die Idee, dass die Abnahme der Barometerhohe beim
Emporsteigen uber die Erdoberflache zur Messung der Beigholien
benutzt werden konnote, verdankt man Pascall

(Lond. B Sc., Pass, Appj.iet) Math, 1909, m. 10,

)
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n. *A simple pendulum is swinging in a vertical plane about a fixed point

O. Piove that if the pendulum just makes complete revolutions when
the bob IS attached to O by a light rigid rod, then if the rod be replaced
by a string and the velocity at the lowest point be kept the same, the
String will become slack when the bob has risen through 5/6 of the
diameter of the circle it describes.^

(Lond B.Sc, Pass, Applied Math., 1910, ii. i.)

12. ‘Translate the following passage •—
‘Im Hinblick auf diese grossen Erfolge waren Newtons Nachfolger
bestrebt, die ubrigen Naturerscheinungen ganz nach der Methode
Newtons lediglich unter passenden Modifikationen und Erweiterungen
zu erklaren. Unter Benutzung emer alten, schon von Demokrit herruh-
renden Hypothese dachten sie sich die Korper als Aggregate sehr
zahlreicher materieller Punkte, der Atome. Zwischen je zweien
derselben sollte ausser der Newtonschen Anziehung noch eine Krafte
wirken, welche man sich in gewissen Entfernungen abstossend, m
anderen anziehend dachte, wie es eben zui Erklarung der Erscheinungen
am geeignetsten schien ’

(Lond. B.Sc , Pass, Appi ied Math
, 1910, ii 10

)

13. ‘A heavy bead slides along a fixed rough horizontal circular wire
;
initially

the bead has a velocity K, and it comes to rest after describing an arc

of length /. Prove that
= ag sinh (2/i//^z),

where a is the radius of the ciicle and /n the coefficient of friction
’

(Lond Ii Sc, Pass, Applied Math
, 1910, ii. 5.)

14 ‘Three equal particles of mass m are placed at the comers of an
equilateral triangle of side a and allowed to move from rest under their

own gravitation. Show that they will come together after a time

IT 2 sf&ymy

y being the constant of gravitation.’

. (Lond B Sc, Pass, Applied Math, 1910, ii 8)
15. ‘The ends of a light elastic string of natuial length a and of modulus X

are fastened to the ends of a rod AB of the same length a and of mass
m. A mass M is attached to the middle point C of the stung The
system lies on a smooth horizontal table, and A B is held fast while C is

drawn away from AB till ACB \s an equilateial tnangle. Prove tha^ if

the lod and the mass M are now simultaneously released, their relative

velocity when M strikes the rod will be

(Lond. B.Sc, Pas^, Applied M\th, 1910, iii. 3 )

16 ‘ Draw an isosceles triangle ABC, and fiom C draw CJ) at light angles

to the base BC; also diaw a circle to touch AC and CB Suppose
that lepiesents a cross section of a beam lying on the ground,
and that the circle represents a cross section of a cylinder resting

between the beam and a wall CJ>. Taking account of the friction

between the beam and the ground, but not of the friction between the

cylinder and the beam or the wall, find the relation betw een the weights
of the beam and the cylinder when the beam is just beginning to

slide out.’

(Board of Education, Theo. Mech., Solids, Si age 3, 1908, 42.)

17. ‘A spherical shell of uniform density attracts an external particle accord-

ing to the law of gravity ;
find the resultant attraction

‘A sphere of uniform density attracts a particle, the mass of which is

I lb., at a distance of 4000 miles from its centre, with a force of
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3? poundals Fin 1 the force with which it would attract an equal
particle (P) placed at a distance of 6o x 4000 miles
‘ If P describes a circle round the centre of the sphere, find the periodic
time. (iV />’.— kJ\\o~\o 4881.).’

(Bo\rd of Edul'Mion, Thko Mech
,
Solids, Staoe 3, 1908, 45 )

1 8 ‘A heavy rod is constrained to slide m a vertical line with its lower end
on the curved surface of an equally heavy smooth hemisphere, the
hemisphere sliding on a smooth horizontal plane. Determine the
motion.

‘ Solve the equations of motion for the case m which initially the rod is

very nearly in its highest position
’

(Board of EduCx\tion, Theo Mech
,
Sot.idp, Stage 3, 1908, 52

)

19 IS any point in BC^ a side of a triangular lamina ABC. Show that

the moment of inertia ofABC about AD equals

i(mass) X - BD.DC+nO) sxn^ADB:
(Board of Education, Theo Mech, Fluids, Stage 3, 1908, 41.)

20 ‘Examine minutely the following statement .

—

‘Since the specific gravity of brass is greater than that of a diamond
and less than that of gold, if diamonds and gold are sold by brass

weights a purchaser would find it to his advantage to buy diamonds m
fine weather and gold in bad weather.’

(Board of Education, Theo. Mech., Fluids, Stage 3, 1908, 42 )

Examples—CIII. : Miscellaneous.

I. ‘A lamina of uniform density is in shape an equilateral triangle; it is

entirely submerged with its centre of gravity fixed. When it is placed
in any position with its plane vertical, find the co-ordinates of its centre

of pressure.
‘ If now It is made to turn in the vertical plane, show that the locus of Us
centre of pressure is a circle, and explain how to draw the circle

’

(Board of Education, Theo. Mech
,
Fluids, Siagf 3, 1908, 44

)

2 ‘Under what circumstances will a floating body, if slightly disturbed,

make small vertical oscillations?
‘ Show how to find the time of such an oscillation ’

(Board of Education, Theo. Mfch
,
Fluids, Stage 3, 1908, 45

)

3 ‘A U-shaped glass tube of uniform section contains liquid, to a height a
m each leg, which can move without friction in the tube

;
if the liquid

be slightly disturbed, show that the small oscillations are synchronous
with those of a simple pendulum of length

(Board of Educaiion, Thfo Mech, Fluids, Stack 3, 1908, 46 )

4. ‘A litre of dry air at zero centigrade and 760 mm pressuie weighs l 2932
grammes

;
find the weight of v cubic decimetres when the temperature

IS T° C. absolute temperature and the piessure p mm.’
(Board of Educviion, Theo. Me( h.. Fluids, Stage 3, 1908, 49)

1;.
‘ When a thin plate of any substance is in a state of tension, how is the

tension measured?
‘A vessel made of a thin matenal has the shape of a prism, whose base is

an equilateral tnangle. It stands upright and is filled with water, the

weight of which is put out of the question. The water is then put undet

a pressure oip lbs. per square inch. Show that the sides of the vessel

are under a tension equal to per inch of the length of a
vertical edge, where a denotes a side of the equilateral triangle.'

(Board of Education, Theo. Mech
,
F i.uids, Stage 3, 1908, 48

)

6. ‘What is the effect of inserting a small quantity of air in the Torricellian
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vacuum of a cylindrical barometer tube ^ If the height of the barometer
be 30 inches, the length of the Torricellian vacuum 5 inches, and the

cross section of the tube i square inch, calculate the effect, on the

column of mercury, of the insertion of 1/4 cubic inch of air into the
vacuum, the absolute temperature having changed during the experi-

ment in the ratio of 48 to 49.’

(Board of Educaiion, Theo Mkch, Fluids, Stage 3, 1908, 50)
7. ‘ State the laws of the ascent and depression of liquid in capillary tubes

‘Show in a diagram the state of equilibrium when a capillary tube is

immersed vertically in a liquid

(a) when the liquid wets the tube ;

(d) when it does not do so
‘ In each case, show by lines with arrow heads, supplemented by explana-
tions, how the forces act which maintain the liquid inside the tube in

equilibrium.’

(Board of Education, Theo Mech
,
Fiuids, Stage 3, 1908, 51.)

8. * In a suspension bridge the roadway, weighing u/ lb. per foot of the

length, IS upheld by a uniform chain suspended from two points in a
horizontal line. Neglecting the weight of the chain in comparison with

that of the loadway, prove that the tension at a point is equal to

where N is the length of the normal at the point between the cun e and
the axis of symmeti y.’

(Board ot Education, Iheo. Mech, Honours, 1908, 63)
9. *A uniform string hangs from two points under the action of gravity.

Pro\e that 6 = c tan i//', \ A The sag at the middle point of a
uniform stiing, suspended fiom two points in the same horizontal line,

is (i/«)‘*’ of the length of the string Prove that the ratio of the
tension at either end to the weight of the string is («^4-4\/8;7.

(London B Sc
, 1918, i. 10.)

10. ‘Find the centre of giavity of a circular arc of unifoiTn density

‘A uniform flexible rope is wrapped round a cylinder, whose axis is

* horizontal, and the length of the rope equals the circumference of the

cylinder. Its free end is at tlic end of a hoiizontal diameter. The
cylinder is turned through a right angle, so that the free end falls

through a distance equal to a quarter of the circumference. Find the

woik done by gravity,’

(Board of Education, Theo. Mech., Honour.s, 1908, 67 )

1 1. * Draw^ a triangle A PC with PC vertical, and suppose it to represent a
fram« of three weightless bars. A weight hung from and PC
IS kept vertical by being fastened to a wall at tw^o given points, X and
V. Fmdiihe stresses in A

B

and AC^ and the forces at X and V caused
by H/.’

(Board of Education, Theo. Mech
,
Solids, Stage 3, 1909, 41

)

12. ‘Show that a force, acting on a rigid body m an assigned direction along
a given line, can be replaced by an equal force, acting in the same
direction along a parallel line, and a couple.

‘Let A Py AC, Al) be three edges of a cube, and consider AD and two
other edges parallel to A

B

and AC respectively, which neither intersect

AD nor one another. Suppose that equal fofees, P, act along these

edges respectively in the directions A 7}, AC, AD. Showhow' to reduce

them to a resultant lorce and a couple. Also, show how to draw' the

line alo*ng which the resultant acts when the plane of the couple is at

right angles to the direction of the resultant.’

(Board of Educ\tion, Theo. Mkch., Solids, Stvge 3, 1909, 42

)

13. ‘A ladder, whose centre of gravity is half-way between its ends, rests
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upon a {)avement and against a wall in the usual manner, but the wall

slopes inwai ds and the pavement downwardr each at an angle a.

‘ If 0 be the limiting angle of friction both at the wall and at the pave-
ment, show that the ladder, when in limiting equilibrium, makes an
angle 0 with the pavement such that

d= Jtt + a - 2^.’

(Board of Education, Thko Mfxh
,
Solids, Stage 3, 1909, 43

)

14 ‘A heavy isosceles right-angled triangle hangs from Us vertex ; determine
the time of a small oscillation about an axis in its plane parallel to its

hypothenuse.
‘What would be the result if the axis of rotation weie at right angles to

Its plane?'
(Board of Educxtion, Thlo. Mech, Solids, St\ge 3, 1909, 50)

15. ‘State the piinciple of the Conservation of Energy.
‘A spherical shell, the interior radius of which is one-half of the exterior,

IS filled with fluid of the same density with itself, show that it will run
down a perfectly rough plane of inclination a with acceleration

l®ii ^sm a,’

(Bovrd of Education, Theo. Mech., Solids, Stage 3, 1909, 52

)

16. ‘The base of a right prism is a right-angled triangle
;
find the moment

of inertia about the edge which passes through the right angle ’

(Board of Education, Theo Mech, Fiuids, Siage 3, 1909, 41

)

17. ‘Investigate the position of the centre of pressure on a plane area

immersed vertically in liquid at a given depth
‘Find also the effect upon the centre of pressure

(1) of turning the area about the line in which its plane cuts the

surface of the liquid

,

(li) of rotating the area in its own plane about its centre of gravity.'

(Board of Educa7ION, Thbo Mfch
,
Fiuid^ Stage 3, 1909, 43 )

1 8 ‘ Liquid in a vessel increases in density uniformly from pi at the surface

to p2 at a depth h ; a small body of density o-(<pi) is held at a denth
h and then released

;
show that it will reach the surface with the

velocity due to the height

(ei^_ ,y(.>

(Board of Education, Theo Mech., Fluids, Stage 3, 1909, 45

)

19 ‘The height of a cylinder equals a diameter of its base, and its specific

gravity is o 5 ;
show that it is in unstable equilibrium wher placed in

water with half its height covered
‘ If one end of a thread were fastened to the centre of th ~ base, and the

other end to the floor at the bottom of the water, find how the length

must be adjusted that the cylinder may float with its axis vertical. Find
also the tension of the thiead. If the thiead were cut, how would the

cylinder move ?
’

(Board of Education, Theo. Mech., Fluids, Stage 3, 1909, 46.)

20 ‘ What is the “ Reserve of Buoyancy ” of a floating body ?

‘If a homogeneous body of density <r floats partly in a liquid of density

p and partly in one of density p with a certain section, A^ of itself in

the horizontal plane of separation of the liquids, show that it can float

inveited with the same section, A^ in the plane of sepaiation if its

density be changed to where
(r'=:p + p -cr.’

(Board of Education, Theo. Mech., Fluids, Stage 3, 1909, 47.)
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Examples CIV.* Miscellaneous.

1. ‘An elastic fluid, having a constant temperature, is at rest under the
action of gravity , show that the surfaces of equal pressuie are horizontal
planes

‘ If IS the pressure at a given point, and p the pressure at a height z
above that point, show that

‘ Explain what is denoted by the symbol and find its value from the
following approximate data, viz .—air weighing 540 grains per cubic
foot exerts a pressure of 1 5 lbs per square inch.’

(Board of Education, Thko. Mkch., Fluids, Stage 3, 1909, 50.)

2. ‘A stream ol water impinges on a fixed surface. Explain the mechanical
principles by which the pressure exerted on the surface can be deter-

mined.
‘Find the pressure when the stream has a section of 4 square inches and
a velocity of 48 feet a second, on the supposition that the water is simply
stopped.

‘ How would the result be affected if there were a coefficient of restitu-

tion equal to o 2 5
?

’

(Board of Education, Theo. Mech, Fluids, Siagk 3, 1909, 52.)

3. It has been calculated that during a century the earth loses eight seconds
of time, if judged by an ideally perfect clock rated by the earth at the
beginning of that century. If this retardation were due to tangential
resistances uniformly distributed over an equatorial belt two miles wide
and acting with constant value throughout the century, show that this

resistance would exceed rooo tons weight per square mile Take the

earth to be a homogeneous spheie of radius 4000 miles and density 5 5
gms. per c c

4. ‘A particle acted upon by gravity descends from a point O down a curve
* OA^ which It presses at each point of its descent w ith a force varying
as the square of its distance below die horizontal line through O
Taking the axes Ox\ Oy hon/ontal and veitic«il, show that OA is the

elastic curve
dy_ j

dx~ y^

(Board of Education, Theo. Mfch., Honours, 1909, 65.)

5 ‘A rod, AB^ in an inclined position has the end, /?, on a horizontal plane ;

It is kept in Its position by two pegs, and on opposite sides of the

rod. If all the surfaces are smooth, find the pressures on the plane
and on the pegs.

‘ If we suppose the plane to be removed and the pegs to be rough, so
that the rod is still supported, find what will now be the pressure on the
peg and the frictions that the pegs exert.’

(Board of Education, Thfo Mech
,
Solid';, Stage 3, 1910, 41.)

6. ‘A square, ABCDy is formed by four equal weightless rods, loosely

jointed at the angular points, and kept in shape by a diagonal tie, AC.
It is hung up by A., and carries equal weights at B and D. Fmd, by
virtual work, the tension of the tie.

‘Verify your result by resolution of forces, and find the stresses in the
rods which form the square.

‘ Point out the rods which would be liable to bend if the weights were
large.’

(Board of Education, Theo. Mech., Solids, Stage 3, 1910, 43.)
7. ‘A body turning about a fixed axis is symmetrical with respect to a plane

2 K
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at right angles to the axis and passing through the centre of gravity

Show that the centiifugal force is the same as if its mass were con-

centrated at Its centre of gravity.

‘A hoop, with a radius of 3 feet and weighing 20 lbs
,
turns in its own

plane about its centre ten times a second. Show that the rotation sets

up a tension in the hoop of more than half a ton weight.’

(Board of Education, Theo Mech., Solids, Stage 3, 1910, 49.)

8. ^ABCD is a rectangular lamina of uniform density. Find the moment
of inertia, about the side AB^ of each of the triangles into which it is

divided by the diagonal BI).^

(Board of Education, Theo. Mech, Fluids, Stage 3, 1910, 41.)

9. ‘ Find the position of the centre of pressure of a plane area immersed in

water, supposing the plane to be vertical.

‘Apply the method to the case m which the area is the part of a

parabola cut off by the focal chord at right angles to the axis, the chord
being vertical and just imrneised ’

(Board of Education, Thpo Mech
,
Fluids, Stage 3, 1910, 43 )

10. ‘ Prove that if a volume be cut off a solid body by a plane section and an
equal volume be supported cut oft' by any other plane section, making a

small angle with the first plane, the two planes will intersect in a line

passing through the centre of gravity of the first plane
‘ Explain the importance of this theorem in the question of the stability

of a floating body.’

(Board of Education, Thfo. Mech., Fluids, Stage 3, 1910, 45

)

11. ‘ A body floating in stable equilibrium is slightly disturbed, and makes
small vertical oscillations Find the time of an oscillation

‘Apply the method to the case of a cone of giveji height, whose vertical

angle is 60° and specific giavity 5/8. (A^ v^5 = 171. It may be as-

sumed that the cone will float in stable equilibrium with its vertex

downwards )

’

(Board of Education, Theo. Mech., Fluids, Stage 3, 1910, 46.)

12. ‘Describe the hydrometer of variable immersion, and explain how the

specific gravity of a liquid may be found by means of it.

‘A hydrometer floats with 8 inches of the stem above the surface of a
liquid whose specific gravity is 095 ,

also it floats with 2 inches of the

stem above the siirfac e of a licjuid whose specific gravity is o 75 Find
the specific gravity of the liquid in which it is found to float with 5*5

inches of the stem above the suiface ’

(Board of Educaiion, Thio Mech., P'luids, Si age 3, 1910, 47.)

13. ‘A spherical surface of radius a and of small thickness t. contains gas at

a given pressure p. Investigate the magnitude of the tension per unit

area of the section of the material at any point.
‘ A thin india-rubber ball contains air. Show that the tension per unit

area of the material varies as the absolute temperature.’

(Board of Education, Thp:o Mech., Fluids, Stage 3, 1910, 51.)

14. ‘A body IS in motion about a fixed point O, and three rectangular

axes, fixed in the body, are drawn through O The angular velocities

of the body about these axes respectively are known. Find equations

for determining the motion of the body with reference to three rectangular

axes drawn through O and fixed in space ’

(Board of Educmion, Theo. Mpxh, Honours, 1910, 64.)

15. ‘In the motion of a rigid body in space of two dimensions establish the

independence of the motions of the centre of gravity of the body and of

the body relative to the centre of gravity.
‘ Examine the motion of a heavy rod sliding between a smooth vertical
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plane and a smooth horizontal plane in a plane perpendicular to
both.
‘ When will the rod leave the vertical plane ?

’

(Bo\rd of EDur\riON, Thko. Mech, Honours, 1910, 66.)
16. ‘State the mechanical principle called the conservation of energy

‘Explain the application of the principle to the following case .

—

‘A thin but heavy cylindrical shell is fitted with a solid cylinder or core,

supposed to be perfectly smooth. The compound body is placed on a
rough inclined plane, and is allowed to roll down it. Find how the
body IS moving when it has rolled down a given length of the plane.
‘Also compare the results that would be obtained - (i) If the core had
not been put m. (2) If the core had adhered firmly to the shell, the
masses of shell and core being equal.’

(Board of Educaiion, Theo. Mech., Honours, 1910, 67.)

Examples

—

CV. • Miscellaneous.

1 ‘Define the centre of gravity of a body and establish the formula

(2mj) for the distance from a plane of the centie of gravity of a
number of particles.

‘Find the position of the centre of gravity of the part of a solid sphere
which lies between a diametral plane and a parallel plane whose dis-

tance from the former is half the radius of the sphere ’

(Lond B Sc, App Math, Subsidiary to Hons. Physics, 1909, i 2.)

2 ‘State the principle of Virtual Work. In what respects is the method
of Virtual Work preferable to that of resohing and taking moments as

a means of solving problems ?

‘A circular cylinder of radius a is fixed with its axis hoii/ontal and its

curved surface in contact with a vertical wall A disc of radius d (if>a)

rests on the cylinder and against the wall, the plane of the disc being
parallel to the axis of the cylinder If in the position of equilibiium the

plane of the disc makes an angle « with the horizon, prove that

a= dcosa{i +sin a).’

(Lond B Sc, App. Math, Sursy. to Hon^. Physics, 1909, i. 4.)

3 ‘Define (1) pote?itial^ (11) tube ofJorce, and prove the fundamental pio-

perty of a tube of force.

‘If the lines of foice are arcs of ciicles whose centres are at a fixed

point J and whose planes pass thiough a fixed line OA^ compare the

intensity of the force at two points in free space which he on the same
line of force

’

(Lond. B.Sc., App. Maih., Sursy. 10 Hons. Physics, 1909, i 6)
4 ‘Find the attraction of a thin unifoirn circular plate at any point of the

line through its centre at right angles to its plane.

‘Find the force of attraction excited by a solid uniform hemisphere of

density p and radius a upon a paiticle of mass 7// plaied at the centie of

the plane face.’

(Lond B Sc., App Math, Sup.sy to Hons Pm sics, 1909, 1. 7 )

5.
‘ Determine the potential of a straight uniform rod at any point, and
deduce the lew of attraction of an infinite rod extending to infinity in

both directions
‘ Prove that if two such infinite rods intersect, their plane is cut by the

equipotential surfaces in hyperbolas.’

(Lond B Sc
,
App Math., Sursy. to Hons Physics, 1909, i 8

)

6. ‘Find by any method the centre of pressuie of a ciicular area, wholly
immersed in water.
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‘ Prove that, if a is the radius of the circle and h is the height of the

water barometer, the centre of pressure lies on or within a concentric

circle of radius

(Lond. B Sc, App Math, Subsy to Hons Physics, 1909, i 9

)

7. ‘ If a particle is subjected to two simple harmonic motions of the same
period in perpendicular directions, show that the resulting motion is

in general elliptic

‘If the motions have the same period and amplitude, differ in phase
by one quarter of a peiiod, and are in directions inclined to one another

at 60", find the resulting motion ’

(Lond B Sc, App. Maui, Subsy to Hons. Physics, 1909, ii i )

8. ‘Find expressions for the tangential and normal accelerations of a
particle moving in a plane curve If the motion is such that the tangential

and normal accelerations are alwa> s equal, and z/j, are the velocities

at any two points of the path, show that

Z^2 =
where B is the angle turned through between the points ’

(Lond. B Sc
,
A'^p. Math

,
Subsy 10 Hons. Physics, 1909, ii. 2 )

9. ‘A particle of unit mass moves in a straight line under the action of a
force kx directed towards a fixed point in the straight line, where x is

the distance of the particle at any time from the fixed point and k is con-
stant. The resistance to motion at any time is I times the velocity of

the particle where I is constant. Write down the equation of motion of

the particle, and show that if it is satisfied by an expression

of the form
x= Ae~f'*sm {nt + a),

where A and a are arbitrary constants
‘ Find also the values of/ and t? in terms of ^ and

(Lond B .Sc
,
App Mvih,Subsy to Hons Physics, 1909, 11 3.)

10 ‘In a wheel and axle a mass P is suspended from the rope lound the

wheel, which is of radius a, and a mass IV is suspended from the rope
round the axle, which is of radius d ; show that the angular acceleration
of the system is

(Pa _

where M is the mass and k is the radius of gyration of the wheel and
axle about the axis of turning.’

(Lond. B Sc, App. Math, Subsy to Hons Physics, 1909, ii 4.)

II. ‘If an orbit is described under a central attraction /^(distance)''*, show
that the velocity at any point at a distance r from the centre of attrac-

tion IS given by

‘ Show also that the periodic time in the orbit is 27r(cPlfiy^V

(Lond. B .Sc
,
App. Math

,
Subsy. 10 Hons. Physics, 1909, ii. 5.)

12. ‘ If ^ IS the radius of gyration of a body about an axis through the centre
of gravity, find the ^'me of a small oscillation of the body about a parallel

axis at a distance h from the centre of gravity.

‘Find the position of the axis in an elliptic disc about which the time of
a small oscillation of the disc is the least possible.’

(Lond B Sc, App Math
,
Subsy lu Hons Physics, 1909, ii. 7.)

13. ‘Show that in a given time a uniform solid circular cylinder will slide

from rest under gravity down a given smooth inclined plane half as far

again as it would roll down the same plane if perfectly rough.’

(Lond. B.Sc, App. Math., Subsy. 10 Hons Physics, 1909, ii. 9.)
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Examples—CVI. : Essay Sup>jects.

Three Hours allowedfor each Essay

1. The limitations and subdivisions of mechanics.
2. The composition and resolutions of vectors, localised and unlocalised.

3. The small vibrations of a particle with one degree of freedom.
4. The motion of projectiles.

5. Planetary motions.

6 The possible motions of a rigid body, (1) parallel to one plane, and (n)

with one point fixed.

7 The most general motion of a rigid body.

8. Quadric linkages

9 Homogeneous strains.

10. Ancient and modem views on the foundations of mechanics, and their

enunciation in laws, axioms, and definitions.

1 1. Moments of inertia.

1 2 Gyroscopic motions, including nutation.

1 3 Attractions between straight filaments and their combinations.

14. Attractions between a cylinder and a coaxial sphere.

15. Potentials and fields of attraction

16. Graphical statics,

17. Stability of floating bodies.

18. Steady flow of liquids under gravity

19 The chief elasticities and their relations.

2a Screws and wrenches.
21. The cquiUbiium under gravity of mextensible cords, uniform or not
22. Small and large oscillations of rigid bodies

23. Gravity waves m liquids.

24. Suiface tension phenomena.

Examples—CVII. ; Miscellaneous.

1. ‘ Prove that a system of coplanar forces can be reduced to a force at a
^ given point and a couple Find expressions for the magnitude of the
force and the moment of the couple
*‘AB^ A'

B*
arc two equal lines in the same plane, C and C their middle

point: Prove that forces represented by AA' and BB' are equivalent

to a force represented by 2CCand .a couple whose moment is lAC^
multiplied by the sine of the angle between AB and AB

I

(Calcutta B A and B Sc, Honours, Math
, 1909, v. i )

2. ‘ State the principle of virtual work, and prove it for a system of coplanar
forces acting on a rigid body.
‘A fieely jointed framework is formed of five equal uniform rods each of

weight IK The framework is suspended from one corner, which is also

joined to the middle point of the opposite side by an inextensible string ;

if the two upper and the two lower rods make angles 6 and
<f)

respec-

tively with the vertical, prove that the tension of the string is to the

weight of a rod as

4 sin d + 2 sin : sin 0 + sin

(Calcutta B A and B Sc, Honours, Maht., 1909, v. 2.)

3
* State the laws of friction.
*A uniform rectangular lamina of sides 20, id rests with one corner on a
rough horizontal plane and another comer against an equally rough
vertical wall, the plane of the lamina being vertical and perpendicular
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to the wall Prove that when fiiction is limiting at each corner, the

inclination to the hoiizon of the side of length 2^ joining the two coiners

in contact is

tan
j/ <7COS2f \

H«tan«/

4.

5 -

6 .

7

8.

9-

10.

where tan 6 is the coefficient of friction.’

(Calcutta BA and B Sc, Honours, Math
, 1909, v 3.)

‘ Prove that the centroid of the projection of any plane area on any plane
is the projection of the centroid of the area.

‘A portion of a circular cone is cut off by a plane which makes an angle
6 with the axis and is at a perpendicular distance p from the vertex

Prove that the centre of gravity of the curved surface is at a distance

^ cosec 6 from the centre of the plane section ’

(Caicuiia B a. and B Sc
,
Honours, Math

, 1909, v. 4.)

‘Assuming the general equations of equilibrium for a flexible mextcnsible
string deduce the equation of the curve formed by a string hanging under
the action of gravity, its extremities being attached to fixed points m
the same horizontal plane.

‘Show that the tension at any point of the catenary is equal to the
weight of a portion of the string whose length is equal to the ordinate
of the point.’

(Calcu'ita B a and B Sc, Honours, Maih
, 1909, v 5.)

‘Define momentum, kinetic energy, potential energy, power
‘An engine of 350 horse-power, whose weight is 20 tons, is attached to

a train weighing 130 tons, and pulls it up an incline of i m 300 at a rate

of 40 miles an hour. Find the resistance per ton due to friction, etc
’

(C\lcutta B a. and B Sc, Honours, Maih., 1909, v 6 )

‘A point is moving in a curve with velocity t/
,
show that its acceleration

inwards along the normal is where 0 is the radius of curvature of

the curve at the point.
‘ A particle is projected, from the lowest point inside a smooth elliptic

cylinder whose major axis is vertical, in a direction perpendicular to

the generators. Show that the particle will go completely round the

cylinder if the velocity of projection is greater than v^{( 5 - where
2a is the major axis and f is the eccentiicity of the cylinder.’

(Lai cuit\ B A and B Sc, Honours, Maih
, 1909, v 7 )

‘Define the hodograph of the path of a particle, and show that the

velocity in the hodograph is equal to the acceleration In the path l^y

means of the hodograph deteimine the acceleration of a point describing

a circle with constant speed
‘A heavy particle slides down a smooth cycloid with its axis vertical and
Its vertex uppermost. If the particle start from lest at the veitcx, prove
that the hodograph consists of the quadrant of a circle and a stiaight

line touching the circle
’

(Calcuita B a and B Sc, Honours, Math., 1909, v 8 )

‘Discuss the motion of a particle of mass attached by a weightless

elastic string of length / to a fixed point, which has been allowed to fall

from a point verticrlly below the fixed point and at a distance h from it

Determine the maximum tension, p being Young’s modulus for

the material of the string.’

(Calcuita B A and B.Sc
,
Honours, Math

, 1909, v. 9.)

‘Prove the relation c^se of a particle moving in a

central orbit. Show that if the particle will move in an ellipse

whose centre coincides with the centre of force, and that its velocity at



EXAMPLES—MISCELLANEOUS 519

any moment will be proportional to the length of the diameter conjugate
to

(C\Txui lA B A. AND B Sc, Honours, Math, 1909, v. 10)
II. ‘Two smooth imperfectly clastic spheres moving in a given manner

impinge on one another obliquely; find equations to determine their

motion after impact
‘If the masses of the spheres be Wg, and their velocities «j, u^, m
directions at right angles to one another, making angles a and 90'’ +

a

with the line of centies at the instant of impact, prove that their direc-

tions after impact will also be at right angles to one another, if the
coefficient of restitution be

tan a >

nt^inpiix + Ui tan a)

(Calcutta B A. and B Sc, Honours, Math, 1909, v. ii.)

Examples

—

CVIII • Miscellaneous

I ‘ Show that for a beam supported horizontally and loaded m any manner
the ordinates of the funicular polygon represent to some scale the
Bending Moment for the beam, at any point, and show how to find this

scale.

‘Draw to scale the Shearing Force and Bending Moment diagram for a
uniform beam AL\ 20 feet long, under the following conditions .— It is

supported at one end A and an intermediate point where AB is 15

feet, while weights of 10, 15, and 20 cwts are attached at points C,

and E where AC^ Al\ and AE^ equal 10, 12, and 16 feet respectively

;

in addition, theie is a uniform load of half a cwt pei foot run over EE.
The weight of the beam may be neglected ’

(Caicui ia B E, Statics and Dynxmics, 1909, 4)
2. ‘Amass il/ draws up another J/' on the wheel and axle; if a is the

radius of the wheel and <7’ that of the axle, find the motion and the

tensions of the strings, assuming fx to be the mass of the revolving body
and /v’ Its radius of gyration about axis of 1 evolution.’

(Calcutta B Si vnes and Dynamics, 1909, 5 )

3. ‘.Show that, assuming the earth to be a homogeneous sphere, it would be
nccessaiy foi the rotatoiy motion to be about seventeen times as fast as it

IS at piesent, if the centrifugal force was to exactly neutralise the action of

gravity 'The earth’s radius equals 20,880,000 feet, and the acceleration

due ^o gD.vity is 32 2 feet per sec per ‘=ec
’

(Calcuita B E
,
Si mics and Dynamics, 1909, 6 ^

4 ‘A particle of mass m is acted on by a force varying inversely as the

square of the distance of the centre of mass from a fixed point
,
show

that the particle will describe an ellipse round the fixed point, that

equal areas will be traced out about the centre of force in equal times,

and that the square of the periodic time of revolution bears a constant

ratio to the cube of major axis of the ellipse described.’

(Calcutta B E., Statics and Dynamics, 1909, 7

)

5.
‘ Show that for a particle moving m a plane the radial and transversal

accelerations with reference to any axes fi^ed in the plane can be
expressed m the form

r-rB’^ and 2r6-\-r6.

‘Use this result to investigate the motion of two particles of masses

and connected together by a light string of length / and revolving

in a smooth tube in a horizontal plane at constant angular velocity.’

(Calcutta B.E, .Statics and Dynamics, 1909, 8.)
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6. ‘State the fundamental notion that distinguishes “solids” from “fluids,”

and show that m a fluid the pressure at any point is the same m all

directions

‘Diflferentiate between “Total Pressuie,” “Centre of Pressure,” and
“ Pressure at a Point.”

’

(Calcutta B E
,
Hydrostatics, 1909, 2 )

7. ‘ Investigate the necessary conditions of equilibrium for a body floating

freely in a liquid, pointing out the use and meaning of the terms
“metacentnc height,” “plane of flotation,” and “surface of buoyancy.”
‘A rectangular block of wood of given volume and square m section

floats in a homogeneous liquid. Find the least ratio of breadth to

height that the block may just float upright ’

(Calcuita B E
,
Hydrostatics, 1909, 3 )

Examples—CIX Kinrmatics.

z.

3 -

4

5.

6.

7.

‘With the usual notation show that the acceleration of a point which is

describing a central orbit is
^3

‘ If the point IS desc“ibing a parabola about a centre of force in the
focus, show that the velocity v and the acceleration f at any point are
connected by the relation fri

(LOND B Sc., 1911, II 5.)

‘When the coordinates x^y of a moving point are given functions of the
time how can we calculate its velocity and acceleration ?

‘If jr-^(cos sin d), J= <'^(sln B-B cos 6) and B increases at a
uniform rate <0, prove that the velocity of the point is a^a>

; and find the
inclination of the velocity to the axis of xj

(Bond B.Sc., 1912, ii. i.)

‘ Define {a) the angular velocity of a moving point about a fixed point, {b)

the angular velocity of a lamina which moves in its own plane
‘ Prove that, if H be the angular velocity of a lamina, the angular
velocity of a point T of the lamina about a fixed point O is i1(PNIP0)y

where N is the foot of the perpendicular from the instantaneous centre
upon

(Bond. B.Sc., 1912, ii 2.)
‘ A particle is projected horizontally with velocity (ny^a) from a point
on the surface of the Earth (supposed a sphere of radius a) . prove that,

if n is between i and 2, the orbit will be an ellipse of eccentricity {n- i)

which lies entirely outside the Earth ’

(Bond B Sc, 1912, hi i)
‘A vector quantity has components 17 in two directions a^ right angles,
which are rotating at a rate <*>. Show that the components in those
directions of the rate of change of the vector are

^ — cuTj and rj H

‘ Obtain the formulae for the component velocities and accelerations in

polar coordinates r, 6 ’

(Bond B.Sc, 1913, ii. i.)

‘ Prove that a particle moving under a central attraction varying as the
distance will describe an ellipse with its centre at the centre of
force.

‘Show that, if two particles move in the same ellipse in opposite
directions under the same force to the centre, the line joining them
moves parallel to itself.’

(Bond. B Sc., 1913, ii 4 )

‘The coordinates {x,y) of a moving point are given functions of the
time

;
show how to determine the magnitude and direction of its

acc' leration
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‘The ends of a straiglit rod move in two straight grooves intersecting

at right angles, and one end is constrained to describe its groove with

uniform velocity. Show that the acceleration of any definite particle of

the rod is perpendicular to this groove and inversely proportional to the

cube of the distance from it
’

(Lond B Sc, 1914, II I.)

8. ‘The component accelerations of a particle are^, - It is set free

from rest at a point of ordinate -t, where these components are numerically
equal. Prove that it reaches the axis ofx in time having described

the arc of a parabola from an end of the latus-rcctum to the vertex.

(Lond B Sc
, 1915, ii 3

)

9. ‘Two equal uniform rods AB^ BC are rigidly connected at B at right

angles to one another If the rods rest on a smooth horizontal plane

and an impulse P is applied along AB^ prove that the angular velocity

acquired by the rods is \P(i07na, when 2a is the length and is the

mass of a rod.’

(Lond. B Sc
, 1915, iii 6

)

10. ‘ If a lamina move in its own plane, show that at any instant it is rotating

about a definite point
;
and construct that print when the velocity of

any one point of the lamina is given together with the angular velocity

of the lamina.

‘One end, P^ of an ordinary connecting rod moves uniformly in a circle,

and the other, (2, moves in a straight line through the centre, C, of the

circle. Show that the velocity of Q is propoitional to the intercept

made by QP on the line through C perpendicular to QC’
('Lond B Sc., 1916, ii. 3 )

1 1. ‘ The coordinates .r, of a moving point being given functions of the

time, show how to calculate its velocity and acceleration

‘A straight line of constant length moves with its ends on two rect-

angular axes Ojt, (9y, and is the foot of the perpendicular from 0 on
the straight line. Show that the velocity of P perpendicular to OP is

• w . OP and along OP is 2a). CP^ wheie C is the middle point of the line,

and a> IS the angular velocity of C about O.’

(Lond B Sc
, 1917, ii. i )

12. ‘ A particle moves in an orbit under a central acceleration along the

radius vector
,
obtain the equations of energy and angular momentum

‘The particle is projected with velocity u at light angles to the radius

at distance c from the origin ; prove that c is its least distance from the

origin ’f u^> fijc*

(Lond B Sc
, 1917, ii 5 )

13. ‘ Having go en the velocities of two points, show how to find the angular

velocity of the line joining them.
^ ABC is a rigid equilateral triangular lamina, centre G. It is moving
so that the velocities of A and B are each u in the directions AG^ GB
respectively. Find the angular velocity of the lamina, and the velocity

of the corner C m magnitude and direction.’

(Lond B Sc , 1917, ii 7 )

14. ‘A man throws a stone with velocity u at elevation a, and t seconds

later he throws another stone with velocity v at elevation so as to hit

the first stone. Prove that

luv sin (a - ^) =s (« cos a + v cos ^)gt ’

(Lond. B Sc, 1918, 11. i.)

15. * A particle describes an orbit under the action of a central force
;
prove

that Its acceleration is represented by
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‘If the acceleration at distance r be ur' ^ and the particle be projected

ai a distance a fiom the centie of foice with velocity (nj2a*A, prove
tliat the orbit is a circle, through the centre of force, of diameter
a coscc a, where a is the inclination of the direction of projection to the
radius vectoi ’

(Lond V> Sc
,
1918, II 7 )

16. ‘ A rod A 7) moves with its ends on two fixed lines OA, OB ;
show that,

if the rod turns with iinifoim anj^^ulai velocity o), the velocity of any
point P of the rod is equal to a>. 1 perpendicular to IP^ whcic lA^ IB
arc drawn perpendicular to the fixed lines.
‘ Prove also that the acceleration of P is equal to w" OP towards O ’

(Lond B Sc
, 1919, ii i.)

17. ‘Having given the positions and the linear velocities of two particles

movinc; in the same plane show how to find their relative angular
velocity.
‘/^ IS a fixed point on a circle of radius a w'hich rolls with angular
velocity CO on the outside of an ccjual circle whose centre is 0

,
piove

that the angular velocity of OP is 300 (i - d-IOP^)lA
'

(Lond. B.Sc , 1920, 11 i.)

18. ‘A paiticle IS describing an ellipse of eccentricity about a centie of

force in a focus. Prove that, with the usual not.ition,

= and/i2 = ^a(i-t=).

‘If when the paiticIc is at an extiemity of the minor axis its velocity is

suddenly doubled, show that it will pioceed to desciibc a hyperbola
and find the eccentiicity of the new path.^

(Lond B Sc
, 1920, ii. 6 )

19 ‘A circle rolls on a fixed circle. Find in terms of the ladii the latio

of the angular velocities of the rolling circle and the hne joining their

centres
‘ If A IS the centre of the rolling circle and a its radius, and 17 the centre

of the fixed ciicle, prove that, if the angular velocity of the rolling circle

is constant and equal to w, the acceleration of any point connected
with the rolling circle is completely leprcsented by w-. 7 ^C, where C is

a point on AB such that AC. AB~n- ’

(Lond B.Sc
, 1921, ii i.)

20. ‘ Prove the formula t/-

-

= constant, for a planetary orbit

‘Prove that the angular velocity of the centre of the planet about the

focus which docs not contain the centie of force is a minimum when
the centre of the planet is at an extremity of the minor axis

’

(Lond. B Sc, 1922, ii 4.)

Examples

—

CX : Particle Kinetics

1. ‘The tractive force exerted by an engine is ^K^rjlh of the weight of the

whole train, and the maximum biake force capable of being exerted

:j^th of the weight of the tram. Find the time in which the tram travels

from rest to rest up 2800 yards of a slope which is inclined to the

horizon at sin" ^ (1/200), the brakes being applied at the instant when the

steam is shut off.’

(Lond. B.Sc, 1911, 11. i.)

2. ‘ If (r, 6) are the polar coordinates of a moving point, find expressions

for the component acceleration of the point along and perpendicular to

the radius vector.
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*A point moves in a circular path of radius a so that its angular volocity

about .1 fixed point in the circumference of the ciicle is constant and
equal to q>

;
show that the resultant acceleration of the point at every

point of the path is of constant magnitude ’

(Lond B.Sc, 1911, II. 2 )

3. ‘ A particle is projected from the surface of the earth, with velocity

along the radius
,
piove that the particle will come to rest at

a distance x Irom the centre of the earth, where

a_
2gd

‘The eaith is regarded as a uniform gravitating sphere of radius and

g IS the value of gravity at the surface.’

(Lond B.Sc, 1912,11 4.)

4. ‘A light elastic string OP of natural length a and modulus of elasticity

E lies in a straight line upon a smooth table the end O is fixed to the
t.ible, and P is attached to a mass w. The mass is now projected with
velocity y at right angles to the string Prove that the greatest length
ftd to w'hich the string is sti etched in the ensuing motion satisfies the
equation

n+i ~ ah
(Lond B Sc

, 1912, 11 6 )

5. ‘A boy can throw a ball ^ ertically upwaids to a height /i tect Show
that he cannot throw the b.ill so as to clear a wall, a feet away and b

feet above the level at which he throws, if 2h<:

b

1- sJP- \ bV
rLoND B Sc., 1913, II 2 )

6. ‘A particle of mass m moves under a central attraction w/; show that

the orbit is given bv the equation

dhi _ f
dB-

~
7/2^2

*

‘ If/ - and the particle is projected at a distance R with velocity V
in any direction, show that the path is a conic, and that its eccentiicity

e IS given by the equation
^2(i ^e-)==/r{ 2ixlR- r*2)

’

(Lond B Sc
, 1913, ii. 5 )

7. ‘Obta n the expressions
^ ( ^'77) compon-

ent accele“ations in polar coordinates
‘A particle starts from rest under the action of a force which always
acts at right angles to the radius vectoi from a fixed point, and is

inversely propoitional to that radius vector
;
show that the area which

the radius sweeps out in any time is proportional to the square of the

time, and that the kinetic energy acquiicd is propoitional to the angle
described about the fixed point.’

(Lond. B Sc., 1914, ii 2 )

8. ‘Prove that in polar coordinates r, f?, the radial and transverse com-
ponents of the acceleration of a moving point are

‘A particle of mass m describes the curve
cos^ 6 + b'^ sin - 0

under an attraction to the origin Piove* that the attraction at distance
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ris + where mh is the moment of momentum
of the particle about the origin.’

(Lond. B Sc., 1915, II. 4 )

9, ‘A tram travels from rest to rest between two stations 5 miles apart.

The total mass moved is 200 tons , there is a constant road resistance

of 2400 lbs. weight, and the engine exerts a uniform pull of 5 tons
weight until the maximum speed of 30 miles per hour is reached. This
speed is maintained until, steam being shut off, an additional resistance

equal to 075 the weight of the tram is applied to bring the train to rest.

Find the time between the stations (Take ^=32 )’

(Lond. B.Sc., 1915, ir. 5 )

10. ‘A heavy particle is supported at rest by a light vertical string of length
a. It IS projected horizontally with velocity F, where 2V‘^ — 7a^. Find
where the string becomes slack, and show that, when the string becomes
taut again, it is veitical.’

(Lond. RSc., 1916, ii. i

)

ir. ^ Prove that the components of acceleration of a particle moving in a
plane curve are vdvjds along the tangent and r/^/p along the normal.
‘A particle is proje:ted from the lowest point along the inside of a
smooth elliptic ring-, the minor axis of the ellipse being vertical Find
the pressure between the particle and the ring m any position, and show
that the least velocity of projection that will carry the particle com-
pletely round the ring without losing contact is given by u‘^=g{a^ + 4^^)/^,

where b are the semi-axes.’

(Lond. B.Sc, 1917, ii. 6.

12 ‘Find expressions for the tangential and normal accelerations of a
particle moving in a plane curve.

‘A smooth elliptical wire of axes a, b rotates with constant angular
velocity o) about the axis a which is vertical Show that a bead free to

slide on the wire will remain in equilibrium relative to the wire at a
depth d^glb‘^(s? below the centre.’

(Lond. B Sc., 1918, ii 4.)

13. ‘ Three particles of masses at the vertices A^ C of a
triangle are connected by inextensible strings of lengths c They
are projected under gravity m the same vertical plane, so that the

strings are all stretched. Prove that in the ensuing motion the angular
velocity io of the pai tides about their centroid is constant and that the

tension in the stnng BC is equal to

ai/i^m^(o'l{mi + ’

(Lond B Sc., 1919, ii 3.)

14. ‘Two small balls of masses m and vl impinge directly
;
prove that the

loss of kinetic energy due to the impact is

;!( I - e^)?nm ifijiin + m*\
where u is their velocity of approach and e is the coefficient of restitution.
‘ The balls are hung from a point by two strings, each of length /, and
the ball of mass in is then raised so that its stnng is fully extended
horizontally

,
it is then released from rest Prove that, if m'lm— i + 2/^,

the second impact occurs at the lowest point and find the loss of kinetic

energy at this impa«. t
’

(Lond. B.Sc., 1919, ii 4.)

15. ‘A ball is projected from the ground at an angle a to the horizontal and
rebounds from a smooth vertical wall to the point of projection. If the
line joining the point of projection to the point of impact makes an
angle 6 with the horizontal, prove that (i +^)tan ^= tana, where e is the
coefficient of restitution

’

(Lond B Sc., 1920, ii. 2.)
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16. ‘Two masses Wj, Wo are in equilibrium on a wheel and axle If the
masses be interchanged, prove that the acceleration of the descending
mass m-i is

- mi)g\{7n^ - in^m^ + in.^)

the friction and inertia of the machine being neglected ’

(Lond B Sc., 1920, ir 5 )

17. ‘Two smooth spheres moving with given velocities collide obliquely
Obtain equations which give their velocities after impact
‘ A smooth sphere of mass m strikes a sphere of mass which is at
rest, so that immediately before impact the velocity of the former sphere
makes an angle 6 with the line joining their centres. Prove that the
final velocity of this sphere makes a right angle with its first velocity, if

tan-d= [en - i )/(« + i
),

where e is the coefficient of restitution.^

(I.OND B Sc, 1921, ir. 5.)

18. ‘ Show that the work done in stretching a uniform clastic string is the
product of the extension and the arithmetic mean of the initial and final

tensions

‘A light clastic string of natuial length a hangs vertically with its

upper end fixed and a weight attached to its lower end. Its length is

then/ If the weight be depressed through a fuither distance 2 and
then released, show that it will just rise to the level of the top of the
string if =

(Lond B Sc, 1921, 11 7 )

19. ‘A particle which moves in a straight line, and is acted on by a force
which works at a constant rate, changes its velocity fi om u to v m pass-
ing over a distance x. Prove that the time taken is

3(« + v)xj2{U“ + UV + V^y
(Lond B Sc, 1922, 11 i )

20 ‘ A packet is let fall from an airship momentaiily at lest, and is acted on
by gravity togethei v/ith a resistance Av~ pei unit of mass, where A is

a constant Find the velocity after failing a distance x and show that

the velocity tends towards the value sJiijA^ and that as the distance
dropped increases in arithmetical progression the acceleration diminishes
in geometric progiession.’

(Lond B Sc., 1922, ii. 2 )

Examples— CXI : Rigid Dynamics

1. ‘ A fly-wheel has a light coid coiled round its axle, and the cord is pulled

with a constant force of m pounds w'eight, until a length of / feet has
unwound, when the cord slackens and comes off It is found that the
wheel IS then rotating n times a second; prove that its moment of

ineitia in ft. lb units is equal to

‘ If a constant frictional force is now applied at a distance of a feet

from the axis equal to the iveight of m' pounds, show that the wheel will

stop after

L Jl. seconds.’
m a n-n

(Lond BSc, 191 i, hi 5.)

2. ‘A lamina lying on a horizontal plane is acted on by simultaneous
impulses in the plane. State (without proof) sufficient equations to

determine the manner in wdiich the lamina begins to move.
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‘A uniform square lamina ABCD lies on a horizontal plane and is free
to turn about the corner which is fixed. A blow is struck at C along
the edge CD. Prove that there is an impulse at A which bears to the
blow the ratio tj (lo) : 4.

(Lond BSc, 1911,111 3.)

3. ‘ Prove the theorem concerning the moments of inertia of a body about
parallel axes
‘ Prove that the moment of inertia of a thin spheiical shell of mass M
and radius a about a diameter is \Ma^

,
and find the moments of

inertia of a thin hemispherical bowl (1) about the radius through the
centre of gravity, (11) about a perpendicular line thiough the centre of
gravity ’

(Lond. B Sc
, 1912, iii 2.)

4 ‘ Obtain the equations of motion of a plane lamina acted on by impulsive
forces in its plane
‘ A uniform circular hoop lying on a smooth table receives a blow at a
point P, the direction of the blow lying in the plane of the hoop and
making an angle a with the radius through P Show that /’begins to

move in a direction .nclined to the radius through P at an angle tan~^
(2 tan a).’

(Lond B Sl
, 1913, iii 4 )

5
‘ Find the moment of inertia of a uniform circulai disc, of mass M and
radius a., about a straight line through its centre at right angles to Us
plane
‘Such a disc can rotate with its plane vertical about a fixed horizontal

axis through a point on its circumfeience. If it staits liom rest in a
position in which the radius through this point makes an angle a with

the downwaid-drawn vertical, find Us angulai velocity when this radius

makes an angle B with the vertical

‘Find also, in this position, the components of the pressure on the axis,

along and perpendicular to the radius thiough the point.

(Lond B Sc
, 1914, iii i

)

6. ‘The mass of a flywheel is 100 lb and a mass of 10 lb. hangs by a string

wrapped round the axle, which is horizontal and has a ladius of 2 in

If the mass of 10 lb falls thiough 20 feet from rest in 16 seconds, show
that the radius of gyration of the flywheel is a little over 9 inches ’

(Lond B Sc
, 1914, iir 3 )

7. ‘ Prove that, with the usual notation, the kinetic eneigy Ox'’ a body moving
in two dimensions can be expressed in the form

‘A system consisting of a uniform isosceles triangular lamina and a

particle, of mass one-third that of the lamina, attached to its vertex, is

free to swing about the base of the triangle as a horizontal axis If the

system is started fiom rest in Us position of unstable equilibrium, find

Us angular velocity in Us lowest position.’

(Lond B Sc., 1915, iii 3.)

8 ‘ State and prove the pi mciplc of the conservation of linear momentum.
‘Two uniform planks, of the same length z?, but of we’ghts in the ratio

3 I, are freely hinged together at one end and stand (like a common
step-ladder; on a smooth horizontiil plane, being- kept from falling by a

cold If the cord is cut, show that the velocity of the hinge, when it

reaches the giound, is where 2a is the original angle

between the piariks Show also that the hinge will have moved a

horizontal distance - sin a).’

(Lond. B.Sc., 1916, iii. 4.)
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9. * An impulse is applied at any point of a lamina, which is moving in any
manner in its own plane

;
prove that the angular momentum about the

point 15 unchanged.
‘An impulse is applied at a point P in the rim of a uniform circular disc

m such a manner that P starts to move along the tangent to the nm at

P. Prove that the initial velocity of the centre is one-third of that of P ^

(Lond B Sc
, 1916, III 6 )

10. ‘ A thin circular cylindrical shell is placed at rest with its axis horizontal

on a rough inclined plane Show that it will begin to slide or roll down
the plane as the inclination of the plane to the horizon is greater or less

than tan“ ^ 2^, where /x is the coefficient of friction between the cylinder

and the plane.’

(Lond. B Sc
, 1917, iii. 5 )

1 1 ‘ The moment of inertia of a body about any line being given, show how
to find the moment about any paiallel line.

‘Find the moment of inertia of a rectangle about a line through its

centre parallel to cither pair of opposite sides Find also the moments
of inertia about the sides and about the diagonals ’

(i..OND. B Sc., 1918, III. I.)

12. ‘An eqinlnteral triangular lamina is rotating in its own plane about Us
centroid, and one corner is suddenly fixed Prove that the angular
veloc ity is immediately 1 educed to one-fifth of its original amount, and
find the loss of kinetic energy.’

(Lond. B Sc
, 1918, ill. 5.)

13. ‘ Find the product and moments of inertia of a right-angled triangle at

the right angle
‘ The sides of a right-angled triangle are 5, 12 and 13. Find the direc-

tions of the principal axes of inertia at the right angle.’

(Lond B Sc., 1919, iii 3.)

14. ‘ Prove that if the moments of inertia of a lamina about two lines in its

' plane are equal, the principal axes of inertia at their intei section will

bisect the angles between the lines

‘If/’ and Q. are two points taken on the minor axis of an uniform
elliptical lamina at equal distances from the centic C and such that

2PC=2QC= PC where A' is a focus of the ellipse, prove that the prin-

cipal axes of inertia at any point R in the plane of the ellipse bisect the

angles between the lines RPj RQI
(Lond B Sc., 1920, iii. i

)

15. ‘ A lamina at rest on a horizontal table receives a horizontal blow at a

given poi U Prove that, whatever the magnitude and direction of the

blow, the instantaneous centre of rotation lies upon a fixed straight line
’

, (Lond B Sc., 1920, iii 4 )

16. ‘A uniform solid sphere of radius a is placed at rest on a rough plane

inclined to the horizontal at an angle a. Show that it will begin to roll

down the plane without sliding unless /x, the coefficient of limiting

fiiction between the sphere and the plane, is less than (2 tan a)/7.’

(Lond. B Sc, 1921, iii 3.)

17. ‘ Obtain the equations of motion of a system acted on by irni3ulsive forces

in two dimens’ons
‘Two uniform rods AP and BC^ alike in all respects, are freely jointed

at B and he on a smooth horizontal plane with AB and BC in one
straight line. AB receives a horizontal blow at its middle point at

right angles to Us length. Show that the two lods begin to move wnlh

the same angular velocity ’

(Lond. B.Sc, 1921, iii. 5.)
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1 8. ‘ Given the moment of inertia of a lamina about any axis in its plane,

state without proof how to find its moment ot inertia about any parallel

axis in Its plane.
* Find the radius of gyration of a uniform circular arc, of radius a and
subtending an angle la at its centre, about an axis perpendicular to its

plane through the mid-pomt of the arc.’

(Lond. B.Sc., 1922, III. 1 .)

19. ‘ Explain what is meant by the conservation of angular momentum.
‘ A uniform disc of mass M and radius a can turn freely in a horizontal

plane about an axis at right angles to its plane through its centre It

IS set rotating with angular velocity i2 and an insect of mass nM crawls

along a radius with uniform velocity V relative to the disc, starting close

to Its centre Show that when the insert reaches the edge of the disc,

the disc has turned through an angle

(aQ tan~* V2«)/( Y^/2n) ’

(Lond B Sc., 1922, iii 5,)

20 ‘ Obtain the equations of motion of a system in two dimensions acted on
by impulsive forces

‘Two uniform rods yiB and BC^ alike in all lespects, and freely jointed

at B^ rest on a smooth hoiizontal table with the angle ABC a right

angle AB \s struck a blow horizontally at its middle point at right

angles to its length. Show that the velocity of the centre of gravity of
AB is four times that of BCJ

(Lond B.Sc., 1922, iii 7

)

Examples

—

CXII. : Statics

I ‘ Show that a system of coplanai forces may be reduced to a single force

through a chosen point in the plane together with a couple.
‘ The sums of the moments of a system of coplanar forces about three

points whose coordinates referred to rectangular axes are (^7„ ^,) ^^2)

(a^, <^3) are il/j, Afo, respectively
;
show that the resultant of the

system is a single force thiough the origin of coordinates if

ai by My

a-^ My
(Lond B Sc

, 1911, i. i )

2. ‘From the principle of virtual work deduce the equations of equilibrium

foi a system of coplanar forces.

‘Four equal uniform rods, each of weight JV^ are fieely jomted at their

extremities, forming a rhombus ABCD The system is suspended from
the joint A and is kept in shape, so that the rods A By AD are inclined

at an angle a to the vertical, by a hoM rod jointed to B and D. Show
that the thrust in BD is 2 IV tan a and the reaction at the joint C is

§ IV tan a.’

(Lond B.Sc., 1911, i. 8.)

3. ‘Define a couple. How is it measured^ And what effect does it tend

to have upon a body ^

‘Why can a ship, that has twin propellers, turn in a shorter distance

than It could if it had only a single propeller?’
(Lond. B Sc., 1912, i. 3.)

4. ‘Prove that a set of coplanar forces will be in equilibrium if, and only
if, the algebraic sum of their moments vanishes about each of the

vertices of a triangle in their plane.
‘ Given a triangle ABC and a force E in its pl^ne, show that F can be
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resolved in one, and only one, way into three component forces acting

along the sides of the triangle
‘ If r are the distances of A^ B, C from the line of action of F, find

the values of these components ’

(Lond B Sc., 1913, I I )

5. ‘A uniform plank, inclined at the angle tan~^ | to the vertical, is placed
with one end on the ground and the other against a vertical wall. The
coefficient of friction between the plank and both the ground and the
wall IS /X. Prove that equilibrium is impossible, if /x is less than
‘ If /X IS greater than prove that the reactions are indeterminate, and
that if fi IS the friction between the plank and the wall cannot exceed

^ of the weight of the plank ’

(Lond. B Sc
, 1913, i 6 )

6 ‘ Prove that the resultant of two forces / . OA and m . OB is (/+ m) OC,
where C divides AB in the ratio m I.

‘Two rods AB^ CD are joined by strings AC^ BD
\
the strings are

tightened by equal and opposite fore es P applied to the rods at their mid-
points d/, N Prove th.it either the rods or the strings must be parallel

in equilibrium
,
and that in the former case the tensions 7\, 7"^ in AC

BD aie given by
T_x _T, __ ,

AC BD~2MN'
(Lond H Sc

, 1914, i 4 )

7 ‘State the laws of friction, limiting and non-hmitmg
,
and explain what

IS meant by the angle of fru tion

‘A uniform heavy plank rests in a horizontal position with its ends on
two rough planes, which are inclined at equal angles (a) to the

horizontal, the vertical plane through the plank being perpendicular to

the (horizontal) line of intei section of the planes, and it is in limiting

equilibrium when a weight equal to its own is placed on one of its ends
If the coefficient of frution (tan X) is the same between the plank and
each plane, prove that sin 2X = ^ sin 2a ’

(Lond B Sc
, 1915, i 6 ^

8 ‘Obtain the equations of the common catenaiy

y = c cosh'J r c s 1 nlij
‘A uniform string of length 2/ passes over two smooth pegs fixed at the

same ’evel af a distance 2a apart, and c.irries at each end a weight equal
to a length k of the stung, the portion between the pegs hanging in a
catenary of parameter c Show that c is given by the equation
cP

(Lond B Sc., 1915, i. 10)

9. ‘ Find the centre of gravity of a uniform triangulai lamina
‘Deduce, or otherwise find the centre of gi.ivity of a solid sphere, whose
density at any point vanes inversely as the distance from a fixed tangent
plane.’

(Lond B Sc., 1916, i 3

)

10. ‘ Prove that the moment of the resultant of any number of coplanar
forces about a point in their plane is equal to the sum of then moments
about the same point.
‘ vSix weights in geometrical progression of common ratio k are fixed at

intervals of 60° round the rim of a wheel free to turn about a horizontal

axis. Prove that the radius to the first weight is inclined at an angle 6

to the horizontal where V3 tan 6=2-

2 L

(Lond B Sc
, 1917, i. 4.)
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11 ‘A heavy uniform sphere is held at rest on a roiij^h inclined plane mak-
ing an angle a with the horizontal by means of a string fastened to a
point on the sphere and kept parallel to the lines of greatest slope. If

fi>ht'dn a show that the sphere will lemain at rest provided that the
distance between the string and the plane exceeds a/{i + /xcota), where
a IS the radius of the sphere ’

(Lond B Sc
, 1917, I. 9.)

12 ‘ Find the position of the centre of gravity of a sector of a circle.
‘ A portion of the annular area included between two circles of radii a, b

IS cut off by radii inclined at 60” to each other. Find the position of the
centre of gravity of this portion

’

(Lond. B Sc
, 1918, I 7 )

13 ‘Explain, with proof, the method of constructing the resultant of a sys-

tem of forces by means of the funicular polygon
‘ If a funicular polygon of four forces in equilibrium is a rectangle, prove
that the sum of the squares of one pair of forces is equal to the sum of
the squares of the other pair.’

(Lond. B Sc
, 1919, i 3.)

14 ‘ A smooth parabolic wire is fixed with its axis vertical and its vertex
downwards and the ends of a uniform rod of length greater than the

latus rectum rest upon the wire Prove that there is a position of un-
stable equilibrium in which the rod passes through the focus.^

(Lond B Sc
, 1919, i. 8.)

1 5.
‘ Define a couple and find the resultant of any number of coplanar
couples acting on a rigid body.
^ABCD IS a square and E is the middle point of CD; forces 'iP

and acting along AB^ BC and AE respectively together with a
force 2 acting at the middle point of AD dre equivalent to a couple.

Find the magnitude of Q and show that its line of action bisects DE '

(Lond B Sc
, 1920, i 2 )

16. ‘ State the law connecting the tension of an elastic stiing with its exten-

sion

‘When the lengths of the string are and the tensions are and
respectively ,

find expressions for (i) the natural length of the string,

(11) its modulus of elasticity, (111) the work done in stretching the string

from Its natural length to a length b ’

(Lond B Sc
, 1920, i. 8 )

17. ‘Prove that necessary and sufficient conditions for the equilibrium of a
system of coplanar foices acting on a rigid body are that the moments
of the system about each of three non-colhnear points in the plane
should vanish.
‘ Prove also that, if the system is not in equilibrium and its moments
about three collinear points A^ />, C are A, A/, N respectively,

L.BC^-M.CA-vN AB= o,^

(Lond. B.Sc
, 1921, i. 2.)

18. ^ABC\s a plane figure formed by the axis AB^ the ordinate BQ and
the arc AC o( a. parabola. A uniform solid of revolution is formed
by the revolution of the area about the ordinate BC. Prove that

the centre of gravity of this solid is at a point D on BC such that

BD \DC-S . II.’

(Lond B.Sc., 1921, i 7)

19 ‘ A uniform hemisphere rests with its curved surface in contact with an
inclined plane rough enough to prevent slipping Prove that, if the

inclination of the plane to the horizon is less than sin“^f, there is a
position of stable equilibrium

’

. (Lond B.Sc., 1922, 1. 8.)
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20 ‘ A uniform chain han^^s from two fixed points at the same horizontal

level. . Obtain the relation between the horizontal span and the angle
which the end tensions make with the horizon
‘ A uniform chain weighing i Ib./ft hangs from two fixed points at each
of which the horizontal and vertical components are 30 lb. and 40 lb.

respectively. Prove that the horizontal span is 65 9 ft approximately ’

(Lond B Sc, 1922, I. 10.)

Examples CXIII. : Ati pactions

1. AB IS a uniform thin rod, the mass of which per unit length is m.
Show that the component parallel to the rod of the attraction of the rod
on a particle of unit mass placed at a point P is 7?/z {ijPA - ilPB]J

(Lond. B Sc
,
191 1, ii 6 )

2. ‘ Find the potential of a solid homogeneous sphere of mass M and radius
a at an external point and also at an internal point
‘ If the mass of the sphere were unaltered but its density, instead of

being uniform, were proportional at any point lO the distance of that

point from the centre, show that the potential at all external points

would be unaltered, but the potential at an internal point distant r from
the centre would be decreased by the quantity

yM{a - r)'^ {a -f 2r)(6a*J

(Lond B Sc
, 1911, ii 8 )

3
‘ Prove that the direction of the attraction of a uniform rod AB upon a
particle P bisects the angle APB

;

and deduce the form of the equi-

potential surfaces of the rod.’

(Lond B.Sc
, 1912, ii. 7.)

4 ‘Show that the potential of a circular disc, of mass M and small uniform
thickness, at any point on its axis is 2y

+

where and are

respectively the distances of the point from the rim and the centie of

the disc.
‘ If the thickness is small but not uniform, being proportional at any
point to the square of the distance of that point from the centre of the

disc, show that the potential is

'4yM (r, + 2r^) ,

3 +
(Lond B Sc., 1913, ir. 9

)

5.
‘ Show tnat a thin uniform spherical shell attracts all external points as if

concentrated at its centre and exerts no attraction at any internal point

‘Deduce foimulae for the potential at internal and external points

respectively.’

(Lond B Sc., 1913, 11. 10.)

6. ‘Define a tubg offorce^ and show that the intensity of attraction at any
point in empty space of a tube of small cross-section varies inversely as

the area of the cross-section of the tube at that point.
‘ Prove that the intensity of attraction due to an infinitely long homo-
geneous circular cylinder, at an external point, n hose distance from its

axis IS r, is 2yAr/r, where M is the mass per unit length of the cylinder ’

(Lond B Sc., 1914, ii 9

)

7. ‘Define giavitation potential, and prove that the intensity of attraction

in any direction is equal to the rate of variation of the potential in that

direction.
‘ Show that at any point inside a thin spherical shell the potential is

constant
;
and hence determine its value.’

(Lond. B.Sc., 1914, 11 la)
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8 .
‘ Define gravitational potential, and prove that the potential at the vertex
of .1 thin solid cone of mass M and length / is \yM

,

/

‘A shell is bounded by concentric spheres of radii r,, r^. Prove that the
potential at the centre of any portion of this shell cut out by a conical

surface with its vertex at the centre is lyMiyr^-v r^jiyr^ where
M is the mass cut out ’

(Lond B Sc., 1915, II. 9.)

9. ‘ Prove that the attraction of a homogeneous spherical shell upon an
external body is the same as if its mass were collected at the centre, and
that the attraction on an internal body is zero

‘A small smooth cylindrical hole is drilled through a solid uniform
sphere Show that a particle set free at the surface will oscillate in a
period independent of the direction of the hole ’

(Lond B Sc
, 1916, ii 8 )

10 ‘Show that the attraction of a uniform thin shell in the form of a para-
boloid of revolution, extending to infinity, upon a particle at its focus is

8yn-(r/3, where <r is the density per unit area and y the constant of
gravitation ’

(Lond B Sc
, 1916, ii 9.)

11. ‘Define the potential of a system of attracting particles in terms of

work. Deduce the value y2(7;//r), and show th<it the component in any
direction of the attraction of the system at any point is the space-rate of

increase of the potential in that direction.’

(Lond. B Sc
, 1917, ii 9.)

12. ‘Prove that the potential of a thin uniform spherical shell of mass M
and radius a is yMjr at any external point at distance r from the centre,

and yMja at any internal point
‘ Show that two uniform spherical shells, external to one another, attract

each other as if concentrated at their centres
’

(Lond BSc, 1917,11. 10)
13. ‘ Prove that the potential of a uniform solid sphere of radius a and

density p at a point distant r (<a) from the centre is 27Typ{'ia^ ~ ^)/3
‘ If the density is proportional to the distance from the centre, show that

the potential is } 7ryp'{4a^ - EJa), where p is the density at the surface.’

(Lond. B Sc., 1918, ii 9.)

14 ‘ Prove that the component attraction at /’ due to a uniform rod A/C
resolved parallel to the rod, is equal to y?n[ilAP- ilBP\ where m is

the mass per unit length of the rod

‘When the length of the rod is very great compared witn AP, show
that the resultant attraction is given by the following construction —
Take G on the rod so that AG=AP , then the attraction is along PG
and is equal to ^ynilPGI

(Lond B Sc., 1919, ii. 7.)

15 ‘Find the attraction of a uniform thin circular plate at any point of its

axis
‘ Prove that the attraction of a homogeneous hemisphere of radius a at

the centre of its base is equal to TrypaJ

(Lond B.Sc., 1919, ii. 8.)

16. Find the magnitude and direction of the attraction of a thin uniform
straight rod at an external point
‘ Prove that the attraction of a uniform lamina in the form of a segment
ot a circle at a point P on the remaining arc of the circle acts through
the middle point of the arc of the segment.’

(Lond. B.Sc, 1920, 11 8.)

17. ‘ Find the attraction of a uniform thin ciicular disc of radius a: at a point

of Its axis at a distance k from the disc.
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* A uniform solid circular cone of height h is divided into two parts by
a plane perpendicular to its axis at a distance h! from the vertex , find

the ratio of the attractions of the two parts at the vertex.’

(Lond. B.Sc
, 1920, II. 9 )

18 * Prove that the direction of the resultant attraction of a uniform straight

rod AB point P bisects the angle APB
‘ If the end B is infinitely distant so that the rod is semi-infinite, and
if the direction of the resultant attraction at P meets the rod in

prove that the magnitude of the resultant attraction is 2ymlPC where fn

is the mass per unit length of the rod ’

(Lond. B Sc
, 1921, ii. 8 )

19. ‘ Find the potential of a uniform solid sphere at an internal point

‘A unifoim solid sphere has an eccentric spherical cavity Prove that
the force at any point inside the cavity is constant in magnitude and
direction ’

(Lond B Sc., 1922, ii. 9.)

20. ‘ Find the attraction of a uniform circular disc at a point on its axis

‘Prove that the atti action of a uniform cylinder of density p, radius r
and length /;, at the centre of one of its faces is

2nyj){h + r - ^

(Lond B.Sc., 1922, ii. 10)

Examples

—

CXIV Hydrostatics

I ‘Prove that the centie of pressure of a triangle immersed in water with
Its base in the surface is at half the depth of the vertex, atmospheric
pressure being neglected.
‘ If the atmospheric pressure is taken into account, and the depth of the
vertex is i/«^^‘of the height of the watcr-barometei, piove that the depth
of the centre of piessure is to the depth of the veitcx as

271 + I + 2.’

(Lond B Sc
, 1911, iii. 6 )

2. ‘What IS meant by the mctacentic of a floating body ^

‘ It IS found that when 10 tons of water arc tiansferred from one side to

the other of a vessel of 8000 tons displacement the bob of a 10 ft

pendulum s /mgs through 6 inches Show that the height of the meta-
'^entre above the centre of gravity is 13J inches, given that the breadth
of the deck is 45 feet.’

(Lond. B Sc
, 1911, iii 8 )

3. ‘A cylindrical block of wood, of weight IV, the area of whose section is

A, IS floating in a cylinder of water whose section is B it is slowly

pushed further under water. Show that the work done is equal to

iP/(i-AlB\
where I is the distance between the first and last positions of the

water-line on the block and P is the pressure applied to the block in

the final position

‘Ifthe block is lifted from the floating position just clear of the water,

calculate the woik done in teims of A^ B^ IV and the weight of unit

volume of water ’

(Lond. B Sc
, 1912, iir. 9 )

4 ‘A solid immersed in fluid has a plane face and a curved surface
; show

how to find the prcssuie on the curved surface.
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6 .

‘A right circular solid cone (of specific gravity greater than unity), in

which the height is double the radius of the base, is suspended by a
string attached to a point on its base and rests completely immersed in

water, with the point of attachment of the string in the surface of the
water. Show that the horizontal and vertical components of the result-

ant fluid pressure on its curved surface aie respectively f fFand f fK,

where IV is the weight of the water displaced by the cone.’

(Lond B Sc
, 1913, III 6 )

‘A plane area is completely immersed in water and is m a vertical plane.
If horizontal and vertical axes of reference are taken in the area, the
origin being at the centroid, express the coordinates of the centre of
pressure of the area in terms of the product and moments of inertia

about these axes, and of the depth of the centioid
‘ If the area is a square of side 2tz, and h is the depth of its centre, show
that the centre of pressure is on the vertical through the centre at a

depth ^ below It, whatever the inclination of the sides of the square

to the vertical
’

(Lond B Sc., 1913, iii. 7.)

‘ Investigate the conditions of equilibrium of a body floating freely, partly

immersed m a liquid

‘The cross-section ofa uniform log is an isosceles triangle ABC^ with a

right angle at C The log floats m water with the edge C immersed,
the edge A in the surface, and half the face BC under water, equilibrium

being maintained by a load fastened at the middle point of the edge A,
Show that the weight of this load is onc-nmth of the weight of the log,

and that the specific gravity of the log is *45
’

(Lond B Sc
, 1914, iii 7 )

‘Enunciate Boyle’s law connecting the pressure and volume of a gas
at a given temperatuie,
‘ A heavy air-tight piston can slide freely m a vertical cylinder of length

h Initially the air below it is at atmospheric pressuie, and the jiioion

is allowed to descend Show that, if the air below the piston is assumed
to obey Boyle’s law, the piston will come to instantaneous rest at a
distance z from the bottom, given by the equation

\o^.{hlz) = {/i-z)lk,

where k is the distance from the bottom at which the piston would rest

m equilibrium.’
(Lond B Sc

, -914, iii. 9 )

8. ‘A body IS floating freely in a homogeneous fluid; prove the formula

HM= AK^I V for the height of its metacentre abo\ i the centre of

buoyancy.
‘A log of length / whose cross-section is a square of side a floats in

liquid of twice its density with a diagonal of ea^ li end horizontal

Prove that its equilibrium is stable for small angular displacements

about Its axis, but is only stable for small angular displacements about

the horizontal diagonal of the central cross-section if />a ’

(J.OND B.Sc
, 1915, III 9)

9 ‘Find the centre of pressure of a triangle, which has one corner in the

free surface of a heavy fluid, and the opposite side parallel to the

surface.

‘A right circular cone of specific gravity -ji floats in water with its axis

in the free surface. Prove that the resultant fluid pressure on the curved

surface immersed passes through the centre of the base, if the vertical

angle of the cone is 6o\’
(Lond. B Sc

, 1916, in. 7.)
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10.
‘ Prove that, if the atmosphere be in isothermal equilibrium, the density
at a point at height s above the point where the density is po» is equal
to where II is the height of the homogeneous atmosphere of

density po«
‘ If the specific gravity of mercury is 13*59, and that of air at the pressure
of 76 cm of mercury is ‘00129, find the value of H?

(Lond B Sc, 1916, HI. 10)
1 1. ‘ Show how to calculate the horizontal and vertical components of

pressure on a suiface immersed m a liquid.

‘A cone, whose vertical angle is 2^?, has its lowest generator horizontal

and IS filled with liquid
,
prove that the resultant pressuieon the curved

surface is + 15 sin^o:) times the weight of the liquid
’

(Lond B Sc., 1917, in 7 )

12 ‘A closed thin cylindrical vessel of height a contains air at atmospheric
pressure, and flo.its in waiter with its axis vertical and length b immersed.
If there is a small hole in the bottom of the vessel, show^ that water
will leak m until there is a depth abjih + b) inside, h being the height
of the water barometer ’

Lond B Sc, 1917, iii. 10)

13 ‘A thin straight cylindrical tube with its lower end closed floats in water
its length is its weight IV and the weight of the watei it can hold is

a7u Show that the smallest depth of water that must be poured into

the tube in ordei that it may float upright is ^ {aiu - The thick-

ness of the tube and the mass of the closed end may be neglected ’

vLond B Sc
, 1918, III. 8 )

14 ‘ Prove that w'hen a plane lamina is immersed in water the depth of the

centre of jircssure below the centroid is inversely proportional to the
depth of tiie centroid below the suiface

‘A rectangular trap-door is in the side of a water-tank, it is hinged
along the upper edge, which is horizontal Calculate what force,

applied at right angles to the lowei edge, is lequired to keep the dool
shut.’

(Lond. B Sc
, 1919, iii. 7.)

15. ‘ Explain what is meant by the mctaccntre of a floating body
‘ If a small weight w is transferred from one side to the other of a ship,

a hanging pendulum is found to swing through a small angle 6
; prove

that the height of the metaccntie above the ccntie of gravity is equal
to 7ViilWh\n d, where a is the breadth of the deck and W is the weight
of th'^ ship.’

(Lond B Sc., 1919, iii. 9 )

16. ‘ Find the centre of pressure of a circular area immersed to any depth
in a uniform liquid

‘A cone of veitical angle 60“ is held immeised in a uniform liquid with
Its highest geneiator in tin suiface. Prove that the resultant thrust of
the liquid on the curved surface passes thiough the centre of the base ’

(I OND B Sc , 1920, III. 7.)

17. ‘ Prove that the pressure at any point of a liquid rotating m a state of
relative equilibrium is where p is the density and // the vertical

depth below the free suriace

‘A sphere floats half immersed in a rotating liquid with its centre on
the axis of rotation. If the density of the sphere is one-third that of

the liquid and its radius is i ft., prove that the angular velocity is 5J
radians per second. [Take g = 32 ft /sec,^.]

’

(Lond. B Sc., 1920, iii. 8

)

18. ‘State and prove the conditions for the stability of a body floating

freely.
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‘ A uniform cube floats in water in stable equilibrium with two of its

faces horizontal. Obtain limits for the value of its specific gravity.’

(Lond. B.Sc, 1921, III, 10.}

19. ‘ Define the metacentre of a solid of revolution floating in a homogeneous
liquid and determine its height above the centre of buoyancy.
‘A uniform right circular cone of vertical semi angle a and specific

gravity a- floats in water ^\lth its axis vertical and vertex downwards.
Show that the equilibrium is stable if ^r>cos'*^^’

(Lond. B.Sc., 1922, in. 9.)

20. ‘ Show that, if the temperature of the atmospheic be regarded as con-
stant, the pressure at a height .cr above the Larth’s surface is given by

where /o is the pressure at the surface and H would be the height of

the atmosphere, if homogeneous.
‘Show further that, if the variation of gravity with height be taken into

account, this relation becomes

where a is the Earth’s ladius ’

(Lond BSc, 1922,111 10)

Examples

—

CXV Passages for Translaiion

1 ‘Translate the following passage —
‘ Ein Korper, welcher kemer Kraft unterworfen 1st kann nur eine

geradlinige und gleichfoimige Bewegunghaben.
‘Liegt darin erne Wahrheit, welche sich dem Verstande a priori

aufdrangt? Wenn dem so ware, wie konnten die Griechen sie dann
verkennen ^ Wie hatten sie glauben konnen, dass die Bevvegung in

dem Augenblicke anhalt, in dem die Ursache, welche die Bewegimg
entstehen liess, aufhort ? Oder wie konnten sie sogar glauben, dass
jedcr Korper, sobald ihm nichts in den Weg kommt, eine kreisformige
Bewegung machen wurde, welche die angeblich vornehmste aller

Bewegungen sem sollte ?

(Lond BSc, 1911,111 10)
2 ‘Translate —

‘Si, par un proc^de mdcaniqiie quelconc|uc, on assujettit un point

matdriel h decrire une trajcctoire donnee, on admet, comrne fait d ex-

perience, qu’il exerce sur la rnati^re avec laquelle il est *^0 contact unc
action normale h la trajectoire, et qu’il est sou mis ^ une autre action,

^gale et contraire a cellc-ki Par exemple, un point materiel pes.int,

suspendu a I’extremite d’un fil dont I’autre e\trthmt (5 est fixe, ct aban-
donnd a lui-meme, exerce ^ chaque instant sur le fil unc action qui a
pour effet dele tendre suivant unc ligne dioite, ct rei^oit, de la pait du
fil ainsi tendu, une redaction qui le maintient sur la trajectoire Un
point materiel qui se meut dans ces conditions se nomme un pendule
simple ’

(Lond. B Sc
,
191 1, 11 10 )

3
‘ Translate the following —
‘ Maupertuis hat einen auf das Gleichgcwicht be/uglichen intcrcssanten

Satz gefunden, dem cr den Namen ‘Loi de 1 epos’ gegeben hat VVenn
wir an eincn System unendlich kleine Verschiebungen vornehinen, so

entspneht denselben eine Summe virtuellen Momenta P'p' P"p" +
. . . . ,

welche nur im Gleichgcwichtsfalle = o 1st Dicse Suminc 1st
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die den Verschiebungen entsprechende Arbeit. Wenn wir von ciner

gewissen Anfangsconformation des Systems ausgehen, und bis zu einer

belicbigen Endconformation ubergehen, so entspncht diesc Procedur
eine gewisse geleistete Arbeit.’

(Lond B.Sc., 1911, I 10.)

4 ‘ Translate *

—

‘ C’est un fait ordinaire des mdcaniques dlementaires de dire que le

pendule simple est irrtvilisable II est beaucoup plus exact et plus

interessant de montrer qu’une balle mctallique homog(!;ne de rayon r,

suspendue au bout d’un fil tr^s Idger de longueur /- r, realise un pendule
simple de longueur I avec une tres grande approximation, k la seule

condition que //r soit assez grand
‘ L’erreur 1 dative faite sur la pcriode en assimilant le pendule compose
k un pendule simple de longueur / est f (r/If

‘C’est avec un tel pendule que Borda fit k la fm du XVII P sitlele ses

mdmorables experiences sur la mesure de^^’
(Lond BSc, 1912,11 10)

5. ‘Translate —
‘ Der Satz des Kraftenparallelogramms stel’t sich in der Form, in

welcher derselbe von Newton und Vangnon gegeben wird, deutlich als

ein Eifabrungssatz dar Ein von zwei Kraften ergriffciicr Piinkt fuhrt

/wei von einander unabhangige Bewegungen mit den Kraften propor-
tionalen Beschleunigungen aus Darauf grimdct sich die Parallelo-

grammkonstruktion Daniel Bernoulli wai nun der IMiMiiung, dass der
Satz des Kraftenparallelogramms einc geomctrische (von physikalischen
Erfalirungen unabhangige) Wahrheit sen’

(Lond B Sc., 1912, i 10 )

6. ‘Translate:

—

‘Der giundlcgende Begnff in der Ilydrostatik 1st der Bcgriff des
Flussigkeitsdruckes Aichimedes schemt /u seiner Einfuhrung in die

^
Mechanik durch die allgcmeine Erkdiiung veianlasst zu sciii Plr

stellte den Giundsatz auf, d.iss jeder Tlicil emer Flussigkeit von andeien
Thcilen gedruckt wird, und bcnutzte die so eilialtene Vorstellung \om
Flussigkeitsdruck zum Aufbau ciner Theoiie sthwimmcnder Korper.’

(Lond BSc., 1912,111 10)

7. ‘Translate —
‘ Les planctcs, dans leurs mouvements aiitour du soleil, obeissent aux
lois suivan es, que le gdnie de Kepler a fait jaillir des obseivations de
Tycho-Brahe

,

‘ (1) Les plankcs se meiivent dans les courbes planes et leurs rayons
vccteurs aecnvent des aires pioportionelles aux temps
‘ (11) Les orbites des planetcs sont des ellipses dont le soleil occupe un
foyer *

‘ (ill) Les carrc% des durees des revolutions sidei ales des plan^tes

autour du soleil sont entre eiix comme les cubes des giands axes dc
leurs orbites.’

(Lond. B Sc
, 1913, ii. ii

)

8. ‘Translate —
‘Der Bcgriff der Kraft 1st uns anscliatilich duich das Gefuhl des
Diuckes, den ein in die Hohe gchoboncr Koi[)ei auf die Hand ausubt
Dieser Druck kann schr verscliicden an Staikc scin ]e nach Grosse und
Materie des Korpers Da er inimer nach dem Plidmittelpunkt gciichtet

1st, so schreiben wir ihn dei Lmuirkimg dei Erdc auf die Korper /u,

und sprcclien daher von cinci Kiaft, die die Eidc auf die Koipci ausubt
Paher sag^en wir ,—Die Eide ubt aut vcischiedcnc Korper veischiedcn
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Starke Krafte aus, die wir die (jCAvichte der Korper nennen Das
Gewicht ist eine durch sinnliche Beobachtung erkannte Eigenschaft
ernes Korpcrs.’

(Lond. B.Sc., 1913, I. TO.)

9 ‘Translate:

—

‘Stevin fand auf seinem eigenen Wege die wichtigsten Satze der
Hydrostatik und deren Ableitungen wieder. Es sind hauptsachlich
zvvei Gedanken, aus welchen Stevin seine fruchtbaren Folgerungen
schopft. Der ein Gedanke 1st ganz ahnlich demjenigen betreffend die

geschlossene Kette. Der andere besteht in der Annahme, dass die

Erstarrung der im Gleichgewicht befindlichen Flussigkeit das Gleichge-
wicht nicht storL’

(Lond. B Sc, 1913, iii. 10.)

10. ‘Translate.

—

‘Ein Korper, der einen andern druckt oder zieht, wird nach Newton von
dem andern ebenso viel gedruckt oder gezogen. Druck und (jegen-

druck, Kraft und Gegenkraft sind einander stets gleich Da Newton in

der Zeiteinheit erzeugte Bewegungsgrosse (Masse x Geschwindigkeit),
als Kraftmaass definirt, so folgt, das aufeinander wirkcnde Korper sich

in glcichen Zeiten gleichc entgegengesetztc Bewcgungsgrossen erthcilen,

oder entgegengesetzte ihren Massen umgekehrt proportionirte Ge-
schwindigkeiten annehmen.’

(Lond B Sc
, 1914, i 10

)

11. ‘Translate:

—

‘ Le pendule, oscillant sous Faction de la pesanteur, permct de donner
unc deinonstration iigoureuse de la preimire loi de la chute des corps,

sa\ oir que la pesanteur agit sur tous e'galement II suffit de constater

que la dur^e de roscillation est absolument inddpendariLe do la nature

du corps constiiLiant le pendule
‘ On assure mcme que ce fut Tobservation de I’egalitd de durce des
oscillations de deux pendules egalement longs mais diffrreiiiment pesants,

qui conduisit Galilee h la decouvertc de rette loi fondamentale de la

pesanteur. Bessel fit des mesures precises
,
opdrant avec un pendule

de Borda, dont la boule etait tour h tour constitiiee par les corps les plus

differents (metaux, ivoue, pierres, etc ), il tiouva que les durecs de

Toscillation differaient h peine de 'ooooi d’un corps 1 autre ’

(Lond. B Sc
, 1914, II ii.)

12. ‘Tianslate —
‘ Das Experiment 1st die einzige Quelle der Wahrheu . dioses allein

kann uns etwas Neues lehren
,
dieses allem kann uns Gewissheit gcbcn

Das sind zwei Punkte, die durch nichts bestntten werden konnen
‘ Wenn aber das Expeiiment alles 1st, welcher Platz blcibt dann fur die

mathematische Physik ubrig^ Was hat die Expenmcntal-Physik mit

einem solchen Ililfsmittel /u schaffen das unnutz und \\ohl gar gefahr-

lich zu sein scheint ^

‘ Und dennoch existiert die mathematische Physik ; sie hat unleugbare
Dienste geleistet dann hegt eine Tatsache, die notwendigcnweise
erklait werden muss.’

(Lond. B.Sc, 1914, iii. 10.)

13. ‘Translate —
‘ Stevin (1548-1620) untersuchte zuerst die mechanischcn Eigcnschaften
der schiefen Ebcne und zwar auf erne ganz onginelle Weise Liegt

ein Gewicht auf einem horizontalen Tisch, so sieht man, weil der Druck
senkrecht gegcn die Ebcne des Tisches 1st, nach dem bereits mehifacli

verwendetcn Symmetiieprincip das Bestehen des Gleichgewichts sofort

em. An einer vertu alcn Wand hingcgen wird em Gewicht an semen
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Fallbewegung gar nicht gehmdert Die schiefe Ebcne wird also einen
Mittelfall zwischen die beiden Grenzfallen darbieten Das Gleichge-
wicht wird nicbt von selbst bestchen, wie auf die horizontale Unterlage,
es wird aber durch em genngeres Gegengewicht zu erhalten sem, als an
der verticalen Wand.’

(Loni) B.Sc., 1915, I. II.)

14 ‘Translate*

—

‘ Em anderes Beispiel, welches zeigt, welche Veremfachung die

Beschreibung naturlicher Bewegungen durch die Einfuhrung des
Begnffs der Kiaft erfahrt, 1st die Bewegung der Planctcn um die
Sonne Es 1st diese mit einem gewissen Grade der Genauigkeit
beschnoben durch die sogcnannten Keplcr’schen Gesetzc

,
es wird

uns gelingen diese zusammcn zu fassen in cinen Satz von grosser Ein-
fachheit
‘ Nach dem ersten KeplePschen Gesetze bewcgt ein Planet sich so, dass
scin von der Sonne gezogencr radius \cctor in gleichen Zcitcn gleichc
Flachenr.iume beschreibt

,
nach dem zMcilcn 1st die Bahn ernes Plane-

ten eine Ellipse, m deren einen Brcnnpunkte die Sonne sleht ’

(Lond B Sc
, 1916, II. II

;

15. ‘Translate*

—

‘ In der Kinematik 1st es weder notwendig noch zweckdienhch, auf eine
Definition des Massenbegrififs einzugehen Dies uberlasst man besser
dcr Dynamik. Es 1st \ollstandig hinreichend, sich auf den Standpunkt
Kirchhoffs zu stellen, dcr in der Masse, welche einem Punkte beizulegen
1st, nichts weiteres sieht, als einen Zahlfaktoi des Geschwindigkeits- Oder
Beschleunigungsvektors, der die Beschreibung dei Bewegungserschein-
ungen auf bequeme Weise gestattet Jedenfalls ist diese Auffassung
eine sehi nuchterne und zugleich dem geschichlhchen Entwicklungs-
gange der Mechanik nicht widerspiechende.’

(Lond B Sc , 1917, ii. ii

)

16. ‘Translate*

—

• ‘Wii bermerken noch, dass die Auszeichnung des einen Systems vor
dem anderen, welche in den Worten “beweghch” und “fest” liegt,

vom Standpunkte der remen Kinematik eigentlich ungerechtfertigt 1st

und dass es richtiger ware, etwa von einem ersten und zweiten System
zu sprechen. Geometrisch 1st namhch jede Bewegung mit ihrerumge-
kehrten, bei welcher die Rolle des beweg lichen und des festen Systemes
vertauscht 1st, gleichberechtigt In der Kinematik handelt es sich also

imro^r nur um Relativbewcgungen Anders m der Kinetik die zur

Erzeugung emer Bewegung erforderhehen Krafte andcin sich durchaus
wenn wir das beweghche System mit dem festen vertauschen.’

(Lond. B Sc., 1919, ii. n.)

17 ‘Translate —
‘Als Newton entdeckte dass die Bewegungen der Himmelskorpei mit
emer ausserordenthchen Genauigkeit vorausberechnet werden konnen
unter dcr Annahme, dass sie sich nach scinem beruhmten Gesetz
gcgenseitig anziehen, betrachteten weder ei noch seme Zeitgenossen

die Frage als erschopft Trotz ihrer grossen Einfachheit hatte diese

Erklarung der Bewegungen der Himmelskoioer durch die Einfuhrung
emer Kraft, die ohne Zwischcnmedium m der Feme, oder, w^as bemahe
auf dasselbe hinauskommt, momentan w^irkt, fur jene Manner etwas
hochst unwahrschemliches und abstossendes ’

(Lond B Sc, 1920, i. ii.)

18 ‘Translate*

—

‘ La Mecanique repose sur un petit nombre de principes qu’il est im-
possible de verifier directement et auxquels on a dte conduit par line
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longue suite d’inductions ;
les consequences qu’on en ddduit sont

venfiees par Tobservation La premieie idee de ces pnncipes reinonte
k Galilee qui, dans I’ctude des lois dc la chute des corps (plan incline,

pendule, mouvement parabolique), a introduit les notions d’lnertie,

d’acceieration, de composition des niouvements. Huygens fut le con-
tinuateur de Galilee dans la thcone du mouvement d’un point il

etudia le premier le mouvement d’un systeme materiel
;
enfin Newton

etendit le champ de la Mt^canique par la ddcouverte de la loi d’attraction

universeile ’

(Lond B Sc., 1920, il II.)
‘ Translate .

—

‘Fur alle P alle bciechnet man den Bodendruck wennmandcn Flachen-
inhalt des Bodcns multiplizicrt nut dcr Flussigkeitshohe und nut dem
specifischen Gewichte cler Fhissigkeit. Fur das cyhndrische Gefass
1st dies leicht begreifhch, wed nach dicser Berechnung das Gewicht der
Flussigkeitssaule herauskommt, die auf dem honzontalen Boden rec lit

Folgt es aus dem hydrostatischen Gesetz dass in einem (jcf.iss nut
Flussigkeit der Druck auf em Flacheneinhcit nur von der Tiefe des
betreffenden Flachenstuckes unter der Oberflache und dem specdi-

schen Gewicht der Flussigkeit, nicht aber von der Gestalt der Gefass-
wande abhangt.’

(Lond. B.Sc., 1921, iii ii.)

‘ Translate —
‘ Der Emfachheit halber werden wir die Kernmasse als unendlich m
Verhaltniss von Masse ansehen, und ferner auch von den klcincn

Anderungen m dcr Bewcgung absehen welche die von der Relali\ itats-

theorie geforderte Veranderlichkeit der Masse mit seiner Geschwindig-
keit bedingt.
‘ Unter diesen Annahmen wird das Electron nach der gewohnlichen
mechanischen Vorstellungen eine geschlossene elliptische Bahn bcschrci-

ben mit dem Kerne in dem emen Brennpunkte und die Umlauf/ahl
und die grosse Achse dieser Bahn werden duich einfachen Poimeln,

die den Keplerschen Gesetzen Ausdiuck geben, nut der Encrgic des
Systems verknupft sein.’

(Lond B Sc., 1922, ii. ii.)

Exampi.fs—CXVI. . Miscfllaneous

‘ Find the position of the centre of gravity of the area of a segment of

a circle.

‘ A circular lamina of radius a is divided into two parts by a chord which
subtends an angle of 60° at the centre of the circle

,
show that the dis-

tance of the centre of gravity of the greater part from the centre of the

circle is aj{iott + 3 v3)-’
(Lond. B Sc., igii, i. 3 )

‘ A rod rests in a vertical plane within a hemispherical bowl whose radius

IS equal to the length of the rod If /x is the coefficient of friction

between the rod and ^hc bowl show that in limiting equilibrium the rod

makes an angle with the horizon equal to tan"^ (4/^A3
~ ’

(Lond B Sc
,
191 1, i. 4.)

‘Find a formula for the length of the simple equivalent pendulum when
a heavy rigid body oscillates about a fixed horizontal axis

‘The centic of giavity of a bicycle wheel is in its axis. When a small

valve of mass m is fixed to the rim at a distance h from the axis, and
the axis is held horizontally, the wheel oscillates in the same period as
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a simple pendulum of length / What is the moment of inertia of

the wheel (apart from the valve) about the a\is

(Lond. 15 Sc
, 1911, III 2 )

4 ‘A tram-car of mass M has four wheels each of radius a, and I is the

moment of inertia of each wheel about its axis
,
the bmkes are applied

on each wheel with pressure P and coefficient of friction /x. Prove that

the retardation of the car is equal to

no matter at what point of the rim the brake is applied to the wheel, if

axle-friction is neglected and the wheels do not skid
’

(Lond B Sc
,
iqii, iii 4 )

5. ‘If a particle moves in a straight line towards a centre of force which
attracts according to the inverse square of the distance, starting from
rest at a distance 2a from the centre, show that the time of motion
from the distance 2a to the distance a is to the time from the distance

a to the centre in the ratio rr + 2 xr - 2
’

(Lond B Sc
, 1911, ii 3.)

6. ‘Find from mechanical considerations the equation j- = x: tan for the

common catenary and deduce the equation = sec yj/-.

‘ A uniform heavy chain hangs in the form of a catenary with its

extremities attached to two pegs, P and Q, which are at the same level.

P' and O' are two points of the catenary where the tangents make with

the vertical acute angles which aie twice the acute angles made with

the vertical by the tangents at P and Q Show that the chain could

hang over two smooth pegs at P' and (J' with its extremities hanging
freely and vertically and the portion between the pegs hanging in thq

same catenary as before. Show also that the resultant pressures on the

pegs at P' and O' would be the same as those on the pegs at P and Q ’

(Lond B Sc
, 191 i, i 9 )

•7. ‘ Show that a system of forces represented in direction, magnitude, and
position by the sides of a closed polygon is equivalent to a couple
^ ABCD IS a quadrilateral m which the sides A’C and AD are parallel

If forces /^AB, /^BQ LCD, 1^01 acting along AB, BC] CD, DA
respectively are equivalent to a couple, show that

{L-L)AD={L-L)Bc:
(Lond B.Sc ,1911,1 7 )

8 ‘ Pr'^ve that the form of the free surface of liquid rotating about a vertical

axis IS a paraboloid of revolution

‘A cylinder whose axis is vertical and whose top is closed is partly filled

with water and is made to rotate about the axis. Prove that for speeds
at which the liquid partly covers the top of the cylinder and wholly
covers the bottom, the angular \elocityis diiectly proportional to the

distance of the vertex of the paraboloid below the top of the cylinder.’

(Lond B Sc, 1911, iii. 7)

9 ‘ Determine the direction of projection which (for a given velocity)

produces the greatest range on a horizontal plane
‘ A cricketer throws the ball 100 yards

,
prove that (neglecting air-

resistance) tl e time taken is about 4^ secs if he throws m the direction

determined above. Prove that the necessary velocity of projection is

about 67 miles an hour ’

(Lond. B Sc
, 1912, ii 3 )

10. ‘ Prove the formula for the velocity at any point of an elliptic orbit

described under the action of a force which varies inversely as the

square of the distance.
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13

‘ Regarding the earth’s orbit as circular, prove that the eccentricity of

the orbit of a comet, whose period is 27 years, and whose smallest
distance from the sun is half the radius of the earth’s orbit, is 17/18.

Compare the greatest and least velocities of the comet with the velocity

of the earth ’

(Lond. B.Sc.,. 1912, II 5.)
‘ A uniform square lamina is rotating in its own plane about the middle
point of one of its sides

;
one of the ends of that side is then seized and

held fixed, the middle point of the side being released. Prove that the

angular velocity is reduced in the ratio 8 5
’

(Lond. B.Sc., 1912, III 3.)

‘ An Atwood’s machine has a pulley whose moment of inertia is /, and
whose radius is a

;
the masses attached at the ends of the string are

each and the rider has mass m. Prove that the acceleration of the

masses is where

f m ma^
assuming that the s^^nng does not slip on the pulley and neglecting
axle-fnction.’

(Lond B Sc, 1912, iii. 4.)

* Show that the resultant of forces represented by m . OA and n OB is

{m-¥n) OC^ where C is the centre of mean position of masses propor-
tional to m and n placed at A and B respectively.

‘A uniform triangular lamina ABC is suspended from a point O by
two strings OA and OB attached to the corners A and B If the
tensions in these strings are proportional to their lengths, show that

the straight line joining O io C must pass through the middle point

of^^’
(Lond. B.Sc

, 1912, i. i

)

14. ‘Find the centre of gravity of the area inside a parabola bounded by a
chord perpendicular to the axis
‘
'I’angents are drawn to a parabola, of vertex A^ from a point T in the

axis Prove that the centre of gravity of the area, between the parabola
and the two tangents, divides TA m the ratio 4 i

’

(Lond B Sc., 1912, i 6)

15 ‘State the “ Principle of Virtual Work” and prove it for the case of a
system of forces in one plane acting at a point.
‘ A uniform solid prism, the cross section of which is a rectangle, rests

with two edges, but not an entire face, in contact, one with each of two
smooth fixed inclined planes which have a common horizontal straight

line and make equal angles with the vertical Show that, whether the

two edges are adjacent or opposite, the plane which contains them must
be horizontal ’

(Lond. B.Sc., 1912, i. 8 )

16. ‘ Find the equations of the common catenary,

y-c cosh— and s — c sinh—
c c

‘ A uniform wire of length 2/ is stretched between two points at the

same height, distant 2a apart, the difference between / and a being a
small fraction of either of them Show that the least tension in the

wire IS approximately the weight of a length of it equal to a\
and that the ratio of the greatest tension to the least is approximately

(Lond B.Sc, 1912, i. 9.)
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17. ‘Prove that, in homot^eneous liquid at rest under gravity, the pressure
increases uniformly with the depth below the surface
‘ A door in the vertical side of a cistern can open by turning about a
horizontal axis through its centre of gravity

,
it is pievented from doing

so by a bolt at a point of its perimeter Prove that (whatever be the

shape of the door), when the door is entirely below the surface of the
water, the force on the bolt is independent of the depth of the water.
‘ If the door is a square of side 9", two of whose sides are horizontal,

and the bolt is in the lowest side, prove that the force on the bolt is

nearly 4J lbs. weight.’*

(Lond B Sc., 1912, III. 7 )

18 ‘ Determine the vertical pressure on any area immersed in homogeneous
liquid.

‘A wine glass when filled holds one-fifth of a pint its rim is a circle

of diameter 2^ inches, and the greatest depth of the contained liquid is

2f inches The glass, filled with water, is invcited on a horizontal plane
Prove that equilibrium is impossible m this position if the weight of the
glass when empty is less than 2 13 oz. [Take 7r = 3*1416].’

(Lond B Sc, 1912, iii 8.)

19 ‘A particle of mass m attached to a string of length the other end of
which is fixed, describes a ciicle m a vertical plane Show that, if V
be Its velocity when at the level of the centre, the tension in the string

when the particle is at height :: above the centre is

(Lond B Sc
, 1913, ii 3 )

20 ‘ A projectile discharged with an initial velocity F is subject to a re-

tardation Show how to find its velocity at the end of any time,

and the space traversed, considering the motion to be in a horizontal

straight line
* If the velocity of projection is 3600 ft i sec show that it will be reduced

• to 2600 ft. I sec. in approximately one second, the values of m and ^ for

this range of velocities being given as w= 1 55, log 3*60905.’

(Lond B Sc
, 1913, ii 6 )

Examples—CXVII : Miscellaneous

1. ‘ Shov, how to find the product and moments of inertia of a plane lamina
about two straight lines in its plane, when those about parallel axes
through tl e centre of gravity of the body are known.
‘Find the product and moments of inertia of a uniform rectangular
lamina, of mass Af, and sides 2a and 2/^, about two adjacent sides ’

(Lond. B Sc, 1913, iii. i.)

2 .
‘ Show that the rate of change of momentum of a material system in a
fixed direction is equal to the component in that direction of the
external force acting on the system.
‘A uniform solid circular cylinder, of mass A/, can rotate freely about
its axis, which is fixed in a horizontal position

,
a light inextensible

string is coiled round the cylinder and carries at its free end a particle

of mass m. If the system is allowed to move, show that the particle

will descend with uniform acceleration 2mgl{M -f- 2m) ’

(Lond. B Sc,, 1913, iil 2.)

A cubic foot of water weighs 1000 02 , a pint of water weighs 20 oz.
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3. ‘ Prov'e that wlicn a body of mass M is moving m two dimensions, its

kinetic eneig> is equal to h {Mit'^ + I(a^\ where u is the velocity of the
centre of inertia, &) is the angular velocity of the body, and / is the
moment of inertia about an axis through the centre of inertia perpendi-
cular to the plane of motion
‘A uniform thin hollow cylinder, of radius a, has a particle of equal
mass attached to it at a point in its inner surface. The cylinder is

placed on a perfectly rough horizontal plane in its position of unstable
equilibrium and is slightly disturbed If V is the velocity of the axis of
the cylinder when it has turned through an angle 6

,
show that

V\2 i- cos 6)
= ai^ {i - cos S) ’

(Lond B.Sc., 1913, III 5 )

4
‘ A force whose components parallel to the rectangulai axes of r and y
are X, J ' acts at a point ar, y. Show how to replace it by forces along
the axes and a couple
‘ A set of coplanar forces is in equilibrium. Each force is now turned
in the same sense about its point of application through a right angle
Prove that the new system is in general ec|uivalent to a couple, and find

the moment of this ''ouple.’

(Lond B.Sc, 1913, i. 3.)

5 ‘Find the centre of giavity of a sector of a circle.
‘ Deduce by orthogonal projection, or obtain otherwise, the position of

the centre of gravity of a sector of an ellipse cut off by two conjugate
semi-diameteib.’

(Lond B Sc
, 1913, I. 4 )

6- ‘ A body with a spherical base of radius a is balanced on the top of a

fixed rough sphere of radius b * prove that the equilibrium will be stable if

+ \
where h is the height of the centie of gravity above the point of

contact.

‘If the body is a uniform hemisphere of radius <2, show that the eqiuh*

briLini will be stable provided that 3(^> '^a ’

(Lond B Sc., 1913, i 8

)

7. ‘Obtain the intrinsic equation r = ^tan 0 for the uniform catenary, and
deduce the expressions for x and_j' m terms of (j).

‘A unifoim wire of length / hangs in a nearly flat catenary between two
points distant a apart on the same level

,
show that approximately

‘ The horizontal tension in a telegraph wire is not to exceed the weight

of 1300 yards of the wire, and the wire is to be carried, in spans of 100

yards each, over a distance of 20 miles Prove that the least length of

the wire is nearly 20 feet more than the 20 miles ’

(Lond. B.Sc., 1913, i. 9.)

8. ‘Explain the terms ‘ potential’ and ‘ equipotential surface.’

‘ Show that the direction of the force of attraction at a j)Oint due to an
attracting body is normal to the equipotential surface thiough the point’

(Lond B.Sc., 1913, ii 7 )

9. ‘ Show that the resultant attraction at any point P due to a uniform rod

AB, of mass J/, bisects the angle APB
‘ Deduce that the equipotential surfaces of the rod are confocal prolate

spheroids, and that the potential at any point P is

AB ^ \AP +PB-AbJ
(Lond B.Sc, 1913, ii. 8.)
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10. * Define the term metacentre m connection with floating bodies.
* A hollow buoy of sheet-metal of uniform thickness is in the form of a
hemisphere with a conical top. Show that, if it floats m stable equili-

brium, with part of the spherical surface immersed, the ratio of the
height of the cone to the radius of its base must not exceed 8 5

approximately ’

(Lond B. Sc, 1913, III. 8)
11. ‘Show that, on the hypothesis of constant temperature, the density in

the atmosphere at height s above the earth’s surface is where
po IS the density at the surface, and h a constant length.

‘Taking the height of the water barometer as 33*8 feet, and the specific

gravity of air at the earth’s surface as 0013, show that // = 26,000 f^eet
’

(Lond B Sc
, 1913, iii. 9 )

12. ‘A heavy particle of mass nt falls from rest in a medium in which the
resistance is mk (velocity) ; show that the velocity acquired and the
space fallen m time t are given by the equations

- <?-*<) and ~ ^ ’

(Lond B Sc, 1914, ii 3 )

13. ‘A bullet is fired, with velocity due to a height //, from a point in a
plain at a tower standing in the plain Prove that it will not reach the

tower if the distance of the latter from the firing point is greater than
Q.h

\ and that, in order to strike the tower at a point as far above the
ground as possible, the bullet must be aimed at a point in the vertical

line of the tower whose height above the plain is 2//
’

(Lond B Sc, iqm, ii. 4 )

14 ‘ A heavy particle is attached to an elastic sliing, whose other end is

fixed, and hangs freely. Show that as long as the string is extended,
the motion m the vertical is simple harmonic about the position of

equilibrium
‘The modulus of elasticity of the string is one-half the weight of the

particle, and its natural length is a The particle is let fall from rest at

the fixed point to which the string is attached Show that the string

attains its greatest length,

^?(3-f-2 v'2), in time ^5.^4
4 ' ^

(Lond. B Sc
, 1914, ii. 5 )

15 ‘ Prove that the hodograph of a particle, which is describing an ellipse

under an attraction to the centre, is a similar ellipse

‘Two particles P and 0,
each of unit mass, describe the same ellipse

under the same attraction to the centre C, in such a way as to be always
at the extremities of conjugate diameters of the ellipse. Show that,

if p IS the attraction at unit distance, the relative velocity of the particles

IS
'
2]^-CRy where R is the point midway between P and Q ’

(Lond. B Sc., 1914, 11. 6.)

16. ‘ Obtain the formula, v^— for the velocity of a particle describing

an ellipse under an acceleration ^ to a focus.

‘ If, when the particle is at an extremity of the minor axis, the intensity

of attraction is doubled, prove that the axes of the new orbit are

4^ 3 h where 7.a^ nb are the old axes.’
3

2m
(Lond. B Sc., 1914, ii. 7.)
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17 ‘A uniform solid circular cylinder is placed at rest with its axis hori70ntal

on a rough plane inclined at an angle a to the hoiizon. Show that it

will begin to roll down the plane without sliding, if the coefficient of

friction between the cylinder and the plane is not less than J tan a.’

(Lond B Sc, 1914, III. 2.)

18 ‘ Prove that necessary and sufficient conditions for the equilibrium of a
system of coplanar forces are that the sums of their moments about
three non-collinear points are zero
‘ Forces p.BC, q CA, r.AB act along the sides of a triangle ABC taken
in order

;
show that their resultant passes through the centroid of the

triangle, if^ + r= o.’

(Lond B Sc
, 1914, i i )

19 ‘ Prove that two couples m the same plane are equivalent if their

moments are equal
‘ The ends of a uniform rod, 10 inches long, are attached to two fi\ed

points, 24 inches apart, by two equal elastic strings, each of natuial

length inches. In the position of equilibrium the tension of each
string is T poundals, the rod and strings being in the same straight

line. Show that thj moment of the couple necessary to hold the rod
at rest, when turned through a right angle about its centre, is 10 T m
ft. poundals.’

(Lond B Sc
, 1914, i. 2 )

20 ‘ A smooth hemispherical bowl of radius a contains a rod of n times its

weight, and is suspended from a point of its rim Show that, if in the

position of equilibrium the rod lies entirely within the bowl, it must be
horizontal Prove also that the inclination of the plane of the rim to the

horizontal is tan “^2(«+ i).

‘ [The centroid of a hemispherical bowl bisects the radius to its vertex
]

’

(Lond. B.Sc., 1914, i. 3.)

Ex\mples—CXVIII. • Miscellaneous

1 ‘Find by direct integration the moment of inertia of a triangle about a
side
‘ Prove that a triangle of mass 711 is equimomentdl with three equal

particles of mass at the corners and a particle of mass at the

centroid ’

(Lond. B Sc, 1915, iii. 2 )

2 ‘ Prove that, if the forces acting on a material system have no component
in a given direction, the component of momentum of the system in that

direction is constant.

‘A uniform smooth circular tube of mass containing within it a
particle of mass w/, lies on a smooth horizontal plane The tube is pro-

jected along the plane with velocity F in a diiection at right angles to

the diameter through the particle ,
prove that the tube does not rotate,

and that when the particle has described a quadrant of the tube, the

component velocities of the centre of the tube are MVj{M-^ 7n\
P/(iW'4- w), parallel to and perpendicular to its oiiginal direction of

motion.’

(Lond. B Sc
, 1915, iii. 5.)

3. ‘Find the position of the centie of gravity of a uniform semicircular

lamina.
‘The cross-section of a homogeneous prism is a semicircle of ladius «,

with an isosceles triangle of height h described on its bounding
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diameter as base Show that the prism can rest in stable equilibrium

with its curved surface in contact with a horizontal plane, if
’

(Lond. B Sc., 1915, I 7 )

4 ‘Explain the terms sheading stress^ bending moment as applied to a
loaded beam
‘Draw diagiams to represent the shearing stress and the bending
moment foi a light horizontal beam, 12 feet long, supported by a prop
I foot fi om one end and a prop 2 feet from the other end, and loaded
with 36 lbs at Its middle point

'

(Lond B Sc
, 1915, 1. 8 )

5.
‘ State and explain the principle of virtual work

'' AB^ BC are two uniform heavy beams of equal weight and of lengths
a and smoothly jointed at B They are placed with ^ on a smooth
horizontal plane and with their other ends A against one and C against

another of two parallel smooth vertical walls, whose distance apait is c

Prove that the height of their centre of gravity, is given by the

equation i6y^==a^ + + 2ab cos (a ~ ^) - where a, ^ are the inclinations

of the beams to the horizontal

‘Prove that there is a position of equilibrium in which a= ^ = cos^^

{ej{a + <{>)}, and that it is unstable ’

(Lond B.Sc
, 1915, i 9

)

6. ‘Investigate the conditions of equilibrium of a body floating completely
immersed in two liquids which do not mix
‘ If a prism of triangular section floats with one edge in the common
surface of two lu[iiids which do not mix, show that the opposite face of

the prism must be vertical, the prism being wholly immersed ’

(Lond B Sc
, 1915, iii 8 )

7. ‘ Prove that the sum of the moments about any point of two intersecting

forces IS equal to the moment of then resultant about that point

‘Fourfoices act along the sides of a quadniateial, and are in equili-

brium Prove that each force is inveisely proportional to the perpen-
'dicular on it from the intersection of the diagonals, and state the

directions of the forces necessary for equilibrium
’

(I OND B Sc
, 1916, I 2 )

8. ‘ Show that any force which does not he in the plane of the triangle A BC
can be uniquely represented by three forces parallel to the given force

and acting at A, B^ C, respectively

‘A table is supported by three vertical legs placed at the corners of a

triangle ABC Show that, if a weight is placed on the table at the

orthocentre of the triangle ABC^ the additional thrusts on the legs are

as tan A . t?n B tan C’
(Lond B Sc

, 1916, i 4 )

9. ‘ Find necessary and sufiicient conditions of equilibrium of a system of

coplanar forces
‘ Four rods smoothly jointed at their extremities form a cyclic quadri-

lateral ABCD^ the opposite corners being joined by strings in a state

of tension. Prove that the tensions m A C andBD are as sin A ; sin B.^

(Lond B Sc
, 1916, i. 5

)

10.

‘Find the angular velocity in any position of a compound pendulum,
which IS swinging about a smooth horizontal axis

‘A uniform rod, of length 2^, hinged at one end to a fixed point O, is

let fall fiom the horizontal position
;
when it becomes vertical the hinge

breaks Prove that, when the rod is next horizontal, the horizontal and
the vertical distances of its middle point from O are iraj^ and a 12

respectively
’

(Lond B Sc
, 1916, iii. 3

)
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1 1. ‘ A light string connecting two equal particles passes through a smooth
ring fixed at the highest point of a smooth circular wire in a vertical

plane. The length of the string is greater than the diameter of the
circle, and one particle hangs freely, while the other is constrained to

move on the circle Show that the position of equilibrium in which
this particle is at the lowest point of the circle is stable, and the

position in which it is at angular distance 6o° from the highest point is

unstable.’

(Lond. B.Sc., 1916, I. 9.)

12. ‘ A circular hoop of weight IV^ free to turn about a point on its circum-
ference, rests on a rough hori 7ontal plane on which it presses evenly.

Show that the least force, applied to the hoop, that will move it horizon-

tally is 2/x where /x is the coefficient of friction.’

(Lond. B.Sc., 1916, i. 7.)

13. ‘ State and explain the principle of virtual woik
‘Four equal uniform rods AB^ BC^ CD^ DE^ each of weight fF, are

suspended from fixed points A and E in the same horizontal A string

connects the middle points of BC and CD Show that, if a and /3 are

the angles made by and BC with the horizontal, the tension of the

string IS PF(3 cot a - cot ^).’

(Lond. B.Sc., 1916, i 8.)

14 ‘ Prove the formula, HM^Ak’^jVy for the height of the metacentre above
the centre of buoyancy of a solid of revolution floating, with its axis

vertical, in homogeneous fluid.

‘Show that a uniform circular cylinder, of sp. gr. 1/3, cannot be in

stable equilibrium, when floating upright in water, if its length exceeds
three-quarters of its diameter.’

(Lond. B Sc, 1916, iii. 9.)

15. ‘ A particle is projected from the ongin along the axis of x with velocity

zz, and has an acceleration parallel to the axis oiy. Show that

It describes a sine curve, whose convolutions touch the ar-axis.’

(Lond B Sc., 1917, ii. 4.)

16. ‘ Find the principal moments of inertia at the centroid of a homogeneous
rectangular lamina of sides 2rt, 2b.

‘Prove that, if a~2b^ two of the principal moments of inertia at the

middle point of either longer side are equal.’

(Lond B.Sc, 1917, iii 2.)

1 7.
‘ Show that any system of coplanar forces not in equilibriu.a is equiva-

lent to a single force or a single couple
‘ Four forces are represented completely by the sides iD^ BC and the

diagonals CA^ DB of a quadrilateral ABCD Show that they are

equivalent to a couple of moment AB . CDs\n6 where 6 is the angle
between AB and CZ?.’

(Lond. B Sc, 1917, i i.)

18. ‘ A heavy uniform beam 16 feet long is supported at points distant one
foot from each end Draw curves showing the bending moment and
shearing stress at all points of the beam.’

(Lond. B.Sc., 1917, i. 3.)

19 ‘Find the position of the centre of gravity of the area of a segment of a

circle.

‘ The area of a circle of radius a is divided in the ratio 2 : i by a chord.

Show that the distance between the centres of gravity of the two parts

IS 3(a/7r) sin-^a where 3(0 - sin a co- a) = «•.’

(Lond. B.Sc., 1917, i. 5.)
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20. ‘ State the principle of virtual work
‘A ihombus, of four equal light rods of length a smoothly jointed has
its opposite corners jojped by elastic strings of the same material and
of natural lengths a >J2 and \a ^2 respectively, and rests on a horizontal

plane Show that in equilibrium an angle of the rhombus is 30“.*

(Lond. B.Sc., 1917, I. 6.)

Examples

—

CXIX. : Miscellaneous

1. ‘ Obtain the expression Ak^f V for the height of the metacentre of a float-

ing body above the centre of buoyancy.
‘ A uniform circular cylinder, whose radius is two-thirds of its height,

floats in water with its axis vertical. Prove that the equilibrium cannot
be stable, if the specific gravity of the cylinder lies between J and J.’

(Lond. B Sc
, 1917, in. 9

)

2. ‘ A mass of 100 lb. hangs freely from the end of a rope. The mass is

hauled up vertically from rest by winding up th*^ rope. The pull starts

at 1 50 lb weight and diminishes uniformly at the rate of i lb weight
for every foot wound up. Find the velocity after 50 ft have been wound
up, neglecting the weight of the rope ’

(Lond B Sc
, 1918, 11. 5

)

3. ‘Three light strings meet at a point P where they are knotted together
They pass over three pulleys A^ B, C and each supports a weight W.
Show that the knot can only be in equilibrium within the triangle ABC
if none of the angles of this triangle exceeds 120° If there were four
strings and four coplanar pulleys at the corners of a convex quadri-

lateral where would the knot rest?’

(Lond. B Sc, 1918, i. i.)

4.
^

‘ Show that a system of coplanar forces is in equilibrium if the algebraic
' sum of their moments about each of three points not in a straight line

vanishes
‘Three equal forces P act along the sides of a triangle ABC taken inABC
order ;

show that they are equivalent to forces P sin —
,
P sin P sin ^

acting along the external bisectors of the angles B, C respectively ’

(Lond B Sc., 1918, i. 3 )

5. ‘ Establish formulae for determining the position of the centre of gravity

of a system of particles of known masses and positions in a plane.
‘ Prove that if two particles of the system are interchanged the position

of the centre of gravity of the whole system is unchanged only if the
particles have equal masses.’

(Lond. B.Sc
, 1918, i 5 )

6. ‘ A uniform rod of weight IV can turn about one extremity on the rough
horizontal plane on which it lies. A force P is applied at one end, in a
fixed direction, initially at nght angles to the rod which is at rest.

Show that the rod will not begin to move unless P> IV, where is

the coefficient of friction ;
and find in what position the rod will subse-

quently come to rest.’

(Lond. B.Sc., 1918, iii. 6.)

7. ‘ State and prove the conditions of equilibrium of a floating body.
‘Prove that a cubical block of specific gravity 75 can float in water
with one edge in the surface.’

(Lond. B.Sc., 1918, iii. 7.)
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8. ‘ A vertical semicircle of radius a is immersed in water with its diameter
in the surface. Show that the depth of the centre of pressure is ‘^nali 6
The semicircle being" a plane face of a spherical quadrant, find the
resultant pressure on the curved suiface.

‘[The centre of giavity of a semicircle is at a distance 4«/37r from its

centre, and of a hemisphere 30/8 from its centie ]’

(Lond B Sc., 1918, III 9)

9 ‘Two points describe coplanar concentric circles of radii a and b (a<b)
with uniform angular velocities &> and w' respectively (a>^ to')

;
initially

they are colhnear with the centre and on the same side of it Prove
that the angular velocity of either point relative to the other is zero after

a time which is equal to

I + b^ui
,

(o) - 0)') ab{(t> + (a)

(Lond B Sc
, 1919, ii 2.)

10. ‘The position of a point in a plane is determined by its polar co-

ordinates (r, &)

,

find expressions for its component accelerations along
and perpendicular to the ladius vector.

‘A particle is actea on by an attractive force («<3) to a fixed

point and its orbit is nearly circular
;
prove that the apsidal angle is

equal to

7r/(3 - n)K’

(Lond B Sc
, 1919, ii. 6 )

11. ‘ Explain how any uniplanar motion of a rigid body can be obtained by
the rolling of a curve fixed in the body on a curve fixed in space

‘A rod passes through a fixed point and one extremity moves along a
fixed line Prove that the motion can be obtained by the rolling of a

curve, of the type r cos^d = const., upon a certain parabola ’

(Lond B Sc
, 1919, iii i.)

12. ‘A particle is projected in a medium in which the resistance varies as

the cube of the velocity, and the effect of other forces may be neglet ted
;

the time /(> is observed which the particle takes in travelling from T to

piove that the velocity at the mid point of PQ. is equal to j-o//o> where
Sq is the length of PQ ’

(Lond B Sc
, 1919, iii 2 )

13 ‘ Find a formula for the length of the simple equivalent pendulum when
a uniform bar of length / swings about a point distant c from its centre.
‘ Show that for a bar equal in length to the seconds penduiuin the least

time of a beat (from rest to rest), for different points of suspension, is

about I second.’
(Lond B.Sc., 1919, iii 4)

14 ‘ A truck has a total mass My it has two pairs of wheels and axles, each
pair having a moment of inertia I and a radius a Prove that if the

truck when moving with velocity V is brought to rest by striking a fixed

obstacle, the total impulse is equal to {M + 2///e-)

(Lond B.Sc., 1919, in. 5.)

15. ‘A uniform thin cynndrical shell with axis hoiizontal is placed in con-

tact with the highest generator of a fixed equal cylinder with axis hori-

zontal and coefficient of friction Prove that the motion changes from
rolling to sliding when the plane through the axes of the cylinders

makes an angle tan~’| with the vertical, the shell starting from rest ’

(T.OND B Sc
, 1919, III 6 )

16 ‘ Prove that a system of coplanar forces can, in an infinite number of

ways, be replaced by tv o forces each acting through a given point
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‘ If A and B are the points and AA' and BB' represent such a pair of

forces, prove that the loci ofA and B' are straight lines and that AB'
always passes through a fixed point.’

(Lond B Sc
, 1919, I I.)

17 ‘ Prov'e that two coplanar couples of equal and opposite moments are

in equilibrium
^ ABC/) and ABCD' are two coplanar parallelograms; prove that

forces acting along and proportional to AA\ CC\ B'B^ D'

D

are

equivalent to a couple.’

(Lond B Sc
, 1919, i 2 )

18. ‘ Explain what is meant by the angle of friction
‘ One end of a bar rests on a rough plane which is inclined at an angle
a to the horizon and the other end is supported by a vertical force.

Show that the angle of friction is not less than a and that the bar can
be supported in this manner at any inclination to the vertical.’

(Lond B Sc
, 1919, i 6 )

19. ‘Determine the position of the centre of gravity of a hollow triangular

prism with open ends formed from three rectangular sheets of metal
of uniform thickness, the ends of the prism being perpendicular to the

edges
‘The cross section of such a prism is a triangle ABC with an obtuse
angle at C and the prism is placed with the face BC in contact with a
horizontal plane

,
prove that it will topple over if

2CL-‘ + a{c - b)<c^ - ’

(Lond. B Sc
, 1919, i. 9 )

20. ‘ Prove that, with the usual notation, the equations

s = cta.nylr, = +

are satisfied by the common catenary
‘ A uniform chain of length / lies in a straight line on a rough horizontal

table, the coefficient of friction being fx. One end of the chain is slowly
* raised in a vertical plane through the chain until the chain is on the

point of slipping along the table Prove that, if this end is at a height 2"

above the table, the length of the portion in contact with the table is

1 + fin - {{fl^ +1)2'“ h 2ji/js}^ ’

(Lond B.bc., 1919, i 10)

Examples - CXX. • Miscellaneous

I ‘A sphere of weight IV and radius a floats half-immersed in a large

expanse of water. Find an expression for the woik done in (1) lifting it

)ust completely out of the water and (11) just immersing it completely.’

(Lond. B.bc., 1919, iii, 8.)

2. ‘Determine the potential at any point within a sphere of uniform
density p
‘Within a sphere (centre A\ a spherical cavity is scooped out (centre

B)
;
show that inside the cavity the equipotential surfaces are planes

perpendicular to AB, and that on the plan^ bisecting AB at right

angles and passing through the cavity the value of the potential is

27ryp (a^ - where a, b are the radii of the spheres.’

(Lond B Sc
, 1919, ii. 9.)

3. * A particle of unit mass falls from rest under gravity in a medium whose
resistance is k times the velocitv

;
prove that the distance fallen through

in time t is
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‘ If the particle is projected initially horizontally with a velocity find

the horizontal and vertical velocities after a time / and hence prove that

the hodograph of its path is a straight line
'

(Lond B.Sc., 1920, II 4.)

4. ‘ A uniform square lamina of mass M lying on a horizontal table has a
particle of mass m attached to one corner by an inextensible string.

The particle is projected with velocity V along the table in a direction

along one of the sides through the point of attachment. Prove that the

loss of energy of the system when the sti ing becomes taut is

I-
*>'

(Lond B.Sc, 1920, iii 3.)

5.
‘ Prove th.it the kinetic energy of a two-dimensional body of mass M
moving in its own plane can be expressed in the form
where u is the velocity of its centre of gravity and o) its angul.ir

velocity.

‘Find the kinetic energy of a rhombus of freely-jointed uniform rods in

terms of the velocit'" of the centre of the rhombus and the angular
velocities of its sides.’

(Lond. B.Sc., 1920, iii 6.)

6.
‘ Prove that in general any system of coplanar forces acting on a rigid

body can be reduced to a single foice and mention the exceptions.

‘Forces /*, g, P-\-Q act along the sides BC^ CA, BA respectively of a
triangle ABC

;
prove that, however P and Q v.iry, the resultant of the

three forces passes through a fixed point

'

(Lond. B Sc, 1920, i. i.)

7. ‘Any number of coplanar forces have fixed points of application If all

the forces are turned round their points of application m their plane
through the same angle and in the same sense, prove that their

resultant will always pass thiough a fixed point.

‘Find the coordinates of this point for two perpendicular forces and
Y through the points (<2, o) and (o, b) respectively ’

(Lond. B.Sc., 1920, i 3.)

8. ‘Show how to find the position of the centre of gravity of a number of
coplanar masses when their distances from any two intersecting lines in

their plane are known
‘Four small bags of shot are placed at fixed points B^ C, of a
plane, and a weight W of shot is transferred from A\o B and an equal
weight W from C to D Show that in general, as W varies, the centre

of gravity of the four bags of shot describes part of a stiaight line
’

(Lond B Sc, 1920, i 7.)

9. ‘ A uniform solid paraboloid of revolution with a plane base perpen-
dicular to Its axis has a circular cylindrical hole dulled symmetrically
through it along its axis. Prove that the centre of gravity of the

remaining solid is at a distance from the base of the paraboloid,

where / is the length of the hole ’

(Lond B.Sc., 1920, i 9.)

10.

‘Prove the formula = r log (sec ^4- tan (;|!)) for the common catenary,

where (j) is the angle made with the horizon by the tangent at any
point.

‘A chain 100 ft. long hangs in a common catenary, the directions of the
tensions at the ends making angles of 45° with the horizon. Calculate

the span of the chain and the sag of u3 lowest point’

(Lond. B.Sc
, 1920, i 10.)
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n.

12

* A cylindrical diving-bell is lowered with uniform velocity v ft. per
second, air being pumped into it as it descends. Prove that in order

that the level of water in the bell may remain unaltered, air at the rate

per second of vVIH cubic feet at atmospheric pressure must be pumped
in, where V is the volume of the bell occupied by air and H the height

of the water barometer.’

(Lond. B.Sc., 1920, III. 9.)
‘ A particle describes a hyperbola about a centre of force attracting as

the inverse square of the distance. Show that, with the usual notation,

‘ A particle approaches such a centre of force, its velocity at infinity

being V along an asymptote whose perpendicular distance from the

centre of force is p. Find the angle between the asymptotes of the

orbit, and show that, when Vis large, this is appioxiinately

(Lond B.Sc, 1921, ii 4

)

13. ‘ Prove that, if A/P is the moment of ineitia of a body of mass M about
an axis through its centre of gravity, its moment of inertia about a
parallel axis distant a from the other axis is M{P + P).

‘Find the moments of inertia of a uniform semicircular lamina of mass
M and radius a about an axis perpendicular to its plane and passing
through (1) Its centre, (11) a point on its circumference ’

(Lond B Sc, 1921, iii. i.)

14. ‘A disc of mass m is moving in any manner in a plane when a point P
of the disc IS suddenly fixed Show how to determine the subsequent

motion, and show that the loss of kinetic energy is

V is the velocity of P immediately before being fixed, p the perpen*

. dicular from the centre of gravity on the direction of v and k the

radius of gyration about an axis through P perpendicular to the plane

of the disc.’

(Lond. B Sc
, 1921, iii. 6 )

1 5. ‘ Three equal uniform rods each weighing 3 lbs and 5 feet in length are

jointed at one end to form a tripod and stand on a smooth horizontal

table. The middle points of the rods are joined by 3 light strings, each
18 ins lon^,

;
find the tension in each string when a weight of 10 lbs is

placed on the tripod ’

iLond. B.Sc, 1921, i. 3.)

16. ‘Find foiinulae to determine the position of the centre of gravity of a

system of coplanar particles whose weights and positions are given.

‘A uniform wire is bent to form a plane rectilineal figure ABCD^
where AB—^ ins., BC—2 ms, CD= i in

^
the angles at B and 6’ are

right angles and A^ D are on the same side of BC. If the wire is hung
freely from the corner prove that the side AB makes with the

vertical an angle tan ~
*(f

V

(Lond. B.Sc, 1921, i. 5.)

17. ‘ Prove the formula^ = r cosh .r/t: for the common catenary.

‘A wire rope weighing 2 lb. per foot has a horizontal span of 150 ft.

and the sag in the middle is 5 ft. Prove that the horizontal tension

throughout is 1125 lb. wt. approximately.’

(Lond. B.Sc., 1921, i. 10.)

18. ‘Find the potential of a uniforir gravitating sphere at an internal point.

‘Show that the work done in raising a given mass from a mine of

depth h to the Earth’s surface is less than that calculated from the value
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of^ at the surface in the ratio i i - hjd, where d is the diameter of the
Earth, which is assumed to be uniform.’

(Lond B Sc., 1921, II 9.)

19 ‘ Find the attraction of a uniform circular disc at a point on its axis
‘ A particle is constrained to move on a smooth wire which coincides
with the axis of a disc m the shape of a uniform annulus of mass M
and external and internal radii b. Show that, if displaced from its

position of equilibrium at the centre of the disc, it will execute small
oscillations of period

""I yif/ /•
(Lond B Sc

, 1921, ii. 10

)

20 ‘A particle is describing an ellipse under a force to its centre. Find
expiessions for its acceleration along the principal axes of the ellipse

m terms of the eccentric angle of its position, and the derivatives

of cf). Hence show that is constant and that the force must vary as

the direct distance.’

(Lond B.Sc
, 1922, ii 3 )

ExA\fpr Fs

—

CXXI. • Mtsceixanrous

1 ‘ Show that a uniform thin spherical shell exerts no attraction on a
particle placed at any point inside it

‘ If the shell is divided into two unequal portions along the circumfer-

ence of a ciicle, show that the attraction of either portion on a particle

placed at the centie of the shell is proportional to the area of the circle
’

(Lond B Sc
,
191 r, ii 7 )

2 ‘Find the attraction of a uniform thin circular plate at a point on its

axis
;
and show that the attraction is discontinuous as the point passes

from one side of the plate to the other, the difference between the

attractions at the two sides being 4777^, whei e or is the density of the

plate.’

(T.ond B Sc., 191 1, ii. 9.)

3
‘ Prove that the surface integral of the normal atti action of any material

system taken over a closed surface is equal to 4777 M, where AI is the

mass of the part of the system which lies inside the sir face, and y is

the constant of attraction

‘Deduce the attraction at any point exerted by a thin homogeneous
spherical shell bounded by two concentric spheres ’

(Lond B.Sc., 1912, ii 8.)

4
‘ Prove that the attraction at points within a uniform sphere is j^rjay

where r is the distance from the centre, a is the radius of the sphere,

and g IS the value of gravity at the surface:
‘ .Show that if a smooth fine tunnel is made in the sphere, the motion
of a particle along the tunnel will be simple harmonic and that the

period of the motion is the same foi all positions of the tunnel ’

(Lond B Sc., 1912, 11. 9.)

5.
‘ A smooth trough is formed of two planes each making an angle a with

the horizontal Three equal cylinders are laid symmetrically in the

trough with the two lowest cylinders each touching one of the planes,

and the uppermost resting on the other two Show that (in the absence
of any friction between the cylinders) the two lower cylinders will not

separate if

tan 1/(3 Vj).
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‘[The axes of the cylinders are horizontal and parallel to the edge of the
trough ]’

(Lond B.Sc
, 1914, I 5 )

6. ‘The radii of the circular ends of a fnistum of a uniform solid right
circular cone aie « and and its axial thickness is h

;
show that its

centroid is at a distance from the middle point of the axis equal to

h cr - b'

4 -f ab +
measured along the axis towards the end of larger radius a/

(Lond. B Sc., 1914, i. 6 )

7 ‘ State the principle of virtual work
‘Show that, if a step-ladder consists of two equal halves, each of weight

and a load W is placed on the top of the ladder, the tension in the
cord is equal to (IV+ W')b^l2(ih, where 2a is the length of the cord, h is

the height of the ladder, and 2b the distance between its ends.
‘ [The cord is supposed to be fastened to the two halves at equal dis-

tances from the top
]

’

(Lond BSc, 1914,1 7)
8. ‘A uniform plank of weight IV and length 2a is supported at its ends

and loaded (1) with a weight 2 at a distance \a from one end (11) with
two weights each equal to fL at distances \a from the two ends
‘ Dniw graphs to show the variation of the bending-moment in the

plank, in each of the two cases. Prove that in case (1) the maximum
value is VVa and that in case (11) it is ^ fVa,’

(Lond B Sc
, 1914, i 8.)

9 ‘ Prove the equations tan = sec (p for the common catenary,

and show that if a point at arcual distance s from the vertex be at height

h above it, - /r)iA is constant.
‘ A chain of length 2/ is suspended from two points in the same horizon-

tal and has a sag h in the middle
,
show that the span is

(Lond B Sc
, 1914, i 9 ;

10. ‘A particle is projected from a point/’ to pass through another point

(2 ,
at a hcaizontal distance 150 ft from P and 200 ft vertically below P.

The velocity of projection is that due to falling freely under gravity

through 8' J ft Find the two possible angles of projection
; and taking

£ = 32 f s s show that the two times of flight are 2 \ sec and 6^ sec ’

(Lond B Sc
, 1915, ii i.)

11. ‘ Find the tangential and normal components of the acceleration of a

particle describing a plane curve.
‘ A smooth ciicular wiie of radius a is fixed in a horizontal position A
small ling, attached to a point of the wire by an elastic string of natuial

length rz, is placed at the point of the wire opposite to the point of

attachment and slightly disturbed. Show that the horizontal com-
ponent of the pressure of the wire on the ring will be outwards until the

extension of the string is 201/3, afterwards be inwards ’

(^Lond. B Sc
, 1920, II. 7 )

12. ‘A particle moves so that its velocity lesoived parallel to a fixed line

IS proportional to its distance from that line, and its velocity resolved

parallel to a fixed perpendicular line is proportional to its distance

from that perpendicular line Show that its path is a conic and that

Its acceleration is always directed towards the intersection of the fixed

lines.’

(Lond. B Sc., 1921, ii. 2.)
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13 ‘The frustum of a uniform solid right cone is placed with its base on a
rough inclined plane, the radii of its upper face and base being re-

spectively r and R If the inclination of the plane to the hoiizon is

gradually increased, prove that equilibrium will be broken by tumbling
if + + where h is the height of the
frustum.’

(Lond. B.Sc., 1922, I. 6.)

14. Prove that any system of coplanar forces can m general be reduced to a
force acting at an arbitrary point of the plane together with a couple.
‘ Show that such a system may be replaced in an infinite number of ways
by two forces acting one through each of two fixed points, A and
in the plane ; and that \iAP is drawn through A to represent on any
fixed scale the force through A^ then the locus of is a straight line

parallel to

(Lond. B.Sc, 1922, i. r.)

15 ‘A uniform parabolic plate, the focus of which is I\ is bounded by the
finite portion of the curve and by a double ordinate AB. The triangu-

lar portion AFB is cut out. Prove that the centre of gravity of the

remainder is at F if ‘he distance oi AB from the vertex is >/5«, 4(3:

being the latus rectum of the parabola.’

(Lond B.Sc., 1922, i. 7 )

16 ‘ Explain what is meant by the principle of virtual work.
‘Four equal uniform rods, each of weight H^and length are fieely

jointed so as to form a rhombus ABCD. The rhombus is suspended
from the joint A and prevented from collapsing by a strut of negligible

weight and length 2b joining the middle points of CB and CD. Show
that the stress in this strut is 4 lVbl{a^ -

(Lond B Sc., 1922, i. 9

)

17. ‘A uniform circular cylinder of radius tz is projected transversely along
a rough horizontal plane with a velocity V and a spin D in the sense
which would tend to make it roll backwards. Show that it will again

pass the point of projection if <zQ>2K, and that it will do so before

slipping ceases if aa>5 FI’

(Lond B Sc., 1922, iii. 6.)

1 8 ‘ Obtain an expression for the resultant attraction of a uniform straight

rod AB Sit any external point P.
* If the resultant attraction be resolved along and perpendicular to AP^
prove that the former component is yMHAP BP\ wher " y is the con-

stant of gravitation and M the mass of the rod.’

(Lond. B Sc., 1922, ii. 8.)

19. ‘The radii of the plane ends of a frustum of a right circular cone aie

a and b
;
the length of the slant edge is /. Show that the centroid of

the total surface (plane and convex) divides the line joining the centres

of the circular ends in the ratio

3^ + {2b + d)l yP + {2a -f b)V
(Lond. B Sc., 1923, i. 3.)

20 ‘ A particle is projected from a point on a plane inclined at an angle a to

the horizon with velocity Km a vertical plane through a line of greatest

slope. Show that the range is a maximum if the direction of projec-

tion bisects the angle between the vertical and a line of greatest slope.

‘ If the particle is smooth and perfectly elastic, and if it is projected as

above described, show that the distance up the plane between the first

and second impacts is

I ~ 2 sin g V\
I + sin g

(Lond, B.Sc., 1923, ii. i.)
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Examples—CXXII. . Miscellaneous

1. ‘ Find expressions for the components of acceleration in polar coordi-

nates r, 6.

‘ A straight smooth tube is constrained to rotate in a horizontal plane
with constant angular velocity &> about a vertical axis through a point

of Its length. The tube contains a particle which initially was at rest

relatively to the tube at a distance a from the axis. Show that at any
subsequent time t the reaction between the particle and the tube is pro-

portional to sinh 0)/.*

(Lond. B.Sc., 1923, II 2 )

2. ‘ Show how to find the moments and product of inertia of a plane lamina
about a pair of rectangular axes in the lamina, when those about parallel

axes through its centre of inertia are known
* Show that a principal axis of the lamina at its centre of inertia is a
principal axis at any point of its length.’

(Lond B.Sc., 1923, iii i )

3. ‘ Obtain the conditions of equilibrium of a system of forces acting in one
on a rigid body.
equal uniform ladders, each of length I and weight w, are hinged

together at the upper end of each, and tied by a light string attached to

them at points distant c from the lower ends The system rests on
smooth ground, with the ladders inclined to the vertical at the same
angle o, and a weight W is suspended from the middle of one ladder
Prove that the tension of the string is

(Lond B.Sc
, 1923, i 4 )

4. ‘ Prove the formula — (2/r ~ i/^z) for elliptic motion about a focus.
* A particle is projected in a direction making an angle a with the line

joining It to a fixed centre of force attracting as the inverse square of

the distance. The speed of projection is n times that which the particle

would acquire in moving fiom rest at infinity to the point of projection

(n<i). Show that the eccentncity of the orbit is

{l - (i - sin^ a}V
(Lond B.Sc., 1923, ii 3.)

5. ‘A diving bell is in the form of a circular cylinder of diameter h and
height //, surmounted by a hemisphere of equal diameter If it is

lowered into water and no air is pumped in, find the depth of the bell

when th water just fills the cylinder. Show that to expel the water
from the cylinder the volume of air at atmo'^ipheric pressure that must
be pumped in is (3 + hjH) V, where F is the volume of the bell, H the

height of the water barometer ’

(Lond B Sc, 1923, iii. 10)
6. ‘State the laws offriction,

‘A uniform rod AB rests with one end A on rough ground, and is

supported in limiting equilibrium at an inclination a to the horizontal by
a string BC^ attached to the other end B f lOve that, if the angle ABC
IS TT and a f ;Q>Jrr, the coefficient of friction is

2 cos a cos (rr ~ a ~ fi) ,

3 sin - sin (2a + )8)

(Lond. B.Sc., 1923, i. 5.)

7. ‘ Explain what is meant by tb . “ terminal velocity ” of a particle moving
under gravity in a resisting medium.

plane
‘Two
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‘A particle falls from rest in a medium whose resistance is proportional
to the velocity Show that the velocity after a time / is U{ \

where U is the terminal velocitv ’

(Lond B Sc., 1923, IT 4.)

8 ‘A ring of mass M and radius a can turn freely m its own plane, which
IS vertical, about a point O of its circumference. A particle of the same
mass M is rigidly attached to the ring at the point diametrically

opposite to O. Prove that, when the system makes small oscillations

about the length of the equivalent simple pendulum is 2<2

‘If the system is making finite oscillations in which the diameter
through O makes in its extreme positions an angle a with the down-
ward-drawn vertical, find the reaction at 0, when the diameter through
O IS vertical

’

(Lond. B Sc., 1923, iii 2.)

9. ‘A uniform sphere of weight fFhasa particle of weight w attached to

Its surface Show that there are two positions in which it can rest on
a rough inclined plane, provided the angle of inclination of the

plane<sm-'(^™-).

‘ Prove that the position in which the particle is below the centre is the

stable position
*

(Lond B Sc
, 1923, i. 7 )

10. ‘Find an expression for the potential energy of a stretched light elastic

string.

‘A smooth wire in the form of a parabola of latus-rectum 4^, is fixed

with Its plane horizontal A small ring of mass in can slide on the wire
and IS attached to the focus of the parabola by a light elastic string of
natural length a and modulus of elasticity X If the ring is held at an
extiemity of the latus-rectum of the parabola and leleased, show that its

distance from the axis of the parabola at any subsequent time t is

(Lond B.Sc
, 1923, 11. 7.)

1 1 ‘A uniform solid sphere is placed at rest on a rough plane inclined to

the horizontal at an angle a, and /x, the coefficient of limiting friction

between the sphere and the plane, is greater than (2tana^/7. Prove
that the sphere will roll down the plane without sliding
‘ If the sphere is projected directly up the plane with velocity V without
rotation, show that it will begin to roll at the end of time

2 sm a + 7 /X cos a)
’

(Lond. B Sc., 1923, iii. 4 )

12. ‘Show how the Principle of Virtual Work leads to the conditions of

equilibrium of a rigid body subject to forces in one plane

‘A uniform rod AB of length a and weight W^ free to turn about one
end is supported, in a position in which B is below the level of A^
and AB makes an angle 0 with the horizontal, by a light string attached
to B, passing over a smooth peg, at the same level as A and distant b

(>^) from it, and carrying a weight JV' Prove that

2b W' tan 6 - Wf{a^ + b'^- 2ab cos ’

(Lond B Sc
, 1923, i 8 )

13. ‘ Explain the term equi potential surface, and prove that the direction of

the resultant force due to an attracting body on a particle placed at any
point is normal to the equipotential su face through the point.

‘Find the potential of a uniform straigh rod at any point and show that



EXAMPLES—MISCELLANEOUS 559

the equipotential surfaces are ellipsoids of revolution with their foci at

the extremities of the lod.’

(Lond B Sc
, 1923, II. 8 )

* State the principle of the conservation of lineai momentum.
‘A smooth wedge, of mass M and angle a, is held with one face in con-
tact with a smooth hori7ontaI plane and a particle of mass 7n is placed
on the other face at a distance a from the plane, measured along a line

of greatest slope. If the system is allowed to move freely, show that

the distance that the wedge has moved when the particle reaches the
plane and the time taken by the particle to reach the plane are

respectively

W<a:cosa 2 (M

+

7715111^ a) a) h

M +771 \ (M+ 77t)^iiina j

(Lond B .Sc., 1923, iii 3

)

‘Obtain the equations of a catenary in the form j = c tan x//-, >' = sec \/^,

X — <rlog (sec rfr -f tan 'v//'), T= wjy
‘ A unifoim chain of length 2/ is suspended from two points in the same
horizontal and has a sag h at the centre Show that the span is

‘The length of the chain is 100 ft, the sag is 10 ft. Prove that the

tension at each end is the weight of 130 ft of chain, and, by expanding
the logarithm, show that the span is approximately 97 3 ft

(Lond B Sc
, 1923, i 10 )

‘ Prove that the intcgial of the normal component of attraction ocer any
closed surface is equal to -47ry times the mass enclosed bv the suiface

‘An infinite hollow cylindrical shell whose cross section consists of two
concentric circles of radii b {a>b) has a density which is inversely

proportional to the distance from the axis Show that the attraction at

a point within the material of the shell at a distance r from the axis is

2yM{r- b)

r{a - b)

where M is the total mass per unit length of the shell
’

(Lond B.Sc., 1923, ii. 9)
‘ Find the conditions of equilibrium of a body floating freely in w'ater
‘ The cross-section of a piism is an isosceles right-angled triangle ABC,
A being the right angle Show that, if the specific gravity of the prism
is 13/16, It can float freely in w^ater with the edge through A above the

surface, and with i/gth and 3/4ths of the sides immersed ’

(Lond B Sc
, 1923, in. 8.)

‘Show that in homogeneous fluid at lest under gravity, the pressure

increases uniformly with the depth below the surface
‘ A sphere is immersed in fluid, the depth of the centre below the surface

being equal to the diameter of the sphere Prove that the resultant

pressuie on the lower half of its surface is twice the weight of the fluid

displaced by the sphere.’

(Lond B Sc
, 1923, iii. 7.)

‘Find the centre of pressure of a triangle having one side in the free

surface.

‘A triangle ABC h3.s the vertex A in the surface and rotates in its own
plane about A, Show that as long as the triangle is completely im-
mersed the centre of pressure lies in E'L where E\ F' are the mid-
points of the sides DE, Z^T^of *lie median triangle ’

(Lond. B.Sc, 1923, iii. 9.)
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20. ‘ Prove that two couples in the same plane are equivalent if they have
the same moment.
‘ A uniform rod AB of length / and weight IV is partly supported by a
light string OA attached to a fixed point O and to the end Aj and partly

by a couple of moment C applied to it in the vertical plane containing
It Prove that in equilibrium OA must be vertical, and find G if the
rod is horizontal*

(Lond. B.Sc.j 1923, I. I.)



ANSWERS TO EXAMPLES

III. Page 24

4 Acceleiation = 32 units of length per sec per sec,

“ ^i)(A “ O
Velocity at

(^2
~ ~ ^i)(A ” ^2)

IV. Page 33.

1. {a) 13-8 miles per hour in direction 5'’54' E of N.,

{b) 16 8 m /hr. 2''36' W of N
,

(0 151m /hr. 7"36'W. ofN.

4 Resultant Velocity = 968 cm per sec. nearly, making with the northerly,
easterly and upward directions respectively the angles whose cosines
are 707/968, 662/968, and 5/968.

8 w sin X about axis through Greenwich, and n cos X about the perpendicular
axis. Or, taking X = 5 1 “29' and w = 27r per day, the angular velocities are

491615 and 3912815 radians per day respectively, t.e
y
one complete

turn in 1*278075 and in i 6058 days respectively.

10. 3/4 of a mile.

12 {a) Two blunt spikes in a horizontal groove and a third spike touching
a horizontal plane.

{b) As beam of balance, art. 26
(^r) Two blunt spikes in a circular groove on a horizontal plate and a

third spike touching the horizontal plate

V. Page 35.

I 32 ft per sec. per sec.

2. +1/18 and - 1/9 mile per min. per min.

3 40 ft per sec. per sec.
, 37 4 ft. per sec.

VI. Page 37.

3. OM = a sin (4/+f), where a — $s/$l2 and tan t= 2.

4 {a) ± 3/2 cm per sec
,

(^) ±3^3/4 cm. per sec.,

{c) ± 3/4 cm. per sec.^

(li) - I /4 per sec

VII. Page 4a
2. v= 4 96 sin (w/+ 54°).

4. Resultant amplitude = 187 and
Phase angle = 23" 50' r jarly.

2 N 581
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VIII. Page 43

3. 2* 106 miles per sec (or, 2 096 m./sec., by the appioximation),

4. 5 mm. 5 8 sec.

5. 6*98 miles per sec.

IX. Page 51.

2. Time to halve Vis ^ \ogg 2.
A

3. See Equations (2) and (5) of art. 41.

4.

X. Page 5 5.

2. If the original motion were /= sin// and the retardation introduced were
2 k per unit velocity, then the amplitude would be affected by the factor

and the period by the factor//^ where ^2—^2 _ ,^2^

But if the period were i/ioo sec. and the damping such as to reduce
the amplitude to (i/^)th in loo vibi.itions, we should have k = I per sec.,

and/ = 2007r per sec. ,
hence

^2 ~ k}z= 4o,ooo7r2 - I nearly.

Thus the effect on the period is only about i in 800,000, though the

amplitude fell to i/^th in a second.

3 y — ae~^^ sin (i2/+€), where a and e are arbitrary constants depending on
the initial conditions, T — the logarithmic decrement is 57r/i2 per half

period or 5ir/6 per period.

XI Page 58.

3. Angle of elevation = 45^ + half that of incline; or, in other words, the

direction of projection bisects the angle between the vertical and the

incline

6 261^1- feet from point at which velocity was 1200 ft per sec, and 2381^
ft from point at which velocity was 1000 ft per sec.

8. Speed of projection = 120 5 ft./sec. neaily, if we take .^=32 ft. per sec. 2
,

angle of elevation = 4 1°38'.

XII Page 62.

3. {a) s = al cos { sjigll) /} ip) s= sin {

4 Period = 2 037r(//^)^^^ nearly.

5. Velocity = I 7 ft./sec nearly.

XIII. Page 67.

1. Base = 27r<2, Curve = 8a:, where a is radius of circle.

2. s~/^a sin ^ (with the notation of art 58).

6. The constant angular velocity is ±

XV. Page 72.

I. (a) Circle, (d) Two coincident straight lines.

3. Co-ordinates of ends of arc are (
- «, “ta); Velocity= na and is perpen-

dicular to axis.
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XVII. Page 78.

3. Radial acceleration is -^sind; Transversal acceleration is -^cos^;
where B is the angle between r and the horizontal.

4. Angular velocity= -|— 7- — .

<2® +^ - 'i^au + bv)t + («* +

XX. Page 91.

4. For Parabola v^=2<olr ; for Hyperbola - + - )\r a/

5. Point where the velocity is checked becomes an end of the major axis of
the new elliptic orbit, the sun being at the distant focus. The periodic

time is diminished according to the expression in

which the letters with subscripts refer to the original period and velocity.

XXI Page 94*

I. (i) 13 radians per sec., (2) 40 radians, (3) 8t. radians^ per sec.*.

2 5 radians per sec. per sec,

3 4 (or ~ 7) seconds.

4. ^ = ^
cos It,

XXII. Page ioi.

I C is the midpoint between the initial and final positions of A.

4. The component accelerations of the highest point are 2/ horizontally

foi wards and v^ja vertically downwards, the acceleration of the lowest
point is vertically upwards.

XXIlI. Page 105.

3. OP \%x-y-z\ OQ is - = - =

PQ is
ar - I _jr -

3 2

4. cos B—')l Vb/.

4 3
- I

T~'

XXIV. Page 108.

4. Velocities aie zero, va(a^ + ;

Accelerations are - zero, zero.

5. Vertical acceleration is downwards and is i 8856 cm /sec.* ; Radical
acceleration is inwards to the centre of the circle and is 24 i cm./sec.*.

XXVII. Page 125.

2. The plane of vibration would appear to rotate at the rate of (27rsinX)

radians per day, 01 one complete revolution m (cosec X') days.

4. An angular acceleration is required about an axis at right angles to both
the axes referred to in the question, of magnitude equal to the product

of the two angular velocities, and of sense such that the axis of angular

velocity is turning towards coincidence with that of the angular
acceleration.

7. See equations (5)-(9) of art i"4.
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XXVIII. Page 130

3 (i) The central axis QS is parallel to the horizontal axis PR (see Fig 53)
and at a distance of 5 cm from it and from a parallel axis through P'
the final position of P. (2) 5 cm. (3)

60°

XXXIII. Page 152.

I. (i) Yes (11) Yes.

XXXIV. Page 157.

2 The speed v of the crosshand and piston is connected with that of the
crank pin, by the equation

/ • cos^\
v-u (sin

I

4-—

^

J.

For a very long coupler, this becomes
v— usm 6 nearly.

XXXV. Page 165.

4 The elongations along the three axes are as follows, each being
accompanied by lateral contractions of one-fifth of those values.

, ,
001 001 001

-y’ —
(d) 00025, o, -00025

0005 0020 0005"
78

“’
“iF’ ~iS~’

XXXVII. Page 179.

I (a) + = ooi)> :
(i) +>’+ '

( I 008f (o 998)''^ (o 998)*'^”

6. No; successive pure strains involving only elongations along the same
co-ordinate axes cannot result in a rotation

XL I. Page 205.

5 Distance of penetration s against uniform resistance r vanes as (i) mass
m and (2) as the square of the velocity 7/. This is because \mv‘^ — rs.

Velocity of emergence from board one inch thick is

^34= 1943 65 ft./sec.

6 When the thread is at an angle 0 with the radius which is drawn
vertically upward from the centre, the tension is given by

T=:m{^~ -geos

where m is the mass of the body, v its linear speed, and r the radius of

the circle.

XLII. Page 210.

3 464/17 (or 27 294 . . .) and 600/17 (c 35 294 . . .) ft /sec.

4 -832/17 (or -48 9412) and + 120/17 (c +70588. )
ft /sec.
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XLIV. Page 217.

I. During the acceleration a, the equilibrium position of the thread is in the
vertical plane containing the acceleration and at an angle ^ with the
vertical where -a/j^ Oscillations may occur of period r^-
2 tt where = \ g\ When the carriage is on the curved part
of the line, the equilibrium position will be in the vertical plane
containing p and at the angle 7 with the vertical where \.iiny=- - v^Jpg
and possible oscillations are of the period

T2-2TT where g.^^ =^2

^

3. The elevation of the outer rail is 2 55 inches.

XLVII. Page 233.

I. 87I, 270, and 303I lbs inches^ about the 9 inch, 4^ inch, and 3 inch
edges respectively.

3 f Ma^ and *5 Ma^ for shell
;

J Ma^ and \ M(P for solid sphere

5 ^ (4^*^ 4- where a is axis and b base radius.

6.
^ {2cP + 3 <^^).

20

XL IX. Page 243.

I 12 88 ft./sec.2, 25 76 radians/sec 193 2 poiindals or 6 lbs wt.

4 Eiror would be 2^/105. Spurious determination would be 20^/21.

L Page 249.

r Periods are (i) 27r sji^hlg) and (11) 27r s/{2,hl2g),

2

(1) Two-thirds total length from point of suspension.

(11) A quarter of the radius below the centre.

7 Minimum peiiod for bar is 27r v/3).

Minimum period for plate is 2v V3), where s is side

Greatest period approaches infinity as axis approaches centre of gravity.

8. No; because the thread would not remain straight, since each particle

(if alone on the thread) would have its own special period of oscillation.

10. Length of equivalent simple pendulum = /z 4 where a is the radius

of the disc and h is the distance of the axis from its centre.

LI. Page 259.

3

Impulse= 15 lbs ft /sec
;
angle = cos~M^^ = 25° 19' nearly

5

P \s aj x^3 from middle of bar of length 2a.

9. The linear acceleration of the centre of mass of the lamina of mass M is

XjM^ and is parallel to the direction of the force X The angular
acceleration of the lamina is -{Xr sin where r is the radius

from the centre of mass to the point of application of the force A' and 6

is the angle between rand AT, finally k is the radius of gyiation of the

lamina about an axis through \s centre of mass and perpendicular to Us
plane.
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LI I. Page 270.

3. It would ‘dilute’ ^ more, t.e.^ make the linear acceleration smaller.

4. If the incline is at « with the horizontal and the groove has the semi-
vertical angle d, then the linear acceleration of the sphere is (5510^^

^ sin a)/(2 4- 5 sin^ ^), and the angular acceleration is (ssin^^sin a)/7?

(2 + 5 sin^^) where R is the radius of the sphere.

5. Time with liquid = (2//jf sin ^

;

time with ice = (i4//5^sm

7. Acceleration is ^^ sin u

LI 1

1

. Page 275.

2. The magnitude of the toique equals the product of angular momentum
and rate of precession and occurs about an axis perpendicular to both
the other axes

LVL Page 286.

2. Minimum speed of Lpin is ^ s!{A Wh cos the notation being that of

article 297.

LIX. Page 301.

I The drawback lies in the fact that the moments and products of inertia

in use may be all varying.

2. They present m a very compact, comprehensive, and harmonious form
the basis of particle and rigid dynamics.

LX Page 304.

4. 270° >a >90*^
;
for minimum R we have P cos a = o, the minimum R

being

LXIIL Page 315.

2. 5 49 turns nearly.

LXIV. Page 317.

I. Tension 12268 lbs. wt Vertical component 121 04 lbs. '\t.

1 555 74

4. 1 16 ft. 2 inches.

6 63 ft. 4 inches.

LXV. Page 322.

2 The parabola is below the catenary. The equation of the parabola

may be written y-c tlie catenary

6.

If W IS the weight on the cord from lowest point to where ordinate isj'

(of n gative value), then the law of load per unit horizontal length is

dW
dx

uhere a is the radius of the circle ^nd 7 o is the honzontal tension at

lowest point.
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LXVI. Page 328.

4 For wire from o to the components of attraction are

X-~l cos and y=^ f
^Jo

The conditions for equilibrium are

f27T r2n

I /(^) cos 6d6— o and
/ f{6) sm 6d6— o

JQ h
5. Resultant intensity of attraction acts at (^, a)^ is directed to the origin

and has magnitude (2 - s}L)y^nla.

LXVI I. Page 333

5. Gravitative field h«is dimensions yMIJ.\ and so here involves y and or,

and since (r = MjJJ‘ dimensionally it can involve nothing moie except
numerics and ^r. Also we see that y and a must each occur raised

to the power plus one

LXIX Page 344

3 Yes
;

it IS only for the inverse square law that these tubes and eqiu-

potential surfaces have the pioperties named

LXX Page 349

4. Let V be the mean potential of the spheiical surface of centre O and
radius a due to matter m external to the sphere, of which an element dm
IS .It P d Instant r from a point Q on the sphciiral surface at which the

potential is V and an element of surface dS is taken Then we may
write

4^u‘V=^jjydS = I

j

— [Potential at O of matter external to spherical surface],

or, m words, the mean potential V equals that at O due to the same
matter, as was to be shown,

5. If the cylinder is of density p, of finite i.idms a and extends in length
from - oc to + cjc, then the radial field at distance r from the axis is

R= - 2nyarnlr

If the same cylinder has one end accessible and the axial field is required
at a distance c from that end, the other end being at we have

Z= - 27ryp{ s/(e^ + - c]

7. Time IS {tt + 2){a^lyMy!'^ sec. where M is the mass of each sphere.

LXXL Page 357.

8. For P as origin and PI3 and PC as axes ofx andj', wc have

R~ ^(480 - 120^3)= 16 5,

and its line of action is 12^^ - (10 V3 - 6)a‘- AB ^3 = 0.

9 X = 4A

10 The tangent of the angle is
< 3- 2Cri+Gg

12. 3a' + (3
- 2 + \/2- ^ =0.
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LXXIV. Page 375.

4. At inclination sin~‘ 3/8. Yes, it is stable for smaller inclinations
; but

for inclinations approaching the critical value the stability has very small

range on one side.^

5. Tan~KS^/3 ^)- No, friction would not modify it but adhesion might.

6 Tan“»(4\/3/5) = 54“ii'.

7. Work is 5176 ft tons wt.

LXXV Page 381.

3. Tension is 2irP amnj{m + n) lbs. wt.

9. P = {o 183) No, for f<X.

13. Angle rod makes with vertical is tan~^(P/^/w/).

LXXV I. Page 387.

3. Depth IS 3/16 cm.

LXXVII Page 391.

1. Hypotenuse has compression 4w/ $sIio The equal sides have tensions

and 37iy/V^5 ,
the greater tension being on the side connecting

and point of support.

2. .^Fhas 2 tons tension, CF has 3 75 tons tension, jE'/^has 4 5 tons com-
pression, and (P/^has 5-5 tons compression

3. The tensions are AP = BF= IV/s, IW-2lVI^. The compressions are

AF=BE=^ H^V2/3, VE=^ £F=^ IV/3,

4 Tensions are each = Wbl{g

5. The tensions are AB = ^IV/z, BC— Wj2y DA^ ''^2.

The compressions are CZ?= lVl2^ BD=^ CE— IVI s/2.

LXXIX. Page 41 1.

5. With origin in the middle of the beam and length 2/, equation for

shear \s,y=Qx (where Q is negative), and equation for bending moment

is 0/2/2).

6 The shear is zero and the bending moment is the product (half weight
of bar into a quarter of its length) (See Figs 207-209).

8. The stress m a flexible string is tension only Greatest value of bending
moment is 86 56 ft. tons wt

,
and occurs where the 10 ton load is.

LXXXII. Page 425.

4. (i) Horizontal force ^ JP'cot ^

(ii) Couple is
( Wp cos a)/2rr.

1 Or, m more detail, for angles of inclination less than tan ^3/8 (2o"33') there is one
position of equilibrium which is stable

For inclinations between tan~^3/8 (2o'’33q and sin '3/8 {zl'i') thtie are two positions

of equilibrium, one stable and one unstable. For . 'clinations greater thqn sin 3/8 there
ar(‘ nr> no*.iUnn<! of pmiihhrnim
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LXXXIII. Page 430

6. Resultant thriist acts horizontally from the high level side to the low
level side, normally to the dock gate ; at a point in the median vertical

line 7j feet above the bottom common to the water on both sides the
gate. For fresh water of density 62 3 lbs. per c ft. the magnitude of this

resultant is 140,175 lbs. wt., for sea water of specific gravity i 03 (com-
pared with that of fresh water) the magnitude is 144,380 lbs wt.

7. Resultant thrust acts horizontally from the hi^h level side to the low level

side, normally to the lock gate at a point in the median vertical line

6,^ feet above the bottom common to the water on both sides the gate
The magnitude of the resultant is 26 116 tons wt.

LXXXIV. Page 437.

5 Two-thirds of the axis is in the upper liquid. The upper liquid con-
tributes to the upward force on the body by pressing down on the lowei

liquid, and so increasing the pressure which it exerts at any given level

and in any direction normal to a surface exposed to it.

7. j- cos” d, where tan Q — rjh.

8 Let / be the longer edge of the board and B its angle with the vertical,

then (tP cos^B = Hence for ^ = o, h — l sjcr

948 feet 4 ft. 9 6 inches.

to Total pressures on P(2P and PRCD are as 2 9
Centres of pressure are m the median line through Q and at vertical

depths cos B and cos B for PQR and PRCD respectively.

II. Required couples are as i : 16, if the centre of gravity coincides with the

centre of buoyancy.

XCII. Page 484.

1. Minute hand tt/iSoo radians per sec., hour hand 7r/2 1,600 radians per
sec

,
bullcv 2400 revolutions per sec.

2. Length of equivalent simple pendulum is W[w, where IV is suspended
weight and w IS weight per unit extension of spring

4. Quickest run in the numerical case is made m 3 mm. 5-9 sec.

(Take 32 ft. per sec -)

8 Greatest height attained is ^ or h sm^ a

9. The eccentricity is 1/74 or 00135.

10 The eccentricity is one-tenth, and the maj»^r axis
^

feet or
TT

37,994i'r feet.

13. The eccentricity is one-half.

25. I he locus of AP is a plane at right angles to BAC and bisecting the

angle BA C, which equals 2B say Then, if the angle of rotation about
AP IS 2(fi and rj/ is the angh between AP and the normal to BACy we
have tan 0 = tan B see.

yf/
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XCIIL Page 487.

2. For ^=32 ft./sec.^ the excess force is 11/27 tons wt.

4. Mean pressure is 140 lbs wt.

The value found for the greatest force depends on the assumptions
made m the absence of exact knowledge. Let us suppose throughout
that during approach while m contact the force increases almost uni-

formly with time and that it decreases uniformly with time during
recession. There are still other assumptions winch may be taken
successively. Thus, during approach and recession, let there be either

(I) Equal meanforces^
(II) Equal spaces traversed by the centre of the ball, or

(ill) Equal times occupied.

Then we have as the approximate values of the greatest pressure in each
case the following :—(1) 280 lbs. wt

, (11) 700 lbs. wt., and (iii) 400 lbs. wt.

5. (<2) 300 ft lbs. wt. ip) 400 ft. lbs. wt.

10 90 566 ft /sec.

1 1 The tension is mv^l2r sin (tt/^) = mv^ja.

12. The maximum kinetic energy is i25n-*/i6^= 2*41 ft lbs. wt.

13. The tension at x from A is - x^)l2g lbs wt., if wjgxs in lbs and
/ m feet.

14. The velocity is ii 31 ft /sec taking ^=32 ft /sec 2, or 1134 ft /sec

,

taking ^=32*2 ft./sec.^.

16. Ratio of masses of Sun and Earth is 64X 10*^4- 169 = 378,698.

17. Altitude^ at time i is given by

19. If m IS the mass of each particle, T the tension of the thread, and a the

radius of the disc, we have generally T-^^{i - sin 6) and, at the critical
2

position, v^—ga cos B. We then find from the given equation 35‘’44',

whence at the critical instant 7'=o-2o8 mg and v — {o 901) i>J{ga).

20. If the masses are M and m and their distances are R and r from theil

centre of gravity G, then the point G will describe the usual parabolic

trajectory of a projectile, while the masses will revolve round G at the

initial rate of rotation (w say). The tension of the thread given by
either of the equivalent expressions MR(jiy^= mroi^.

XCIV. Page 490

3. Axis for minimum period must be parallel to the 12 inch edges and be
at a distance of x/( 1 3/192)= 0 26021 ft. from the centre, the direction of
this distance being immaterial. The value of the minimum period is

27rx/(0-52042/jf)=0 799 sec.

4. The centre *of percussion is the end remote from the axis. The impulse

Q on axis is given by - yPjt^aj where P is impulse at lower end and 2a
is the length of the rod

6. The angular velocity is and the reaction on
' {I I + 3 sin ^ J

’

the plane is w (4 - 6 cos a cos ^ + 3 cos^^)/(i + 3 sin‘^^)“.

7. The smallest vertical distance of descent is sin‘^(a/2), the rod is

then upside down. At four times thi'^ descent the rod will be again

vertical and (for the first time) again ere. t.
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8.

See article 290.

10. Critical angular velocity is -f

—

3<g’s>n a \ 2^ is the length
^ l2a(i + 3cot2a)j

' ^

of the rod.

11. If Pis blow on obstacle and Y that on point of suspension we have
P—M s/{2gal^) and Y=M where M is the mass of the rod and
2a its length. For ^=32 ft /sec.^ we have Pl^o-2^2 and YJ^o— mJ2.

12. If the inclination of the beam with the vertical is then we have

{k^ + sin2 B) = ^ - cos B),

14. Let the rod AB have length 2a and mass then when it reaches an
inclination B with the horizontal, we have

{a) its angular velocity given by
2<i( I + 3 cos^

ijb) the direction of motion of its centre of gravity is at B with the
vertical, and

(c) the reaction of the groove on end B is

oAfp-
sin2(9(3 + cos‘^^)

^ ^ 8(i+3cos‘''fl)^
‘

16. At the instant of leaving the wall the rod (of length 2a) makes with the

vertical the angle cos~^ 2/3 and is turning at the rate s]{gi2a) radians
per second, its centre of gravity has the component speeds •Ji2^a)j^

horizontally from the wall and V2 vertically downwards, and
Its weight on the floor is one quarter that of the rod.

17 The moment of inertia is mass (height® + 4 radius2)= 1/6 lb ft. 2.

19 If P is the centre of percussion for the centre of suspension 6’, then S is

also the centre of spontaneous rotation for P, (See art. 270).

20. Moment of inertia required for hemisphere is 83w;V320 Period of

small oscillations is 27r ^(26^/15^) sec.

XCV. Page 493.

5. Centre of mass is 4-8 inches fiom AD and 4 4 inches fiom AB,

7 Tension in chain = W.

9.

The centre of gravity of the frustum is 3JI feet or 3 5357 from the
centre of the larger base.

10.

The extre.ne positions of the cord are in the vertical plane through the

rod and make the angles tan“ ^ X with the vertical.

13,

Resultant force is 2\/3 in diiection at angle of 30° with force i reversed

Couple IS 3«, where 2a is the distance between parallel sides, or, couple

IS 3.f V3, where the side is 2s.

16. With weights W at B and Ey the stresses are as follows :

—

In and tensions of 032 5 fF", in yfCand tensions of 0-85 1 Wy
in BC and DEy compressions of 0851 Wy ai\d in CD a compression of

o 586 W
With weights W at C and Dy the stresses are as follows .

—

In AC and AD tensions of i 052 W and in CD a compression of

0-325 W, The members A By BCy AEy and DE arc theoretically

without stress (The above results have been obtained from four-figure

tables , when solving by smaM scale drawings on the graphical method,
an accuracy of about one per cent, is all that can be expected.)
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19. If the pressuie is P units of force per unit area, then the force to be
applied along the tangent is 2/x where a is the radius of the
cylinder.

20. The rope from the vertex of the triangle has a pull of 0916 cwt or
102 65 lbs. wt

,
the ropes fiom the ends of the base have each a pull of

o 524 cwt or 58 66 lbs. wt.

XCVI. Page 495

8. The attracfon .s or
i where

y IS the constant of gravitation, <r is the surface density, a is the radius,

h is the length, and M is the total mass of the cylinder.

9. If the plane required cuts AB 2X C, then the distance AC approaches
zero. (See art. 346 )

XCVII. Page 496.

4. If the lines pass through E and on AD. then AE~ 10V3/3 feet and
AF^iosltli feet.

5. Weight of metal required is 0635 oz. per sq. inch

6. Condition for couple is the couple is then {ph^^(Tk^)lb— ph^

{h^k)l6,

9. The height to which it must be filled with mercury is 4*881 inches.

10. Height of cylinder is 8}^ inches

11. If the bore of the pipe is so small that the first portion of liquid

immediately fills it and imprisons the air, the specific gravity of the

liquid IS 13*745. But, if the bore is such that the first portion of the

liquid runs down to the bottom of the pipe and closes it there, then the

specific gravity is only 4 5S2

12. Upward vertical force on axle is - 2rr), outward horizontal force

on axle is No couple is required to keep the sphere from
rotating, for the weight of the sphere passes through the axle and so do
all the liquid pressures since they aie normal to the surface and therefore

act along radii of the sphere. (The vertical components of the liquid

pressures give a resultant upward through the centre of gravity of the

immersed hemisphere, the horizontal components of the liquid pressures

give a resultant acting outwards through the centre of pressure of the
vertical section of the sphere , but these two forces h«.v^e equal and
opposite moments about the axle )

14. Let the radius be axis OX in the surface and axis OY vertically

downwards; then the centie of pressuie has co-ordinates and

y- Sira! 16,

17. (a) Pressure on each of Uie three inclined faces is perpendicular to that

face, has magnitude 2 •J^a^wg}^ (where 2a is the length of the edge and
w the density of the water), and acts at the middle point of the median
of that face which passes through the vertex.

{b) Pressure on each of the three slant faces acts perpendicularly to that

face through a point in its median line through the vertex and at one
quarter of the median from the bottom horizontal edge, its magnitude is

4 \^2a\ugl'^. The pressure on the bottom face acts vertically down
through Its centroid and has magnitude V2 d^wg
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t 8. The least value of the specific giavity is 5/6

20 It has been assumed that the temperature is constant throughout The
quantity denoted by the symbol k-pjp where ^ is the pressure

;
in other

words, k IS ^-times the height of the homogeneous atmosphere.
^ = 84 1,906 ft. sec. units

XCVIII Page 499.

I. The fluid would tend to push the tube befoie it if the tube were smaller
at the outflow end than at the inflow, and vice versa. If the two ends
had equal cross sections there would be no resultant longitudinal force

on the tube

5 From equation (27) of art 447, by addition but without integrating, we
have

dp — xdx + <ti‘*ydy - gdz\.
Then, assuming temperature constant and writing / = and mtegiat-
ing we find

k log
f)
- (x>‘ 5. tZ,. whence p =

^ ~

where C, the integration constant, is yet to be detci mined. In the

question let the total 7Hass be yl/, and express it by the double integration

of a ring element of radius r and height z Thus following Besant and

Ramsay {Hydromechanics^ Part I.), we write Af~ 27r
j

f p rdrdz
Jo Jo

On substituting for p and integrating, we have for the total weighty

from which C may be determined

XCIX. Page 499.

I. Work IS 2^\ ft. lbs wt.

2 Work IS (1) 30 ft. lbs wt. and (11) 33^ ft. lbs wt

3 Deflection at end of beam is - $wa^j2Ebd^ Equation of beam’s centre

line u y— ~ + 6a^x - Sa"^)

5. Maximum stress is at outer and inner margins of bent rod and is

12,083} ^^bs. wt. per sq inch This is reduced to 10 lbs. wt per sq. inch
less than 4 tons per sq inch for a diameter of 540 ft

C. Page 501

4 Let the radius of the pile be r, its total length /, the immersed length

and Its specific gravity be 9
;
then it begins to leave the vertical position

when z//= I - v'( i

6. 67 1882 miles per hour.

II. Horse power is 38,187-5, resistance = 232^ tons wt., coal consumption is

34 096 tons per hour or 4,333} tons per trip of 3cxx> miles.

15. Height of centre of gravity of tray is 5/7 inch. The centre of gravity of

the whole system is raised 1 o3 inch on filling with water

16. In the numerical case the Unsion is 14 91 lbs wt. (or 20 \'5/3).
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1 8. Close the surface m the simplest way then equate the resultant force or
the closed surface to the components on the unclosed and closing surfaces
respectively. If, for example, the unclosed surface were the curved part

of a hemisphere, close it by the base.

Upward force in the numerical case is 9 35 tons wt

20. Greatest deviation of rod from vertical is
^

- X and the pressure on the

horizontal plane is then
/ sin X

7.h >

Cl Page 504.

1. The masses of the particles in order, beginning at the end of the rod of
mass aie - M')l 12^ 2(i/+ and (5M - M)}\2. Hence real

particles are possible {t,e. their masses are positive) when the ratio MjM
lies between 5 and 1/5.

2. The couple required i'' n^f20= 1*55 foot poundals.

3. The air in the diving bell is compressed from height a io a. height

ahjia + d + /i) nearly, when this height is negligible in comparison with
(a + d + A)

If the rate of introduction of air at atmospheric pressure be measured
by V=/lty where f is the fraction of the height a of the bell which it

would fill at atmospheric pressure in time t\ then V-v/A.

5. (i) To describe a circle the velocity must have magnitude and
must be directed at right angles to the initial distance c of the particle

from the centre of force whose proportionality factor is /x.

(2) To describe a parabola the velocity must have magnitude y/{2fxlc\

but may have any direction.

6. The water will rise 8 25 feet, leaving only 3 75 ft. for the air.

7. When A is on the point of moving toward the wall the horizontal force

applied there is 89 IVji2o-o 7417 W.

8. Inclination of AB is tan“^ 2/*y3 = 49
° C 24".

9. Energy which has become mechanically unavailable is

PQV^

II (See equation (ii) on page 202 and note just after it) Momentum
transferred is to total momentum as 175 :4r6.

12. Since it is stated that the pulley of mass 40 gm. is smooth we must
suppose It does not turn

;
then the accelerations are as follows •

—

The no gm. has 7^/125 down (and the 40 gm pulley the same up)
;
the

35 gm. has 3^/25 down, and the 25 gm has 29^/125 up.

14. 12,67075 cubic feet of salt water must pass into the fresh water tank to

establish equilibrium.

16. Fraction of total length which is immersed is given by

/= I - ^/(I -flr/p).

The tension on the string is then given by
w{x -/pM,

where IV \s the weight of the rod.

20 The oil will sink 172 13 cm. \
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Cl I. Page 507.

2. laking^=32 ft /sec we find speed of sleigh reduced to miles
per hour

;
for g~ 32-2 ft /sec.^ final speed is 2786 miles per hour

3. Patio of diameter at surface to that below is ^(26/1 7) or i 1521 5.

4. The condition required is tan a .

(H + + (2/r)*

7. Period is 2»r V(2//45^). This cannot be numerically evaluated until we
know the units of 1.

9. First tension is 10 417 lbs wt. New tension is 62-461 lbs. wt.

16. If vertical angle of beam is 2a, its coefficient of friction on the ground /i,

its weight W^ and that of the cylinder w
,
then when the beam is about

to slip, we have
zu __ fx Sin (I

W cos a- fx Sin a

17. Attraction at sixty-fold distance is 2/225 or 000888889 poundals. The
period at this distance is n V(2 x 225 x 60 x 4000 x 5280) sec., or 2,372,358
sec

,
or 27 45785 days

18. When the rod touches the hemisphere at the end of a radius at 6 with
the vertical, let the rod’s speed down be v and the hemisphere’s speed
horizontally be u, then v~u tan 0. Also if the system started from rest

at ^ = a, we have as the energy equation 2^a(cos n - cos $), where
a is the radius of the sphere. Whence, u'^=:2ga(co5a- cos $) cos'^ d

and 2/^= 2^;^<2(cos a - cos sin^^. For the special case of a practically

zero, these become

K = 2 sin
^
cos $ ^J{ga) and v=^2 sin

^
sin 6 ^iga).

Cl II. Page 510.

4. The weight 18^^(0-464531) gms wt.

6. New reading of barometer is 28 77 inches (on the assumption that the

mercury has not changed in temperature).

10. The w.>rk is a^w{rr‘^- 8)/8, where a is the radius of the rope’s centre line

and w Its weight per unit length.

14. When the axis is parallel to the plane of the triangle the period of

oscillation is 27r •s}{sP\^g\ where p is the length of the perpendicular on
the hypotenuse from the right angle. When the axis of rotation is at

right angles to the plane, the period is 2Tr *^{p\g\

16. If the prism has mass M and equal sides of its base have length r, the

moment of inertia required is Msy^,

17, See arts. 427 and 428.

19.

Assuming the thread to be vertical it must be adjusted so that \/(3/8) of

the height of the cylinder is immersed. The tension of the thread is then

of the weight of the cylinder. If the thread were cut the

cylinder would rise vertically till less than (2+ V2)/4 (or o 85355) of its

height were immersed, when it would become unstable and settle with

Its axis horizontal.
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CIV. Page 513

1. The symbol k denotes pjp where p is the density
,

or, it denotes ^-llmes
the hei^dit of the homogeneous atmosphere The value of k is 901,600
ft 7scc ^

2. For a cubic ft of watei 62 5 lbs and ,^,' = 32 ft /sec.^., the pressures are

4,500 and 5,625 lbs. wl per sc] foot. With the values 62 3 and 32 2 for

the same quantities, we find for the pressures 4,45774 and 5,572-18 lbs

wt per sq ft. The total forces exerted over the area of four square
inches would then be

(1) 125 and 156 25 lbs. wt
,
or (ii) 123-82 and 15478 lbs. wt.

5. Let the rod have length 2/ and the pegs be at P and Q distant respec-

tively a and h from B ; then,

(I) when all are smooth^ the pressure on the plane = the weight of

the rod, and the pressures on the pegs are each Wl sin Ojia -
^),

where 6 is the angle of the rod to the veitical

(II) For the case where the plane is removed and the pegs become
rough let the coefficient of friction be p

Then the condition for possible eqiiilibnum is

^ tan 0~{a- b) - (2/-a- b)

Normal pressure from rod on peg at P is W^cA sm 0.

a - b

Normal pressures from rod on peg at Q is W^-C~ sin 6.

Tangential frictional forces at pegs are p-times the above

6. Let the equal weights be each Wy then the tension of the tie is Wy and
the stress in the rods are all of magnitude W/ s/2. The upper pair are

in tension and the lower pair in compression, so that the lower pair

would be liable to bend if W were large

9. Let a be the distance of focus from vertex, then the centre of pressure is

at a depth of I2al^ below the surface, and is distant 2^2/5 horizontally

from the focal chord,

11, Time of a vertical oscillation is 27r sJ{VjAg)y where V is volume of liquid

displaced and A is area of plane of flotation

Time for the cone if height is h is itr v/(i 7 = 3*35431

12. Specific gravity of third liquid is 0855
15. The rod will leave the vertical plane when the end in co itact has fallen

to a height 2/3 of its original height Or, if its original inclination to the

horizontal were a, it will leave the vertical plane when inclined to the

horizontal at By where sin 5 = f sm a

16. Let the plane be inclined B to the horizontal Then after rolling a
length s of the plane from rest, the linear velocity of the centre is given

by = 2(^^sin B)Sy when the core of same mass as shell is loose and does
not rotate

ti) v^= 2(^gsm B}s, when there is no core
;
and

(2) v'^ = 2{\gsm B)v when the core adheres firmly to shell

The factors in brackets in each case are the linear acceleration of the

centre of the shell.

CV. Page 515.

I. The position of the centre of gravity is 21/88 of the radius from the

centre of the diametral plane and on the radius perpendicular to that

plane.

4. The attraction is rrypaw, where y is the gravitation constant.
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7. The motion is elliptic, its equation referred to the axes inclined at 60“

being where a is the common value of the amplitude along
the axes ofx and^'.

12. The axis for minimum period is parallel to the major axis and distant
bjz from it, where b is the semi-axis minor. The minimum period is

27r J{bl^).
evil. Page 517.

6* The resistance is 14^5^= i4*4o& lbs. wt. per ton.

9. The greatest stretching force attained is

where a is the cross-sectional area of the string. The motion of the
mass m is thenceforth simple harmonic of period r = 27r

CVIIL Page 519.

2. The angular acceleration is {Ma - Ma')gjD^ and the tensions of the
strings on the wheel and on the axle respectively are

{M'a\a + a') + fxk^}MglD and
{Ma{a + a') + p.k^}M'glD ;

where
D is Ma'

^

7. Required ratio of breadth to height is V{6«f(i - ^)}, where s is the specific

gravity of the solid in terms of the liquid in which it floats.

CIX. Page 520

2. The inclination of the velocity to the axis of jr is ^

13. Angular velocity IS Velocity of Cis «\/3 and is perpendicular
to GC

18 The eccentricity of the new hyperbolic path is where e is the
eccentricity of the old elliptical path

CX. Page 522.

I. Taking ^=32 2 ft./sec.^ the time from rest to rest is 5 min. 48 91 1 secs.

IQ. When it has swung through the angle 120° and the particle has risen

3^/2 .

CXI. Page 525.

I. The moment of inertia about axis is Ma^l2. The angular velocity

IS o>, where = 4j^(cos 6 - cos a)j'^a. Radial force on axis is

\Mg{y cos d - 4 cos a), and the transverse force is ^J^sin B.

7 Angular velocity required is 4
12. Loss IS I of original energy.

13. Moments of inertia in numerical case are 25J//6 about side 12 and 24M
about side 5 The product of inertia about the same side is 5M, whereM is throughout the mass of the triangle. Principal axes of inertia at the
right angle make the angles J tan~* (60/119) with the sides containing
the right angle.

CXI I. Page 528.

9 The centre of gravity is at 2/3 the radius from the tangent plane and
on the radius perpendicular to that plane.

12. The centre of gravity is on the radius of symmetry and at a distance
2 a^ + ab + b^ r . . ._ — from the centre.
TT a + b

15. Q — 2PsJs and acts along the line joiniiig the middle points of DE
and DA,

20
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1 6.

17.

3

14.

18.

3 -

10

3

3.

I

5 -

7.

13-

15-

8.

2a

(I) The natural length is =

(II) The modulus for the string is
~ ^2^1

,

(ill) The work done from ^ to ^ is J - <1!2

Let the horizontal span be ix^ the inclination of the end tensions to the
horizontal

yf/‘,
then we have cosh (x/^) — sec or x=c log, (sec + tan '^)

;

where c is the parameter of the catenary.

CXIII. Page 531.

Ratio of attraction of frustum to that of small cone is {/i - h')lh\

Work is
B-A
‘lAB'w

m.
CXIV. Page 533.

8006 5 metres

Force required is f<z3/z;(4<j + 3-^), where la denotes the vertical and 2b
horizontal sides of the door, h is the depth of its hinges, and iv

weight of water per unit volume.

The limits for the value of its specific gravity are

,±f.

the
the

CXVI. Page 540.

The moment of inertia of the wheel alone is mh{l - k\

V35/3 and 1/3 n/35

CXIX. Page 549.

5

At the intersection of the diagonals.

The rod comes to rest when P makes with the rod produced the angle
sin-i {filVIiP)

Pressure has horizontal component 2U!®w/3 through centre of pressure
and vertical component through centre of gravity of quadrant.

CXX. Page 551.

Work of lifting clear is 5 WajZy work of submerging completely is also

5 WajZ.

The total kinetic energy of the rhombus is

where nt is the mass and 2a the length of each rod, 11 is the linear

velocity of the centre of the rhombus, <0 and <I are the angular velocities

of opposite pairs of parallel sides.

,
:X{Xa-\-Yb) YiXa+Yb)^

The co-ordinates are
|

Span is 88-14 ft, sag is 20 71 ft

(i) \Ma\ (11) ^Ma\
Tension is 2 06 lbs. wt.

CXXIl. Page 557.

Reaction is vertical of value Mg{s - 3 cos a\

mi2 .



MATHEMATICAL TABLES
(reproduced here by kind permission of the controller of

H.M. stationery OFFICE.)

{A copy of these Tables will he supplied to each candidate at the Examinations tn

Practical Plane and Solid Geometry^ Machine Construction and Drawing {Stage 3 and
Honours')^ Building Const} uction {Stage 3 and Honours)^ Naval Architecture

,
Practical

Mathematics^ Applied Mechanics, and Heat Engines )

USEFUL CONSTANTS.

I Inch = 25*40 millimetres.

I Gallon = *1604 cubic foot = 10 lb. of water at 62“ F.

I Knot = 6080 feet per hour= i Nautical mile per hour.

Weight of I lb m London = 445,000 dynes.

One pound avoirdupois = 7000 grains = 453 6 grammes.
I Cubic foot of water weighs 62*3 lb.

I Cubic foot of air at 0° C. and i atmosphere, weighs 0807 lb.

I Cubic foot of Hydrogen at o” C. and i atmosphere, weighs 00559
I Foot-pound= 1*3562 X 10’^ ergs.

I Horse-power-hour= 33000 x 60 foot-pounds.

I Electrical unit= 1000 watt-hours.

Joule’s Equivalent to suit Regnault’s H, is =
J Cent.^^,'^

I Horse-power = 33000 foot-pounds per minute = 746 watts.

Volts X amperes = watts.

I Atmosphere = 14 7 lb. per square inch = 21 16 lb. per square foot = 760 mm.
of mercur> = 10® dynes per sq. cm. nearly.

A column of water 2 3 feet high corresponds to a pressure of i lb. per

sq inch.

Absolute temp
,

1 = ^” C 4- 273*^ or F. +460“.

Regnault’s H = 606*5 + ‘

3^5 ~ + *305 F.
/«^*o^® = 479.

B C
logio/= 6 1007 -y- -3*

where logjoB = 3*1812, logjoC. = 5*0882.

p is in pounds per sq. inch, t is absolute temperature Centigrade.

u IS the volume in cubic feet per pound of steam.

7r = 3 1416.

One radian = 57*30 degrees.

To convert common into Napierian logarithms, multiply by 2*3026.

The base of the Napierian logarith.ns is ^=2*7183.

The value of^ at London = 32*182 feet per sec. per sec.
579
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Logarithms

1 2 8 4

0043 0086 0128 0170

0453 0492 0531 0569

0828 0864 0899 0934

6 7 8 9

Qa53 0294 <^34 0374

13

I

1139

j

1173

I

1206

14

12 8 4 6 6 7 8 9

4 9 13 17

4 8 12 16

21

20
26 30 34 38

24 28 32 37

4 8 12 15

4 7 II 15

19

19

23 27 31 33
22 26 30 33

3 7 II 14 18 21 25 28 32

3 7 10 14 17 20 24 27 31

3 7 10 13 16 20 23 26 30

3 7 10 12 16 19 22 25 29

1^1

1492 1523 1533
1384

1790 1818 1847 1875

2068 2095 2122 2148

2330 2355 2380 2405

2577 2601 2625 2648

2810 2833 2856 2878

3032 3054 3075 3096

3243

3820

3263
3484
3653
3838

3284
3483
3674
3856

3304
3502
3692
3874

3997 4014 4031 4048

4166

4330
4487
4639

4183
4346
4502
4654

4200
4362
4518
4669

4216
4378
4533
4683

4786 4800 4814 4829

4928
5065
5198
5328

4942
5079
5211

5340

4955
5092
5234

5353

4969
3105
5237
5366

5433 5465 5478 5490

5575
5694
5809
5922

5587
5705
5821

5933

5599
5717
5832

5944

3611

3729
5843
5955

6031 6042 6033 6064

1644 1673 1703 173a

1931 1959 1987 2014

2201 2227 2253 2279

2455 2480 2504 2529

2695 2718 2742 2765

2923 2945 2967 2089

3139 3160 3181 3201

3345
3341
3729
3909

3363
3560
3747
3927

3385
3579
3766
3945

3404
3598
3784
3962

4082 4099 4116 4133

6128 6138 6149 6160 6170

6232 6243 6253 6263 6274
6333 6343 6353 6363

i

6375
6435 6444 6454 6464 64*4

653a 6542 6551 6561 6371

6628 6637 6646 6656 6663
6721 6730 6739 6749 6758
6812 6821 6830 6839 6848
6902 6911 6920 6928 6937

6990 6998 7007 7016 7024

4249
4409
4564
4713

4265
4425
4579

[

4728

4281

4440
4594
4742

4298
4456
4609

4757

4837 4871 4886 4900

4997
513a

5263
5391

5011

5145
3276
3403

5024
5159
5289
5416

3038
5172

!

5302
3428

5514 5527 5539 5531

5633
3752
3866

5977

5647
5763
3877
5988

5658

5773
5888

5999

5670
5786
5899
6010

6085 6096 6107 6117

6191

6294
«395
6493

6201

6304
6405
6503

6212

6314
6415
6513

6222

6323
6425
6522

6390 6599 6609 6618

6684
6776
6866

6933

6693
6783
6875
6984

6702

6794
6884
697*

6712
6803
6893
6981

3 6 9 12 15 18 21 24 28

3 6 9 12 15 17 20 23 26

3 6 9 II 14 17 20 23 26

3 5 8 II 14 i6 19 22 23

3 3 8 II 14 16 19 22 24

3 5 8 10 13 15 18 21 23

3 3 8 10 13 15 18 20 23
2 3 7 10 12 ^5 17 19 22

2 5 7 9 12 H 16 19 21

2 5 7 9 II H 16 18 21

2 4 7 9 II 13 16 18 20
2 4 6 8 II

i

15 17 19

2 4 6 8 11 13 15 17 19

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14 15 17
2 4 6 7 9 II 13 15 17
2 4 5 7 9 11 12 14 16

2 3 5 7 9 10 12 14 15

2 3 5 7 8 10 11 13 15
2 3 5 6 8 9 11 13 14
2 3 5 6

j

8 9 II 12 14
1 3 4 6 7 9 10 12 13

I 3 4 6 7
|~ 10 II 13

1 3 4 6 7 8 10 11 12

1 3 4 5 7 9 II 12

I 3 4 5 6 8 9 10 12

1 3 4 5 6 8 9 10 II

X 2 4 3 6 9 10 II

T 2 4 5 6 7 8 10 II

I 2 3 5 6 7 8 9 10

1 2 3 3 6 7 8 9 10

I 2 3 4 5 7 8 9 10

Tbt copyright of that portion of the above table which gives ^he loganthms of numbers from 1000 to 2000 is

the propeufy of Messrs. Macmillan & Company, Limited, who, uowever, have authonsed the use of the form
in any reprint published for educational 'n.rposes.
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8
$3
|S

|SS

9
S|S

|2
Sl
2i;
3
|.S

8
SS

8

jg|S

88

7789

1

7796
1

7803 7810

7860

793 *

8000

8069

7868
I

7938
8007

1

8073

;

7875 i

7945
8014
8082

7882

1
7953
8021

8089

BI36 8142 8149 8156

8193 I
8203 8209

8261
I
8267 8274

8325 I 8331 8338
8395 I 8401

8213 8222
8280 8287

8344 8351
8407 8414

8457 8463 8470 8476

8319 8525 8531 8537
8379 8585 8591 8^97
8639 8645 8651

j

8637
8698 8704 8710 8716

7136 7135 7*43 7152
7210 7ai8 7226 7235
7292 7300 7308 73*6
737a 7380 7388 7396

745 * 7459 7466 7474

7528 7536 7543 7551
7604 7612 7619 7627
7679 7686 7694 7701
7752 7760 7767 7774

7825 7832 7839
'

7846

7896 7903
1

79*0 79*7
7966 7973

1
7980 7987

8035 8041 , 8048 8055
8102 8109 !

8116 8 I 22

i

8169 1

i

8176
j

8182 8189

8235
1

8241
j

i 8248 8254
8299

i

8306
1

8312 8319
8363 8370 1

I 8376 8382
8426

1
8432 ' 8439 8445

8488 ' 8494
I

8500 8506

8549 8555 8361
1

8567
8609 8615 8621

i

8627
8669 8673 8681 ! 8686
8727 8733 8739

j

8745

i

8785
1
8791 8797 8802

8842 1 8848 8854 8859
! 8899 8904 8910 8915

;

8954 8960 8963 8971
9009

1
90*5 9020 9025

9063
j

9069 9074
1

9079

9117 i 9*22 9128
i
9*33

9170 9*75 9180
j

9186
9222 1 9227 9232 9238
9274

!

9279 9284 1 9289

9325 I 9330 9335 9340

9373 9380 9385 9390
9435 9430 9435 9440
9474 9479 9484 9489
9523 9528 9533

j

9538

957 * 9576 9581

!

j

9586

9619 9624 9628 9633
9666 9671 9675 9680

9713 9717 9722 9727

9739 9763 9768 9773

9803 9809 9814 9818

9850 9854 9859 9863

9894 9899 9903 9908

9939 9943
1
9948 9952

9983 9987 999 * 9996

1 4 5567
t 4 5567
1

4 4567
1

* 4567
1

4 4566
4 4566
3 4566
3 45364356

4556
! 3 4556
i 3 4556
'• 3 4456

_|

3 4456

3 4456
3 4 4 5 5

3 4 4 5 5

3 4 4 5 5

_
3 4 4 5 5

3 3 4 5 5

3 3 4 5 5

3 3 4 4 5

3 3 4 4 5

3 3 4 4 5

3 3 4 4 5

3 3 4 4 5

3 3 4 4 5

3 3 4 4 5

3 3 4 4 3

3 3 4 4 5

3 3 4 4 5
2 3 3 4 4
2 3 3 4 4
2 3 3 4 4

2 3 3 4 4

2 3 3 4 4
2 3 3 4 4
3 3 3 4 4
3 3 3 4 4

3 3 3 4 4

3 3 3 4 4
2 3 3 4 4
2 3 3 4 4
2 3 3 3 4
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Antilogarithms.



MATHEMATICAL TABLES

Antilogarithms.

3516 3324 1 3532 3540

3758 1 3767 3776 3784 3793
3846 1 3855 3864 3873 3882

5200 5212 5224 5236

8933 8954 8974 8995

9141

9354
957a

9793

9162

9376
9594
9817

9183

9397
9616
9840

9204

9419
9638

9S63

9036 9057 9078 9099 I 2 4 6

1 3 3 4 5
1

^ 7 8 9

j

I I a 3 4 4 5 6 7

I 2 a 3 4 5 5 6 7
I a 2 3 4 3 5 6 7
I 2 2 3 4 3 6 6 7
t 2 2 3 4 5 6 6 7

I 2 2 3 4 5 6 7 7

I a 3 3 4 5 6 7 8
I 2 3 3 4 5 6 7 8

I 2 3 4 + 5 6 7 8

I 2 3 4 5 5 6 7 8

I 2 3 4 5 6 6 7 8

I 2 3 4 5 6 7 8 9
I 2 3 4 5 6 7 8 9
I 2 3 4 3 6 7 8 9
I 2 3 4 5 6 7 8 9

I 2 3 4 5 6 7 8 9

I a 3 4 5 6 7 9 10
I 2 3 5 7 8 9 10
I 2 3 4 6 7 8 9 10

I 2 3 5 6 7 8 9 10

I 2 4 5 6 7 8 9 II

I 2 4 5 6 7 8 10 II

I 2 4 5 6 7 9 10 11

I 3 4 5 6 8 9 10 II

I 3 4 5 6 8 9 10 12

I 3 4 5 7 8 9 10 12

I 3 4 5 7 8 9 II 12

I 3 4 5 7 8 10 II 12

I 3 4 6 7 8 10 II 13
I 3 4 6 ' 7 9 10 II 13

I 3 4 8 1 7 9 10 12 13

2 3 5 6 8 9 II 12 14
2 3 5 6 8 9 11 12 14
2 3 5 6 8 9 II 13 14
2 3 5 6 8 10 II 13 15

2 3 5 7

1

!_i
10 12 13 15

2 3 3 7 8 10 12 13 X5

2 3 5 7 9 10 12 14 16
2 4 5 7 9 XX 12 14 16

2 4 5 7 9 II 13 14 i6

2 4 6 7 9
1

XI X3 13 17

a 4 6 8 9 II 13 15 17
2 4 6 8 10 12 X4 15 17

2 4 6 8 10 12 X4 16 18

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 15 17 19

2 4 6 8 II X3 X5 17 X9

a 4 7 9 II X3 15 17 20
2 4 7 9 XI X3 16 18 20
a 5 7 9 IX X4 16 18 20
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Angle.

Chord Sine. Tangent. Co-tangent

i ;

!

Cosine.
I

Degrees. Radians
1

Cosine. Co-tangent. Tangent. Radians,
j

Degrees



INDEX
The Number'! refer to the Article'!.

AccetkrA'IED chamber, pendulum
in, 226-229.

rotation about fixed axis, 236-

237./

Aciek ration, 19
diminished proportion all)/ to

speed, 37-38 ,
propoi tionally to

square of speed, 39-43
inversely as distince squared,

34 -
3 <'^-

pioportion<d to displacement,

29-30
varying with displacement

and speed, 45
Acceleiations of point m any cun e,

112
radial and transversal, 7 P75
tangential and normal, 69

Addition of vectoi s, 1

5

Air bubble under plate, 438.

Algebiaic formulae, 4
Amount of shcai, 165, 170, 173

Amplitude, 29
Analogous relations between liiieai

and angular momenta, etc, 293
Analogy between piecessional and

circular motions, 120

Poinsot\^ between statics and
kinematics, 366

Angle of friction, 221

Angular acceleration for steady pre-

cession, 124.

accelerations about moving
axes, 1 23- 1 24, of fluid elements,

450
acceleration, uniform, 92.—— and* areal velocities, 73
and linear velocities com-

pounded, 97
momenta, 237 ; geneial expies-

sions for, 290— momentum is a vector, 291 , of

Angular momentum—continued
rigid body m plane motion, 266-

267
Angular velocities, composition of,

25/;

—
• velocities of fluid elements, 448
velocities about intersecting

axes, 1 1

8

velocity and angular accelera-
tion compounded, 1 19-120

Application of force occuis at a sur-

face or throughout a volume, 212
Archimcde?^ piinciple, 430
Aieal velocities and angular, 73.

velocity constant under central
acceleration, 76-78

Asymmeliical load on roof, 401.
Atwoods machine, 223-224 , allow-

ing for inertia of pulley, 257.
Attiactions .— graphical representa-

tion of, 348 , m cavity, 349 , of
cylinder, 343 ,

of discs, 340-342 ,

of filaments, 336-339, 342 , of par-
ticles, 334 ,

of shell, 346 , of solid

sphere, 347 ,
of spherical shell,

344-345 ,
of thick shell, 347.

Axodes, body and space, 95

Balance, the, 393
Ball^ Sir R

,
on wrenches, 42a

Ballistic pendulum, 273
Bar, bent, 464
Baromctei, heights by, 433,
Bar pendulum, 258-261.

Base point m most general displace-
ment of iig^id body, 126.

Beam, bent, 464
Beams, bending moments and shear-

ing forces in, 405-410.

Belts, 136
Bending moment diagram is a link

polygon, 410.

2 0 2
686



586 ANALYTICAL MECHANICS

The Numbers reft

Bending moments and shearing

forces in beams, 405-410
Bent bar, 464
Bernoulh^s theorem, 444
Bi filar suspension by virtual work,

422 , Alternative Method, 422<2.

Binoimal, 112.

Body centrode, 95, loi.

Bow's notation for graphical statics,

396.
BoyHs law, 202
Boys^ C F, on constant of gravita-

tion, 350.
Brachistochrone, 61-62 ; cycloid is a,

64-65 equation of, 63
Brennan^ Loim^ mono-iail car, 305
Bubbles and films, 435
Bucket descending from roller, 255-

256
Bulk modulus, 462.

Buoyancy, centre of, 429 ,
surface of,

431 -

Calculus formulae, 7-8.

Cantilever, 409
Capillary ascent, 436-437.
Catenary, 324-331 , approximations

to, 329 ;
elementary properties of,

328 , elementary relations for,

325 , equations of, 326-327 ,
para-

meter of, 331
Causal relations not assumed, 212
Central acceleiation —formula, 81 ,

involves constant areal velocity,

76-78 ;
proportional to radius, 66-

68 ; under natural law mveisely as

distance squared, 83-90(2.

axis in general displacement
of rigid body, 130

Centre of mass, 369-384 ,
for bodies

with varying densities, 385 ;
in-

dependence of translation of and
rotation about, 307-309, of iigid

body in plane motion, 264-269.
of percussion, 270.

of pressure, 428
Centres of oscillation and suspension

convertible, 259
Centrifugal reactions and torques,

306.

Centrodes, body and space, 95, 101

Centroids defined,
\
determina-

tion of, 369, elemental y examples
of, 370-373; by integration, 374-

386, of lines, 374-375, of plane
surfaces, 376-381 ,

of surfaces of

' to the Articles.

Centroids

—

continued,

revolution, 382-383 ,
of solids of

revolution, 384
Chain, falling, 231 ,

uncoiling, 252,

kinematic, 139.

Change points, 1 50
Glide, motion in veitical, 57.

Ciicular cord, loads for, 333
disc, moment of meitia of,

245
motion, uniform, 71

Closed surface, icsultant force on
due to liquids, 429

Conical circular currents, 451
Coefficient of viscosity, 454
Composition and resolution of foices,

3M
Composition of —angular velocities,

25/^, 98, 1 18 ,
angular velocity and

angular acceleration, 1 19-120 , col-

Imear simple harmonic motions,

31-33, displacements, 15, linear

and angul.ir velocities, 97 ,
pure

stiams and rotations, 184, rec tan-

gnlai vibrations, 67-68 ,
strains,

166-169, stresses, 460, vectors,

15 , velocities and accelerations,

^3
Compound pendulum, 258-261 ;

var.ation of period with axis, 260

;

treatment by energy, 261

Conditions of equilibrium, 315 ,
367-

368
Cone of friction, 221.

Conical motion, 107.

pendulum, 72
Conic, natural orbit is a, 85-86.

Connected particles on rough in-

clines, 225.

Conservation of energv, 212
Constraints and degrees of freedom,

26
Contact, angle of, 436, 438
Continuity, equation of, 441
Convcitibility of centies of oscillation

and suspension, 259.

Co-ordinates, cartesian and polar, 10

Coplanar forces, resultant of, 364
motions, ICX5-I02

Cord m circle, loads for, 333.
equilibiium of, 322-325

Coulomb on friction, 201

Couples, 363.
Cirrbtrecj //., on spinning top, 298,

305
Crank and lever, 148.
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Ciiterion for rotation m Imkworks,
152.

Curvature, 25<r.

Curved membrane in tension, 434
Cycloidal oscillations, 59.
• pendulum, 60
Cycloid, as brachistochrone, 64-65 ; as

involute of cycloid, 60 ,
intrinsic

equation of, 58 ; motion in vertical,

58-60.

Cylinder, attraction of, 343.
steady flow past, 452.
twisted, 465.

Cylindrical motion, 106.

Damped vibration, 45.
Dead points, 150
Deforinability and iigidity in link-

ages, 144
Defoimable figures and systems,

134
Density and pressure, 443
Description of phenomena, mechan-

ics a, 212.

DifTerential equations, 9.

wheel and axle, 389.
Dilatation, a uniform, 165.

Dimensions of units, 12

Discs, attractions of, 340-342
^Disc, moment of inertia of, 245
Displacement, 13.
‘ Displacement’ of floating body, 431,

432
of rigid body, 126-130.

Distributed loads on beams, 407,
409-410

Double-cran^' Imkwork, 149.

Drop, form of large, 438.
Ductile bodies, 455.
Duiifcrley,^ on mechanism, 144,

165.

Du? ley
^

R. J ^
on kinematics of

machines, 161.

Efficiency of a simple machine,
390-391*

Elastic bodies, natuie of, 455 ;
per-

fectly and imperfectly, 455
limit, 455.

Elasticities and their lelations, 462.
Elasticity, 202 , defined, 456
Electrons, masses of at high speeds,

206
Elevation of exterior rail, 229.

Ellipsoid, strain, 174, 180-181
,
shear,

182-183.

Elliptic lamina, moment of inertia

of, 245a!.

orbit, 85-86 ;
velocity, period

and focal acceleration in, 89-90.

Elongation of hfehcal spring, 466.
Energy —conservation of, 212 ;

kin-

etic, 212 ,
lost by impact, 219 ;

of

plane motion of rigid body, 268

,

potential, 215 ; transformation of,

215.

h ncyclopaedta Bntannica^ 456.
Enc,imertng^ on gyroscopes, 305.
Enunciations, etc

,
of mechanical

bases —NezoloRs^ 189-191, Mach’s^

194, PearsoRs^ 197 ,
Lovd'i treat-

tieatment, 198, set of brief, 209.

Epoch, 29.

Equation*^; of — continuity for fluids,

441 ,
motion for axes of fixed

directions, 310, motion foi fluids,

442
Equilibrium'—conditions of, 315,

conditions of undei coplanar forces,

367-368 ,
conditions of under

general forces, 412 ;
neutral, 392 ,

of body with fixed points, 418 ,
of

body with points on plane, 419,
stable, 392 ,

unstable, 392.
Equinoxes, precession of, 305.
Ecpiipotential surfaces, 356.
Ether, 206.

EulePs dynamical equations, 296,

306
theorem, 113-114

Evaluation of sti esses apparently
indeterminate, 402.

Kvaihs and Mam^ 188.

Exterior rail, elevation of, 229.

Falls of :—growing raindrop, 233 ,

hailstone, 39-40 , mist, 37-38
Field and potential, 354.
Filaments, attractions of, 336-339;
moment of inertia of, 243.

Finite angular displacements, 116-

117
arcs, simple pendulum in, 54-56.

Fixation of point in rotating body,

272<2.

Floating bodies, 430 ; stability of,

431-432.
Flotation, surface of, 431.

Flow past cylinder, 452.

Fluids, liquids, and gases, natures of,

423 -

Flux, 352.
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The Numbers refer to the Articles,

Focal acceleration, for any conic,

91 ; in elliptic orbit, 90
Forced vibration, 46-48
Force on submerged plane, 427.

polygons, 396-410
Formulae, algebia, 4, trigonometry,

5 , co-ordinate geometry, 6 ;
cal-

culus, 7, 8 ;
differential equa-

tion, 9
Foucault’s pendulum, in.
Freedom and constiaint, 26.

Free or natural vibiation, 48.

Frictional couple for axle, 279.
Friction, angle of, 221 ,

cone of,

221 ;
coefficient of, 221 ,

m At-
wood’s machine, 224 ; laws of,

201.

Fundamental equations of hydro-
statics, 425.

Funicular polygons, 398-401, 410,
closed for equilibrium, 399 ,

for

rcsultant of forces, 398 ,
reactions

found by, 400 ,
with ditfeient poles,

398^^.

Galileo^ 187, 196
Gases, fluids, and liquids, naluics of^

423-
Gauche polygon of vectors, 25
Gauss’ theorem, 352
General displacement of rigid body,

126-130
motion of rigid body, 131 , with

one point fixed, 125.

Geometrical clamp, 26.

formulae, 6.

Goodman on efficiencies of screws,

391 ;
friction, 201 ,

method of
sections, 402 ; ‘vena contracta,’

446.
Giaphical composition of collmear

simple harmonic motions, 32-33.
method for moments of inertia

of laminae, 254.
statics, 394-410
treatment for rise and fall of

shot, 44.

Graphs, displacement, 20 * speed,

21 ;
other forms of, 22

Gravitational field, 335
Gravitation, 200

;
constant of, 335.

Gravity waves, 453.
Gray,, A

,
on compound pendulum,

259 ,
on helical springs, 466.

Greeuhill,, Sii O'., on analogous re-

lations in mechanics, 793 ; on

Greenhill,, Sir G—continued^

ballistic pendulums, 273 ,
on gyro-

scopes, 298, 305.

Growing raindrop, fall of, 233
Gyration, radius of, 237
Gyioscopic motions, examples of,

305
Gyroscopes, 287-289.

Hailstone, fall of, 39-4a
Harfs cell, 155-156
Hayward’s equations, 311,

Head, pressui e, 444 ;
\ clocity, 444.

Heights by barornetei, 433
Helical spring, 466.

Henna and Turner on linkages, 144.

Herpolhode, 312.

Herta,, //, 21 1.

Heterogeneous strains, 185.

Higher pairing, examples of, 163.

High falls, 34-36.

Hodogiaph, 70, foi natural mbits,

84.

‘Hole, slot, and plane,’ 26.

Homogeneous bodies, 455.
strains, 164, 173-184 , nine con-

stants of, 175.

stress and its components, 458
Hooke’s law, 202.

Hu \yhens,, 187, 196.

Hydrometers, 430.

Hydiostatics, fundamental equations

of, 425.
Hydrostatic pressure independent of

direction, 424.
Hyperbolic orbit and hodograph, 87.

Impact, direct, 217; oblique, 218;
loss ofenergy in, 2

1 9 ,
of molecule,

220.

Impulse, 212.

Impulsive torque, 237
Inclined plane, 316
Incline, motion down, 52.

Incompressible fluid as Mink,’ 138.

Independence of translation of centre

of mass of rgid body and rotation

about it, 269, 307-309
Ineitia, 186 , at high speeds, 206.

moment of, defined, 237.

Incxtensibihty of cord, 137.

Initial conditions, for orbit, 88; for

simple hannonic motion, 30.

Instrntaneous axis of rotation, 95
centres of rotation, 95, loi

;
for

linkages, 145.
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Invariants of forces in reduction to

wrench, 420.

Inversions of linkages, 143.

Isotfopic bodies, 455.

Jago'y G.y on hydrokmetics, 454.

feansyj. H.y on change of latitude,

312.

Joints, reactions at, 403-404

Xehnrty Lordy on strain, 164
Kelvin and Tail on homogeneous

bodies, 455 ;
Newton's laws, 192 ,

stiains, 164, 173 ,
stress on given

plane, 459 ;
time, 204.

Kennedy^ A B. IV, 161.

Keplet^s laws, eyxi, 200
Kinetic energy, 212, of rigid body

in plane motion, 268
,

in rotation,

299
Kinematic chain, 139.

Kirchhojf, 198.

Krigar-Mensel, on constant of gravi-

tation, 350.

Liiorangds ‘ Mecanique Analytique,’

388.
Lagrange on Virtual Work, 388.

Lamb'^ ‘ Hydrodynamics,’ 444,
Laminae, moments of inertia of,

elliptical, 245« ;
graphical method

for, 254 ;
rectangular, 244 ;

trian-

gular, 248-252.
Lamina theorem for moments of

inertia, 239.
Laplace'’' theorem, 357.
Large drop, form o^ 438.
Latitude, change of, 3 1 2.

Lazy-tongs, 157.

Level of liquid disturbed by accelera-

tions, 439-440-
Lever, 389.
Limiting speed, 37-42.

Linear and angular velocities com-
pounded, 97.

momentum and acceleration of
rigid body in plane motion, 265.

Lines of force, 351.

Linkages, plane, 143-161.
T-— quadric, 146-152.

Link polygons, 398-401, 410 j closed

for equilibrium, 399 ; for resultant

of forces, 398 ;
reactions found

by, 400 ;
with differe.it poles, 398^.

Links and their relative motion, 139-
141.

Linkvvorks, velocity ratios for, 147,
159-160.

Liquid in accelerated vessel, 439-440.
force on plane in, 427.
rotating as rigid solid, 447.

Liquids, fluids, and gases, natures of,

423
Localisation of vectors, 16
Lodge, Sir Oliver, on axioms, 199

;

on dynamics, 2 1 1 , on Keplei^s
laws, 200.

Logarithmic decrement, 45.
spiral, 45.

Longitudinal mass of electron, 206
Long waves, 453
Lorenia, H. A

,
masses of electrons

at high speeds, 206.

Loss of energy at impact, 219.
J.ove, A IL //, on Newton, 198.
Low, D. A

,
on beams, 410.

Lubricated surfaces, friction of, 201.

Mach, Ernst, on Newton's enuncia-
tions, 193-196, 205, 207, 21

1

Main, Evans and, 188.

Mass, at high speeds, 206 ,
brought

into equations, 212; defined, 209,
longitudinal and transverse, 206

;

need for, 186; quantities usuall)

proportional to, 207.

Maxwell, J C, on reciprocal figures,

395 ; on time, 204.

Mechanical advantage, 389-391.
Mechanisms, subdivisions of^ 134
Meniscus, 436.
Metacentre, 431-432.
Method of sections for evaluation of

stresses apparently indeterminate,

402
Minchin and Dale on catenary, 328.
Minimal Velocities for top to spin

and to sleep, 304.

Mist, fall of, 37-38.

Moduli of elasticity, 202.

Molecule, impact of, 22a
Moment of couple, 363.

of alForce about a line, 414.

of inertia defined, 237
of inertia table, 263.

of momentum, 237.

Momental Ellipsoid, 241.

Moments of inertia, table of, 253.

of inertia, theorems on, 238-

241 : evaluation of, 242-252.
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Moments, definitionand theorem, 25^!.

Momentum, angular, 237 ; linear,

212.

Morley^ A.y on beams, 410 ; on mo-
ments of inertia found graphically,

254.
Motion, equations of, for fluids, 442.
Motions of rigid body with one

point fixed, 125, 286-306.

Moving axes, fixed in body, 295-

296 ;
torques about, 294.

axis, rotation about a, 121.

Multiplied cord, 135, 318.

Mutual moment of two lines, 414.

Natural law, orbits under, 83-90^*.

* Nature’ on gyrostats, 305.
Neutral equilibiium, 392.

surface of bent bar, ^64.
Newtonian constant of gravitation,

335 , 350-

Newtoiis principles, 188 ,
defini-

tions, 189; axioms or laws of
motion, 190 ,

corollaries, 191 ,
dis-

ciples and critics, 192.

Nine constants of homogeneous
strain, 175

Normal and tangential accelerations,

69.

Nutation, 301 ;
velocity of, 303.

Oblique axis theorem for moments
of inertia, 241,

Orbit, curvature of, 80 ;
differential

equation of, 79 ; under natural

law, 83-90/'!!
;
velocity in, 82,

Oscillation, centre of, 259.
Oscillations, rolling, 285,

Oscillatory waves, 453.
Outflow velocity, 445.

Pairing of links, lower, 140 ; higher,

141.

Pantograph, 153.
Pappu^ theorems, 386.

Parabolic cord has uniform hori-

zontal load, 332.
orbit, 85-86.

Parallel axes theorem for moments
of inertia, 238.

cranks, 149, 157.

forces, resultant of, 362.

motion, 1 5 1.

Parallelepiped, moment of inertia of,

244.

Parameter of catenary, 331.

Particles on rough inclines, 225.

Pearson^ Karl^ on Newton^ etc., 197,
211.

PeaucelheYs cell, 1 54.

Pendulum, ballistic, 273 ; compound^
258-261 ; conical, 72 ;

cycloidal,

60 ;
in accelerated chamber, 226-

229 ; rigid, 258-261
;

simple, 53-

57, spherical, 109-111 ;
torsional,

262.

Percussion, centre of, 270
Period and velocity in elliptic orbit,

89-90.

of vibration, 30.

Permanent set, 455.
Perry

^

y, on elongation of springs,

466 ;
on gyrostats, 305

Physical conceptions introduced,

186.

pendulum, 258-261.

Pile of spheres by virtual work, 421.

Pitch of scicw, 130
Plane linkages, 143-161.

motion of rigid body, 264-269 ;

analysed, 96.

Planetary orbit is a conic, 85-86.

Plastic bodies, 455.
Plates, air bubble under, 438 ; ascent

of liquid between, 437.
Poincarly //, 2ir.

Poinsols analogy betw een statica

and kinematics, 366 ,
central axis,

420 ; reduction of forces, 41 1,

Poisson's ratio, 165, 462 ; theorem,

357.
.

Polar diagrams for Imkwork velocity

ratios, 147, 160.

Polhode, 312
Potential, and field, 354 ; and work,

355 ;
energy, 215 ;

graphic repre-

sentation of, 361 ;
introduced, 353 ;

of disc, 358 ; of solid sphere, 360

;

of spherical shell, 359 ;
velocity,

449.
Poynting^ J. H.y on constant of

gravitation, 350.
Processional motion, 120, 122.

velocities at limiting inclina-

tions, 302.

Precession, angular acceleration for

steady, 124 ;
conical without

torque, 298 ; maintenance of,

287-289 ; of equinoxes, 305 ; of
top, 297 ;

starting of, 300-301.
Pressure and density, 443 ;

at any
depth in a liquid, 426 ; centre of
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Piessure and density

—

continued.

428 ; head, ‘ 444 ;
on curved

stretched membrane, 434 ;
pairing

of links, 142.

Principal axes and planes of stiess,

^
459-

Principia,’ 188, 196, 211.

Prism, moment of inertia of, 247.
Projectile, 49-51.
Proportionality point, 455.
Pulley or multiplied cord, 318.

Pure strain, 164, along co-ordinate

axes, 179 ,
conditions foi, 177

,

derived from homogeneous strain,

178.

Quadric linkages, 146-152.

Quoit, motions of, 312.

Radial and transversal velocities

and accelerations, 74-75
Radius of gyration, 237.
Rartkine^ W J. M on method of

sections, 402 ;
on stress and strain,

164.

Range of nrojectile, 49 ;
on incline,

51 -

Rational mechanics, 198
Reactions, at joints, 403-404 ,

inside

bodies, 405-410
and torques, centrifugal, 306

Reciprocal figures, 395.
Rectangular vibrations, composition

of, 67-68.

Reduction of forces to a wrench,
420.

to two |brces, 4 1 7.

Relative character of mechanics,
203.

Repo*se, angle of, 221.

Resolution of forces, 314 ;
of strains,

166-169.

Resultant, angular velocity and mo-
mentum not about same axes, 292 ;

conditions for single, 415 ; force

on closed surface in liquid 429;
line of action of single, 416 ; of

forces in solid space, 41 1, of

parallel forces, 362 ;
work is al-

gebraic sum of component works,

320.

Reuleaux on mechanisms, 139, 16 f.

Richard, on constant of gravita-

tion, 350.
Right-handed system of co-ordinates,

94.

Rigid body introduced, 92.

Rigidity, 462 ;
and deformability of

linkages, 144.

Ripples, 453.
Rise and fall of shot, 41-44.
Ritter^ method of sections, 402.
Rodrigue^ co-ordinates, 115 ;

theo-

rem, 116-117
Roller and bucket problem, 255-256
Rolling and sliding, down incline,

278 , on level, 280-282
; up incline,

283-284
cones, 122, 125 ;

contact, 141 ;

down incline, 274-277 ;
motion,

95, loi
; oscillations, 285.

Roof, snow slipping on, 234 ,
with

asymmetrical load, 401.

Rotating liquid, 447, 451
vessel has liquid surface a para-

boloid, 440.
Rotational energy, general expics

sions for, 299
Rotation, about a moving axis, 121 ,

and translation compounded, 94 ;

and translation of rigid body, in-

dependence of, 269 ;
in homo-

geneous strains, 176, in linkworks,

graphical criterion for, 152 ,
of

orbit of spherical pendulum, 111,
of rigid body under unifoim ac-

celeration, 236-237^2 ; simple har-

monic, 93.

Rotations and translations compaied,
92.

of elements of fluid, 448, 450.
Rough incline, motion on, 222
Routh,^ E.J, on ballistic pendulum,

273 ; centrifugal reactions, 306

;

Gauss^ theorem, 352 ; rule for

moments of inertia, 253 ;
screws,

133 ; theorem of six constants,

241.

Russell,, Bertrand,, 2ii.

Sag of telegraph wires, 330.

Scalars, 14.

Schhck, Otto, on steadying vessels,

305- .

Scope 01 mechanics, i, 2.

Screw pairs, 162.

Screws, 130, 391.

Sections, method of, for stresses m
roof, etc

,
402

Sectorial velocity, 73.

Sensitiveness of the balance, 392.

Separation of bars foi reactions, 404.-
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Shear, amount of, 165, 170, 172 ;

ellipsoid, 182-183; simple, 165.— viewed as slidmgs, 170-1 71.

Mieanng forces and bending mo-
ments m beams, 405-410.

stress, two aspects of, 461.

Shell, attractions of, 344-346.
Shot, rise and fall of, 41-44
Simple harmonic motion, 29-3a

machines, 389-391.
pendulum, 53-57.

Simultaneous elliptic orbits, 90*1

Single resultant, conditions for, 415 ;

line of action of, 416
Skin fi iction, 452.

Sleeping top, 304
Slider crank chain, 158.

other inversions of, 161

Sliding contact, 141

and rolling down incline, 278 ,

on level, 280-282
,
up incline, 283-

284
Slip of snow on slope, 2^4.

Snow slipping on slope, 234.

Soap bubbles, 435
Solid angles, 351

co-ordinates, 103- 104— splieie, attraction of, 34/, 360,
Tiionicnt of inertia of, 246 ,

poten-

tial of, 360
Space centiode, 95, loi.

Speed, 18

Spem Cf\ Hi 2 1

1

Sphenc.il motion, 108

pendulum, 109-111— shell, attractions of, 344-346.
moment of inertia of, 246

Spinning contact, 141.

Spiral spring, 464
Spontaneous lotation, axis of, 27a
Spring, helical, 466
Stable ecjuilibiiiim, 392.

Stability of ccjuilibnum, 392.
of the balance, 392

Statics, giapliical, 394-4ia
Steady flow, ot mscous liquid, 454;

past cylinder, 452, under graMtv,

444
precession, angular acceleration

foi, 124.

Straight line, hnkworks to draw a,

154-156-
Strain, definition of, 164 ,

ellipsoid,

174, 180-181,

Strains, composition and resolution

ot, 166-169.

Strains, homogeneous, 164, 173-184.
Stream line, 444
Stress, 202, 456-457 , across any

plane, 459 ;
and strain, work of, 463.

homogeneous, 458.
polygons, 396-410.

Stresses, composition of, 46a
Subdivisions of mechanics, i.

Successive finite angular displace-

ments, 116-117.

Surface of liquid disturbed by accel-

erations, 439-440
waves, 453

Tackle or pui chase, 318
Kelvin and, 192 ,

on stiains,

164, 173 ,
on time, 204

P C
,
on gravitation, 200 ,

on
motions of c|Uoit, 312

Tangential and normal accelciations,

69
7 arleton^ WtlUanison and, on screw %

*33
Telegraph wires, sag and excess

length in, 330
Tension pairing of links, 142.

Terminal speed, 37-42
'1 hree connected masses, motion of,

230
Tidal waves, 453
Time and motion, 17.

measurement of, 204
1 ihihunter on vntual vvoik, 321,

Top, steady precession of, 297.

Tomie/tPs theorem, 445
Torque, 237.

Torques, centrifugal, 306.

Torsional pendulum, 26....

Torsion of cylinder, 465
Tortuosity, 1 1 2.

Pimfer^ Peaudiamp^ on triction, 201.

Fiajectory of projectile, 50
Transformations of energ^y, 215
Translation and rotation of rigid

body, independence of, 269.

Translations and rotations compared,
92

Transversal and radial velocities and
accelerations, 74-75

Transverse mass of electron, 206-

Trap door, fall of, 271-272
Triangular lamina, moments of in-

ertia 248-252.

Trigonometrical formulae, 5,

Tripod by virtual work, 421.
I ubes of force, 351.
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Tttrfter^Henrict and, on linkages, 144
Twisted cylinder, 465.
Twfsting velocity, resultant, 133
Twists, 13a
Two forces, system reduced to, 417.
Typical pure strains, 165

Uniform acceleration, 27-38
angular acceleration, 92
circular motion, 71.

Uniform!) loaded beams, 409-410
Units, II, 12; and systems of units,

213-214.

Unstable equilibrium, 392.

Vapour, 423.
Vectorial polygons, 24.

Vectois, 14

Velocity, 18, and period in elliptic

orbit, 89-90, 91 £z, head, 444, of any
point of rigid body, 132 ,

potential,

449 ,
ratios for slider crank chain,

159-160, latios of linkuorks, 147,

159-160
‘\’'ena contracta,’ 446
Vertical circle, motion in, 57
Vibration >, note on, 235.

•Virtual woik, bifil.ir suspension by,

422, for particles, 321 ,
for rigid

b(;dies, 387-388, pile of spin res

b), 421 ,
piessure on mcnil)iane

by, 4^4 ,
tripod by, 42 1 , zero for

equilibrium, 321.

Viscosity, qualitative mention of,

423 ; determination of, 454
Viscous fluids, 455.
Volume, change m strain, 164

elasticity, 462.

Wailr waves, 453
parallel motion, 151.

Wav^es, 453.
IfWntcr^ A. G, on general motions
of a rigid body, 312 ,

on lieiglUs

by baiometer, 433
Wedge, 317.

Wedges of immersion and emersion,

43 «

lFef/ty/t\f ])ulley blocks, 389.

Wheel ami axle, 389
If ;///awwv/ and Fnr/tforison sriev. s,

^ 33 -

Wind loads on roof, 401

Work, 212
,
in oblique disjil \< eiiumts,

216, of given foice and <li-»pluc-

ment, 319, of stress .ind stiain,

463, virtual, 321, 387-388, 421

422, 434
If A My on g) ros( opt ^

29S, 305
Wrench, forces reduced to, 420

{

Young’s modulus, 462.

I Ztu'ct, Alcxanucr^ 211.

Pnnt^il I i C^rt it Lrttain !•> T and A. Cosm aiu k I ro.

at tuc Univerftity Pre^^, Fdinburgh
















